天津市南开区八年级上册期末数学试题有答案(PDF版)【精编】.pdf
天津市南开中学八年级上册期末数学模拟试卷含详细答案

天津市南开中学八年级上册期末数学模拟试卷含详细答案一、选择题1.如图,将长方形ABCD 沿线段EF 折叠到''EB C F 的位置,若'105EFC ∠=︒,'DFC ∠的度数为( )A .20︒B .30C .40︒D .50︒2.下列各组数中,可以作为直角三角形的边长的是 ( ) A .1,2,3B .2223,4,5C .2,3,5D .3,2,5 3.墨墨发现从某多边形的一个顶点出发,可以作5条对角线,则这个多边形的内角和是 ( )A .1260°B .1080°C .900°D .720°4.△ABC 中,AB=AC=12厘米,∠B=∠C ,BC=8厘米,点D 为AB 的中点,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动。
同时,点Q 在线段CA 上由C 点向A 点运动。
若点Q 的运动速度为v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为( )A .2B .5C .1或5D .2或3 5.已知等腰三角形的一边长为2,周长为8,那么它的腰长为 ( ) A .2B .3C .2或3D .不能确定 6.已知:如图,AB ⊥CD 于O ,EF 为经过点O 的一条直线,那么∠1与∠2的关系是( )A .互为对顶角B .互补C .互余D .相等7.已知等腰三角形ABC 的底边8BC =,且4AC BC -=,则腰AC 长为( ) A .4或12B .12C .4D .8或12 8.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E9.如图,点O 在AD 上,,,,6,4A C AOC BOD AB CD AD cm OC cm ∠=∠∠=∠===,则OB 的长为 ( )A .2cmB .3cmC .4cmD .6cm10.如图,点D 在△ABC 的边BC 上,BD CD >.将△ABD 沿AD 翻折,使B 落在点E 处.且DE 与AC 交于点F .设△AEF 的面积为1S ,△CDF 的面积为2S ,则1S 与2S 的大小关系为( )A .12S S >B .12S SC .12S S <D .不确定二、填空题11.如图,点 P 在∠AOB 的平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是________(只写一个即可,不添加辅助线).12.若关于x 的分式方程211k x x x =---的解为正数,则满足条件的非负整数k 的值为____. 13.如图,AB CD ,一副三角尺按如图所示放置,∠AEG =20度,则 HFD ∠为______________度.14.将一副三角板(30A ∠=︒)按如图所示方式摆放,使得AB EF ,则1∠等于______度.15.当a =____________时,分式44a a --的值为零. 16.如图,直线AB ∥CD ,直线EF 分别与直线AB 和直线CD 交于点E 和F ,点P 是射线EA 上的一个动点(P 不与E 重合)把△EPF 沿PF 折叠,顶点E 落在点Q 处,若∠PEF=60°,且∠CFQ :∠QFP=2:5,则∠PFE 的度数是_______.17.如图,在△ABC 中,AB=AC=8cm ,BC=5cm .D 、E 分别是AB 、AC 边上的点,将△ADE 沿直线DE 折叠,点A 落在点A ′的位置,点A ′在△ABC 的外部,则阴影部分图形的周长为________cm .18.如图,在△ABC 中,AD 是高,AE 是角平分线,若∠B =72°,∠DAE =16°,则∠C =_____度.19.如果x 2+mx +6=(x ﹣2)(x ﹣n ),那么m +n 的值为_____.20.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).三、解答题21.已知如图,点A 、点B 在直线l 异侧,以点A 为圆心,AB 长为半径作弧交直线l 于C 、D 两点.分别以C 、D 为圆心,AB 长为半径作弧,两弧在l 下方交于点E,连结AE. (1)根据题意,利用直尺和圆规补全图形;(2)证明:l 垂直平分AE.22.把下列各式分解因式:(1)226x y x -;(2)3222x x y xy -+;23.化简求值:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2,其中a =﹣12,b =2. 24.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若148∠=︒,求2∠的度数;(2)求证://AB DE .25.已知:如图,AD 垂直平分BC ,D 为垂足,DM ⊥AB ,DN ⊥AC ,M 、N 分别为垂足.求证:DM=DN .26.先化简,再求值:2112(1)3(2)23b a b ---+-,其中a =-1,b =1. 27.(1)解方程组:202321x y x y -=⎧⎨+=⎩. (2)解不等式组:202(21)15x x x -<⎧⎨-≤+⎩.(3)分解因式:3x x -.(4)分解因式:221x x -++.28.先化简,再求值:2212(1)11x x x x x -÷-+--,其中x 满足x 2+7x=0. 29.如图,直角坐标系中,点A 的坐标为(3,0),以线段OA 为边在第四象限内作等边△AOB ,点C 为x 轴正半轴上一动点(OC >3),连结BC ,以线段BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E .(1)证明∠ACB=∠ADB ;(2)若以A ,E ,C 为顶点的三角形是等腰三角形,求此时C 点的坐标;(3)随着点C 位置的变化,OA AE的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.30.如图①所示是一个长为2m ,宽为2n(m n)>的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形()1如图②中的阴影部分的正方形的边长等于______(用含m 、n 的代数式表示); ()2请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:______;方法②:______;()3观察图②,试写出2(m n)+、2(m n)-、mn 这三个代数式之间的等量关系:______;()4根据()3题中的等量关系,若m n 12+=,mn 25=,求图②中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由轴对称的性质可求出∠EFC 的度数,可由式子∠EFC+∠EFC'-180°直接求出∠DFC'的度数.【详解】解:由翻折知∠EFC=∠EFC'=105°,∴∠EFC+∠EFC'=210°,∴∠DFC'=∠EFC+∠EFC'-180°=210°-180°=30°.故选:B .【点睛】本题考查了翻折变化(轴对称)的性质及角的计算,解题关键是熟练掌握并能够灵活运用轴对称变换的性质等.2.C解析:C【解析】【分析】根据三角形的三边关系定理和勾股定理的逆定理逐个判断即可.【详解】解:A 、∵12+22≠32,∴以1,2,3为边不能组成三角形,不能组成直角三角形,故本选项不符合题意; B 、∵222222(3)(4)(5)+≠,∴以2223,4,5为边不能组成直角三角形,故本选项不符合题意;C 、∵222+=,D 、∵2222+≠,故选:C .【点睛】本题考查了三角形的三边关系定理和勾股定理的逆定理等知识点,能熟记勾股定理的逆定理的内容是解题的关键.3.B解析:B【分析】首先根据从一个多边形的一个顶点出发,一共可以作5条对角线,可以得到是八边形,然后利用多边形的内角和定理即可求解.【详解】解:根据题意,多边形的边数是5+3=8,则内角和是(8-2)×180=1080°.故选:B.【点睛】本题考查了多边形的内角和定理和多边形的边数与对角线的条数之间的关系,理解多边形是八边形是关键.4.D解析:D【解析】【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=6cm,∵BD=PC,∴BP=8-6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s).故v的值为2或3.故选择:D.此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS 、SAS 、ASA 、AAS 、HL .5.B解析:B【解析】【分析】根据等腰三角形性质和已知条件,进行分类讨论,即可得到答案,要注意的是一定要符合构成三角形的三边关系.【详解】已知三角形一边长为2,(1)当这一边是等腰三角形的腰时,它的腰长就为2,则底边是4根据三角形三边关系,这种情况不符合条件;(2)当这一边是等腰三角形的底边时∵ 周长为8,底边为2∴ 腰长为:822=3 (等腰三角形两腰相等) 根据三角形三边关系,这种情况符合条件;综上所述,这个等腰三角形的腰长为3.故答案选B.【点睛】本题考查了三角形的三边关系与等腰三角形的性质,解题的关键是熟练的掌握三角形的三边关系与等腰三角形的性质.6.C解析:C【解析】【分析】根据垂线的定义得出∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【详解】解:∵AB ⊥CD ,∴∠BOD =90°.又∵EF 为过点O 的一条直线,∴∠1+∠2=180°﹣∠BOD =90°,即:∠1与∠2互余,故选:C .【点睛】本题考查了垂线的定义、平角的定义、角的互余关系;熟练掌握垂线的定义和平角的定义是解题的关键.7.B【解析】【分析】先化简绝对值,得到4AC BC -=±,结合三角形的三边关系,即可得到腰的长度.【详解】 解:∵4AC BC -=,∴4AC BC -=±,∵等腰ABC ∆的底边8BC =,∴12AC =.4AC =,∵448+=,则4AC =不符合题意,故选:B .【点睛】本题考查了等腰三角形的性质,化简绝对值,以及三角形的三边关系,解题的关键是正确化简绝对值.8.C解析:C【解析】【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.【详解】解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .9.A解析:A【解析】【分析】根据题意,利用AAS 先证明△AOB ≌△COD ,得到OA=OC ,OB=OD ,利用线段的和差关系,即可求出OB 的长度.【详解】解:∵AOC BOD ∠=∠,∴AOC COB BOD COB ∠+∠=∠+∠,∴AOB COD ∠=∠,∵,A C AB CD ∠=∠=,∴△AOB≌△COD(AAS),∴OA=OC=4,OB=OD,∵OD=6-4=2,∴OB=2;故选:A.【点睛】本题考查了全等三角形的判定和性质,以及线段的和差关系,解题的关键是熟练掌握全等三角形的判定和性质进行解题.10.A解析:A【解析】【分析】依据点D在△ABC的边BC上,BD>CD,即可得到S△ABD>S△ACD,再根据折叠的性质,即可得到S1>S2.【详解】解:∵点D在△ABC的边BC上,BD>CD,∴S△ABD>S△ACD,由折叠可得,S△ABD=S△AED,∴S△AED>S△ACD,∴S△AED−S△ADF>S△ACD−S△ADF,即S1>S2,故选:A.【点睛】本题主要考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题11.∠APO=∠BPO(答案不唯一)【解析】OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP解析:∠APO=∠BPO(答案不唯一)【解析】OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP .故填OA=OB .12.【解析】【分析】首先解分式方程,然后根据方程的解为正数,可得x >0,据此求出满足条件的非负整数K 的值为多少即可.【详解】∵,∴.∵x >0,∴,∴,∴满足条件的非负整数的值为0、1解析:【解析】【分析】 首先解分式方程211k x x x =---,然后根据方程的解为正数,可得x >0,据此求出满足条件的非负整数K 的值为多少即可.【详解】 ∵211k x x x =---, ∴2x k =-.∵x >0,∴20k ->,∴2k <,∴满足条件的非负整数k 的值为0、1,0k =时,解得:x =2,符合题意;1k =时,解得:x =1,不符合题意;∴满足条件的非负整数k 的值为0.故答案为:0.【点睛】此题考查分式方程的解,解题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.13.35【解析】分析:过点G 作AB 平行线交EF 于P ,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.详解:过点G作AB平行线交EF于P,由题意易知,AB∥GP解析:35【解析】分析:过点G作AB平行线交EF于P,根据平行线的性质求出∠EGP,求出∠PGF,根据平行线的性质、平角的概念计算即可.详解:过点G作AB平行线交EF于P,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=35°.故答案为35°.点睛:本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.14.105°【解析】【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【详解】∵AB∥EF解析:105°【解析】【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【详解】∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠1=∠BDE+∠B=45°+60°=105°,【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是掌握平行线的性质和三角形外角的性质.15.-4【解析】【分析】分式的值为零时,分子等于零,分母不等于零,进行求解即可.【详解】解:∵分式的值为零,∴.解得:,所以当时,分式无意义,故舍去.综上所述,.故答案为:-4.解析:-4【解析】【分析】分式的值为零时,分子等于零,分母不等于零,进行求解即可.【详解】解:∵分式44aa--的值为零,∴4=0a-.解得:=4a,所以=4a±当=4a时,分式无意义,故舍去.综上所述,=4a-.故答案为:-4.【点睛】考查了分式的值为零的条件,注意:“分母不为零”这个条件不能少.16.50°【解析】【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EF解析:50°【解析】【分析】依据平行线的性质,即可得到∠EFC的度数,再求出∠CFQ,即可求出∠PFE的度数.【详解】∵AB∥CD,∠PEF=60°,∴∠PEF+∠EFC=180°,∴∠EFC=180°﹣60°=120°,∵将△EFP沿PF折叠,便顶点E落在点Q处,∴∠PFE=∠PFQ,∵∠CFQ:∠QFP=2:5∴∠CFQ=212∠EFC=212×120°=20°,∴∠PFE=12∠EFQ=12(∠EFC﹣∠CFQ)=12(120°﹣20°)=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.17.21【解析】【分析】由折叠性质可知,△ADE≌△A′DE,可得对应边相等,然后将阴影部分图形周长BC+BD+AD′+AE′+CE转化为BC+AB+AC即可求解.【详解】解:∵AB=AC=8解析:21【解析】【分析】由折叠性质可知,△ADE≌△A′DE,可得对应边相等,然后将阴影部分图形周长BC+BD+AD′+AE′+CE转化为BC+AB+AC即可求解.【详解】解:∵AB=AC=8,∴△ABC是等腰三角形,又由折叠性质可知AD=AD ′,AE=AE ′,∴阴影部分图形的周长为,BC+BD+AD ′+AE ′+CE ,=BC+BD+AD+CE+AE ,=BC+AB+AC ,=5+8+8,=21,故答案为:21.【点睛】本题主要考查轴对称折叠性质,正确理轴对称折叠性质是本题的解题关键.18.40【解析】【分析】根据三角形的内角和得出,再利用角平分线得出,利用三角形内角和解答即可.【详解】是高,,,,是角平分线,,.故答案为40.【点睛】本题考查了三角形的内角和解析:40【解析】【分析】根据三角形的内角和得出18BAD ∠=,再利用角平分线得出68BAC ∠=,利用三角形内角和解答即可.【详解】 AD 是高,72B ∠=,18BAD ∴∠=,181634BAE ∴∠=+=, AE 是角平分线,68BAC ∴∠=,∴∠=--=.C180726840故答案为40.【点睛】本题考查了三角形的内角和定理,熟悉直角三角形两锐角互余和三角形的内角和等于180是解题的关键.19.-2【解析】【分析】把(x-2)(x-n)展开,之后利用恒等变形得到方程,即可求解m、n的值,之后可计算m+n的值.【详解】解:∵(x﹣2)(x﹣n)=x2﹣(2+n)x+2n,∴m=﹣解析:-2【解析】【分析】把(x-2)(x-n)展开,之后利用恒等变形得到方程,即可求解m、n的值,之后可计算m+n的值.【详解】解:∵(x﹣2)(x﹣n)=x2﹣(2+n)x+2n,∴m=﹣(2+n),2n=6,∴n=3,m=﹣5,∴m+n=﹣5+3=﹣2.故答案为﹣2.【点睛】本题考查了因式分解的十字相乘法,我们可以直接套用公式()()()2+++=++即可求解.x p q x pq x p x q20.③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其解析:③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.三、解答题21.(1)见解析;(2)证明见解析.【解析】【分析】(1)根据题意进行作图即可;(2)根据题意可证明△ACD ≌△ECD ,再利用全等的性质及等腰三角形“三线合一”的性质即可证明结论.【详解】解:(1)如图所示;(2)证明:由题意可知,AC=AD=AB ,CE=ED=AB ,∴AC=CE ,AD=DE ,又∵CD=CD ,∴△ACD ≌△ECD ,∴∠ACD=∠ECD ,又∵AC=CE ,∴CO 垂直平分AE ,∴l 垂直平分AE.【点睛】本题考查了作图及线段的垂直平分线,需熟练掌握全等三角形的判定及性质,等腰三角形的性质,学会应用“三线合一”证明线段的垂直平分线.22.(1)2(3)x xy -;(2)2()x x y -【解析】【分析】(1)直接了利用提公因式法分解因式即可;(2)先提公因式,再利用完全平方公式进行分解因式即可.【详解】解:(1)226x y x -2(3)x xy =-;(2)3222x x y xy -+22(2)x x xy y =-+2()x x y =-;【点睛】本题考查了分解因式的方法,解题的关键是掌握提公因式法和公式法进行分解因式.23.2ab ,-2【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】解:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2=4a 2﹣b 2+2ab +b 2﹣4a 2=2ab ,当a =﹣12,b =2时,原式=2×(﹣12)×2=﹣2. 【点睛】本题考查了整式的混合运算和求值的应用以及学生的计算和化简能力,题目比较好,难度适中.24.(1)248∠=︒;(2)证明见解析;【解析】【分析】(1)先求六边形ABCDEF 的每个内角的度数,再根据四边形的内角和是360°,求∠2的度数.(2)由(1)中∠ADC 的度数,可得∠BAD=∠ADE ,利用内错角相等,两直线平行,可证AB ∥DE .【详解】(1)∵六边形ABCDEF 的每个内角的度数是(6-2)×180°÷6=120°∴∠FAB=120°,∵∠1=48°∴∠FAD=∠FAB-∠1=120°-48°=72°,∴∠2=360°-120°-120°-72°=48°.(2)∵∠1=48°,∠2=48°,∴AB ∥DE .【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.注意平行于同一条直线的两直线平行.25.见解析.【解析】【分析】根据垂直平分线的性质得到AC=AB ,再利用等腰三角形的性质得到AD 是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD 垂直平分BC ,∴AC=AB ,即ABC 是等腰三角形,∴AD 平分∠BAC ,∵DM ⊥AB ,DN ⊥AC ,∴DM=DN .【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定定理是解题的关键.26.a 2-2b +4;3.【解析】【分析】首先根据整式的运算法则对算式进行化简,再把字母的值代入计算即可得到结果.【详解】解:原式=()2211221333223623b a b b a b ⎛⎫⨯-⨯-⨯--⨯-⨯-=-+-+ ⎪⎝⎭=a 2-2b +4,当a=-1,b=1时,原式=1-2+4=3.【点睛】本题考查整式的化简求值,熟练应用乘法对加法的分配律计算是解答本题的关键. 27.(1)63x y =⎧⎨=⎩;(2)32x -≤<;(3)()()11x x x +-;(4)()21x - 【解析】【分析】(1)加减消元法解方程组;(2)先分别解不等式,再找解集的公共部分;(3)先提公因式,再用平方差公式;(4)应用完全平方公式.【详解】(1)解:202321x y x y -=⎧⎨+=⎩①②, ②-①×2,得:721y =,解得:3y =,把3y =代入①得:6x =,∴原方程组的解为:63x y =⎧⎨=⎩; (2)解:202(21)15x x x -<⎧⎨-≤+⎩①②, 由①得:2x <,由②得:4-215x x ≤+,解得:3x ≥-,∴原不等式组的解为:32x -≤<;(3)原式=()()()211-1x x x x x -=+; (4)原式=221x x -++=()21x -.【点睛】本题考查二元一次方程组的解法,一元一次不等式组的解法,因式分解的方法,熟练掌握基础知识是关键.28.11x -+,16【解析】【分析】由x 满足x 2+7x=0,可得到x =0或-7;先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可.【详解】 原式2212(1),(1)(1)11x x x x x x x ⎡⎤--=÷-⎢⎥+---⎣⎦ 2212(21),(1)(1)1x x x x x x x ---+=÷+-- 221(1)(1)-=⨯+--x x x x x 1.1=-+x 又270x x +=,∴x (x +7)=0,1207x x ∴==-,;当x =0时,原式0做除数无意义;故当x=−7时,原式11.716 =-=-+29.(1)见解析;(2)C点的坐标为(9,0);(3)OAAE的值不变,12OAAE=【解析】【分析】(1)由△AOB和△CBD是等边三角形得到条件,判断△OBC≌△ABD,即可证得∠ACB=∠ADB;(2)先判断△AEC的腰和底边的位置,利用角的和差关系可证得∠OEA=30,AE和AC是等腰三角形的腰,利用直角三角形中,30所对的边是斜边的一半可求得AE的长度,因此OC=OA+AC,即可求得点C的坐标;(3)利用角的和差关系可求出∠OEA=30,再根据直角三角形中,30所对的边是斜边的一半即可证明.【详解】解:(1)∵△AOB和△CBD是等边三角形∴OB=AB,BC=BD,∠OBA=∠CBD=60︒,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD∴在△OBC与△ABD中,OB=AB,∠OBC=∠ABD,BC=BD∴△OBC≌△ABD(SAS)∴∠OCB=∠ADB即∠ACB=∠ADB(2)∵△OBC≌△ABD∴∠BOC=∠BAD=60︒又∵∠OAB=60︒∴∠OAE=1806060︒-︒-︒=60︒,∴∠EAC=120︒,∠OEA=30,∴在以A,E,C为顶点的等腰三角形中AE和AC是腰.∵在Rt△AOE中,OA=3,∠OEA=30∴AE=6∴AC=AE=6∴OC=3+6=9∴以A,E,C为顶点的三角形是等腰三角形时,C点的坐标为(9,0)(3)OAAE的值不变.理由:由(2)得∠OAE=180︒-∠OAB-∠BAD=60︒∴∠OEA=30∴ 在Rt △AOE 中,EA=2OA ∴OA AE =12. 【点睛】本题主要考查了全等三角形的性质以及判定定理,平面直角坐标系,含30角直角三角形的性质,等腰三角形的性质,等边三角形的性质,灵活运用全等三角形的判定定理寻求全等三角形的判定条件证明三角形全等是解题的关键.30.(1)()m n -(2)①2(m n)-②2(m n)4mn +-(3)22(m n)4mn (m n)+-=-(4)44【解析】【分析】()1由图①可知,分成的四个小长方形每个长为m ,宽为n ,因此图②中阴影部分边长为小长方形的长减去宽,即()m n -;()2①直接用阴影正方形边长的平方求面积;②用大正方形面积减四个小长方形的面积; ()3根据阴影部分面积为等量关系列等式;()4直接代入计算.【详解】()1小长方形每个长为m ,宽为n ,∴②中阴影部分正方形边长为小长方形的长减去宽,即()m n -故答案为()m n -()2①阴影正方形边长为()m n -∴面积为:2(m n)-故答案为2(m n)-②大正方形边长为()m n +∴大正方形面积为:2(m n)+四个小长方形面积为4mn∴阴影正方形面积=大正方形面积4-⨯小长方形面积,为:2(m n)4mn +-故答案为2(m n)4mn +-()3根据阴影正方形面积可得:22(m n)4mn (m n)+-=-故答案为22(m n)4mn (m n)+-=-()224(m n)4mn (m n)+-=-且m n 12+=,mn 25= ,222(m n)(m n)4mn 1242514410044∴-=+-=-⨯=-=【点睛】本题考查了根据图形面积列代数式,用几何图形面积验证完全平方公式.找准图中各边的等量关系是解题关键.。
南开期末初二数学试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1D. 0答案:D解析:绝对值是指一个数去掉符号的值,所以绝对值最小的数是0。
2. 如果一个等腰三角形的底边长是6cm,腰长是8cm,那么这个三角形的周长是()A. 20cmB. 22cmC. 24cmD. 26cm答案:C解析:等腰三角形的两腰相等,所以周长=底边长+腰长+腰长=6cm+8cm+8cm=24cm。
3. 下列方程中,x=2是它的解的是()A. 2x+3=9B. 3x-1=7C. 4x+2=10D. 5x-3=8答案:A解析:将x=2代入方程2x+3=9,得到22+3=4+3=7,等式成立,所以x=2是方程2x+3=9的解。
4. 一个长方形的长是6cm,宽是4cm,那么这个长方形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²答案:A解析:长方形的面积=长×宽=6cm×4cm=24cm²。
5. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 矩形C. 平行四边形D. 梯形答案:B解析:轴对称图形是指存在一条直线,使得图形关于这条直线对称。
矩形满足这个条件,所以是轴对称图形。
二、填空题(每题5分,共20分)6. 2的平方根是______,-2的平方根是______。
答案:±√2,±√2i解析:平方根是指一个数的平方等于另一个数,2的平方根是√2,-2的平方根是-√2,但由于负数没有实数平方根,所以写作±√2i。
7. 3x-5=7的解是______。
答案:x=4解析:将方程3x-5=7两边同时加5,得到3x=12,然后两边同时除以3,得到x=4。
8. 圆的半径是5cm,那么这个圆的直径是______cm。
答案:10cm解析:圆的直径是半径的两倍,所以直径=半径×2=5cm×2=10cm。
天津市南开区2021-2022学年八年级上学期期末考试数学试题

2021~2022学年度第一学期南开区期末考试试卷八年级数学一、选择题1.下列商标是轴对称图形的是()A. B. C. D.2.据考证,单个雪花的质量在0.00025克左右,这个数用科学记数法表示为()A.32.510-⨯ B.42.510-⨯ C.52.510-⨯ D.42.510--⨯3.下列从左到右的变形,是因式分解的是()A.2(a ﹣b)=2a ﹣2bB.221(a b)(a b)1-=-+++a bC.2224(2)x x x -+=- D.22282(2)(2)x y x y x y -=-+4.下列各式能用平方差公式计算的是()A.()()a b a b -+-- B.()(2)a b a b +- C.()()a b a b -+- D.()()a b a b --+5.等腰三角形的两边长分别为4cm 和8cm ,则它的周长为()A.16cmB.17cmC.20cmD.16cm 或20cm 6.若a =0.32,b =−3−2,21()3c -=-,01()3d =-,则()A.a b c d <<<B.b a d c <<<C.a d c b<<< D.c a d b <<<7.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作MN ∥BC ,分别交AB ,AC 于点M ,N ,若AB=12,AC=18,BC=24,则△AMN 的周长为( )A.30B.36C.39D.428.下列计算结果不正确的是()A.22242=xy y x y x B.221442a a a a -=-+-C.24222x x x +=++ D.2122y x x y y x +=--9.在平面直角坐标系中有两点,要在y 轴上找一点,使它到A 、B 两点的距离之和最小,现有如下四种方案,其中正确的是()A. B.C. D.10.如图,已知ABC ,求作一点P ,使P 到A ∠的两边的距离相等,且PA PB =、下列确定P 点的方法正确的是()A.P 为A B ∠∠、两角平分线的交点B.P 为AC AB 、两边上的高的交点C.P 为AC AB 、两边的垂直平分线的交点D.P 为A ∠的角平分线与AB 的垂直平分线的交点11.某车间加工1200个零件后采用了新工艺,工效提高了50%,这样加工同样多的零件少用10h ,求采用新工艺前、后每小时分别加工多少个零件?若设采用新工艺前每小时加工x 个零件,则可列方程为()A.1200120010(150%)x x-=+ B.1200120010(150%)x x -=+C.1200120010(150%)x x -=- D.1200120010(150%)x x -=-12.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ 、OC .现有以下4个结论:①AD BE =;②PQ //AE ;③AP BQ =;④OC 平分AOE ∠.这些结论中一定成立的有()A.1个B.2个C.3个D.4个二、填空题13.计算:26x y y x⋅=______.14.已知a 2﹣4b 2=12,且a ﹣2b =﹣3,则a +2b =_____.15.如图,已知△ABC ≌△ADE ,若AB=9,AC=4,则BE 的值为____.16.如图,等腰ABC ∆中,AB AC =,30A ∠= ,线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于______.17.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,AD 与BC 边交于点D ,2BD CD =,若点D 到AB 的距离等于5cm ,则BC 的长为______cm .18.如图,在四边形ABCD 中,90A C ∠=∠=︒,34B ∠=︒,在边AB ,BC 上分别找一点E ,F 使DEF 周长最小,此时EDF ∠=______.三、解答题19.(1)将下列各式因式分解①22425a b -;②3223363a b a b ab -+;(2)先化简,再求值:213124a a a -⎛⎫-÷ ⎪--⎝⎭,其中3a =-.20.解分式方程:271326x x x =-++21.如图,D ,C ,F ,B 四点在一条直线上,AB =DE ,AC ⊥BD ,EF ⊥BD ,垂足分别为点C 、点F ,CD =BF .(I )求证:△ABC ≌△EDF .(2)连接AD ,BE ,求证:AD =EB .22.在ABC ∆中,AB AC =,36A ∠=︒,CD 平分ACB ∠交AB 于D ,E ,F 在AC ,BC 上,且108EDF ∠=︒.(1)求ADC ∠的度数;(2)求证:AE BF BC +=.23.甲、乙两同学的家与某科技馆的距离均为4000m .甲、乙两人同时从家出发去科技馆,甲同学先步行800m ,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min .求乙到达科技馆时,甲离科技馆还有多远.24.在平面直角坐标系中,等腰直角△ABC 顶点A 、C 分别在y 轴、x 轴上,且∠ACB =90°,AC =BC .(1)如图1,当A(0,−2),C(1,0),点B在第四象限时,求点B的坐标.(2)如图2,当点C在x轴正半轴上运动,点A(0,a)在y轴正半轴上运动,点B(m,n)在第四象限时,作BD⊥y轴于点D,求a,m,n之间的关系.2021~2022学年度第一学期南开区期末考试试卷八年级数学一、选择题【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】D【9题答案】【答案】D【10题答案】【答案】D【11题答案】【答案】B【12题答案】【答案】D二、填空题【13题答案】【答案】6x【14题答案】【答案】-4【15题答案】【答案】5【16题答案】【答案】45°【17题答案】【答案】15【18题答案】【答案】112°##112度三、解答题【19题答案】【答案】(1)①(2a+5b)(2a-5b),②3ab(a-b)2;(2)a+2,﹣1;【20题答案】【答案】16 x【21题答案】【答案】(1)见解析;(2)见解析【22题答案】【答案】(1)108°;(2)见解析【23题答案】【答案】乙到达科技馆时,甲离科技馆还有1600m.【24~25题答案】【答案】(1)点B的坐标为(3,-1);(2)a+m+n=0.。
2019-2020学年天津市南开区八年级(上)期末数学试卷

2019-2020学年天津市南开区八年级(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分 1.(3分)下列图形中轴对称图形是( )A .B .C .D .2.(3分)在式子21x -,12x -,1x -,2x -中,x 可以同时取1和2的是( ) A .21x - B .12x - C .1x - D .2x -3.(3分)中国的光伏技术不断进步,电子元件的尺寸大幅度缩小,在锌片上某种电子元件大约只占0.000 000 27mm ,这个数用科学记数法表示为( ) A .72710mm -⨯B .620.710mm -⨯C .82710mm -⨯D .827010mm -⨯4.(3分)下列运算:(1)235+=,(2)53525+=,(3)3232+=,(4)2281517+=,(5)2292535a b a b +=+,其中正确的一共有( ) A .2个 B .3个C .4个D .以上都不对5.(3分)化简23111x x ÷--的结果是( ) A .31x - B .23(1)x -C .31x + D .3(1)x +6.(3分)下列各式因式分解正确的是( ) A .32(1)a b ab ab a -=- B .22244(2)x xy y x y -+-=-+C .224(4)(4)x y x y x y -=+-D .223(1)(3)x x x x --=+-7.(3分)如图,直线是一条河,A 、B 是两个新农村定居点.欲在l 上的某点处修建一个水泵站,由水泵站直接向A 、B 两地供水.现有如下四种管道铺设方案,图中实线表示铺设的供水管道,则铺设管道最短的方案是( )A .B .C .D .8.(3分)下列条件中,不能判定直线MN 是线段(AB M ,N 不在AB 上)的垂直平分线的是( )A .MA MB =,NA NB = B .MA MB =,MN AB ⊥C .MA NA =,MB NB =D .MA MB =,MN 平分AB9.(3分)如图,ABC AED ∆≅∆,点E 在线段BC 上,140∠=︒,则AED ∠的度数是( )A .70︒B .68︒C .65︒D .60︒10.(3分)赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A .1401401421x x +=- B .2802801421x x +=+C .1401401421x x +=+ D .1010121x x +=+ 11.(3分)如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为( )A .1B .6C .3D .1212.(3分)ABC ∆中,12AB AC ==厘米,B C ∠=∠,8BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当BPD ∆与CQP ∆全等时,v 的值为( )A .2B .5C .1或5D .2或3二、填空题:本大题共6小题,每小题3分,共18分13.(3分)点(11M a ++,2)-关于x 轴对称的点在第 象限.14.(3分)如图,在ABC ∆中,15B ∠=︒,90C ∠=︒,AB 的垂直平分线交BC 于点M ,交AB 于N ,12BM cm =,则AC = .15.(3分)已知,等腰ABC ∆中,AB AC =,120BAC ∠=︒,P 为直线BC 上一点,BP AB =,则APB ∠的度数为 .16.(3分)如图,ABC ∆中,AB AC =,5BC =,15ABC S ∆=,AD BC ⊥于点D ,EF 垂直平分AB ,交AC 于点F ,在EF 上确定一点P ,使PB PD +最小,则这个最小值为 .17.(3分)已知51x -=,51y +=,则22x y xy +-的值是 . 18.(3分)已知实数a 、b 、c 满足a b ab c +==,有下列结论:①若0c ≠,则322729a ab b a ab b -+=-++;②若0c ≠,则11(1)(1)a b a b--=+;③若5c =,则2215a b +=.其中正确的结论是 .(填序号) 三、解答题(共46分) 19.(12分)计算(Ⅰ)20(257)(257)(53)(2)-+--+-; (Ⅱ)用简便方法计算:22201820183618-⨯+;(Ⅲ)先化简,再求值:22424412x x x x x x x -+÷--++-,其中22x =-. 20.(5分)解方程:242111x x x++=---.21.(6分)如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为多少?22.(7分)如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,如图DE DG =,ADG ∆和AED ∆的面积分别为50和38,求EDF ∆的面积.23.(7分)甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米,高速公路通车后,有一长途汽车的行驶速度提高了45千米/小时,从甲地到乙地的行驶时间减少了一半,求该长途汽车在原来国道上行驶的速度.24.(9分)如图1,2OA =,4OB =,以点A 为顶点,AB 为腰在第三象限作等腰直角ABC ∆. (Ⅰ)求C 点的坐标;(Ⅱ)如图2,2OA =,P 为y 轴负半轴上的一个动点,若以P 为直角顶点,PA 为腰等腰直角APD ∆,过D 作DE x ⊥轴于E 点,求OP DE -的值;(Ⅲ)如图3,点F 坐标为(4,4)--,点(0,)G m 在y 轴负半轴,点(,0)H n x 轴的正半轴,且FH FG ⊥,求m n +的值.2019-2020学年天津市南开区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分 1.(3分)下列图形中轴对称图形是( )A .B .C .D .【解答】解:A 、不是轴对称图形;B 、不是轴对称图形;C 、是轴对称图形;D 、不是轴对称图形;故选:C . 2.(3分)在式子21x -,12x -1x -2x -x 可以同时取1和2的是( ) A .21x - B .12x - C 1x -D 2x -【解答】解:在式子21x -中1x ≠,12x -中2x ≠,1x -x 可以为1和2,2x -1x ≠, 故x 可以同时取1和21x - 故选:C .3.(3分)中国的光伏技术不断进步,电子元件的尺寸大幅度缩小,在锌片上某种电子元件大约只占0.000 000 27mm ,这个数用科学记数法表示为( ) A .72710mm -⨯B .620.710mm -⨯C .82710mm -⨯D .827010mm -⨯【解答】解:0.000 000 2727710mm mm -=⨯. 故选:A .4.(3分)下列运算:(1235(253525=(3)3232+=(4)2281517+=,(52292535a b a b ++,其中正确的一共有( ) A .2个B .3个C .4个D .以上都不对【解答】解:(1235。
天津市南开区2019-2020学年八年级上学期期末数学试题(解析版)

【解析】
【分析】
由P为直线BC上一点,BP=AB,有两种情况:①若P在CB延长线上时,利用等腰三角形的性质求出∠ABC的度数,再利用外角性质即可求出∠APB;②如P在BC上时,两次利用等腰三角形的性质即可求出∠APB.
【详解】如图所示,由P为直线BC上一点,BP=AB,有两种情况:
∴BP=8-6=2(cm),
∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,
∴运动时间时1s,
∵△DBP≌△PCQ,
∴BP=CQ=2cm,
∴v=2÷1=2;
当BD=CQ时,△BDP≌△QCP,
∵BD=6cm,PB=PC,
∴QC=6cm,
∵BC=8cm,
∴BP=4cm,
∴运动时间为4÷2=2(s),
详解】解:∵点M ,
∴点M关于x轴对称的点为: ,
∵ ,
∴点 在第一象限;
故答案为:一.
【点睛】此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.
14.如图,在△ABC中,∠B=15°,∠C=90°,AB的垂直平分线交BC于点M,交AB于N,BM=12cm.则AC=________.
5.化简 的结果是()
A. B. C. D.
【答案】C
【解析】
【分析】
首先把第一个分式的分母进行分解因式,再把除法转化成乘法,然后进行分式的乘法运算即可.
详解】原式 •(x﹣1) .
故选C.
【点睛】本题考查了分式的乘除法运算,分式的乘除运算关键是对分子、分母分解因式然后约分计算.
6.下列各式因式分解正确的是( )
∵△ABC≌△AED,
2018-2019学年最新天津市南开区八年级数学上学期期末模拟综合测评及答案解析-精编试题

八年级(上)期末数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列四个图形中,对称轴条数最多的一个图形是()A. B.C.D.2.若式子在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>﹣3 D.x≥﹣33.如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是()A.∠B=∠E,BC=EF B.∠A=∠D,BC=EF C.∠A=∠D,∠B=∠E D.BC=EF,AC=DF4.下列约分正确的是()A. B.=﹣1C.=D.=5.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.6.如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D 和E,则△BCD的周长是()A.6 B.8 C.10 D.无法确定7.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°8.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+19.计算的结果是()A.6 B.C.2 D.10.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.2a2+3a2=5a6D.(a+2b)(a﹣2b)=a2﹣4b211.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则()A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP12.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x n D.1+x n二、填空题(本大题共6小题,每小题3分,共18分)13.点P(﹣1,3)关于y轴的对称点的坐标是.14.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是m.15.当x=2时,分式的值是.16.三角形的三边长分别为,,,则这个三角形的周长为cm.17.观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n= ;(2)a1+a2+a3+…+a n= .18.如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .三、计算题(本大题共1小题,共8分)19.(1)计算:(4+3)2(2)分解因式:3m(2x﹣y)2﹣3mn2.四、解答题(本大题共4小题,共30分)20.(1)请先将下式化简,再选择一个适当的数代入求值.(1﹣)﹣÷.(2)解方程:=+.21.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.22.已知:如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你说明DA﹣DB=DC.23.王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?五、综合题(本大题共1小题,共8分)24.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF 均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF 的形状.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列四个图形中,对称轴条数最多的一个图形是()A. B.C.D.【考点】轴对称图形.【分析】根据图形的组合特点和对称轴的概念,确定每个图形的对称轴的条数.【解答】解:A、有2条对称轴;B、有4条对称轴;C、不是轴对称图形;D、有1条对称轴.故选B.2.若式子在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>﹣3 D.x≥﹣3【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,x+3≥0,解得x≥﹣3.故选:D.3.如图,在△ABC和△DEF中,已有条件AB=DE,还需要添加两个条件才能使△ABC≌△DEF.不能添加的一组条件是()A.∠B=∠E,BC=EF B.∠A=∠D,BC=EF C.∠A=∠D,∠B=∠E D.BC=EF,AC=DF【考点】全等三角形的判定.【分析】将所给的选项逐一判断、分析,即可解决问题.【解答】解:不能添加的一组条件是B;理由如下:在△ABC与△DEF中,∵∠A=∠D,BC=EF,AB=DE,即在两个三角形中满足:有两边和其中一边所对的对应角相等,∴这两个三角形不一定全等,故选B.4.下列约分正确的是()A. B.=﹣1C.=D.=【考点】约分.【分析】根据约分的步骤把分子与分母中约去公因式,分别对每一项进行判断即可.【解答】解:A、不能约分,故本选项错误;B、=1,故本选项错误;C、不能约分,故本选项错误;D、=,故本选项正确;故选D.5.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质,x,y的值均扩大为原来的2倍,求出每个式子的结果,看结果等于原式的即是.【解答】解:根据分式的基本性质,可知若x,y的值均扩大为原来的2倍,A、==;B、=;C、;D、==.故A正确.故选A.6.如图,△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D 和E,则△BCD的周长是()A.6 B.8 C.10 D.无法确定【考点】等腰三角形的判定与性质;线段垂直平分线的性质.【分析】垂直平分线可确定两条边相等,然后再利用线段之间的转化进行求解.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,△BCD的周长=BC+BD+DC=BC+BD+AD=10故选C.7.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.50°或80°D.20°或80°【考点】等腰三角形的性质;三角形内角和定理.【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.【解答】解:①当顶角是80°时,它的底角==50°;②底角是80°.所以底角是50°或80°.故选C.8.将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1【考点】因式分解-提公因式法;因式分解-运用公式法.【分析】分别将各选项利用公式法和提取公因式法分解因式进而得出答案.【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.9.计算的结果是()A.6 B.C.2 D.【考点】二次根式的加减法.【分析】根据二次根式加减的一般步骤,先化简,再合并.【解答】解:=2﹣=,故选:D.10.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.2a2+3a2=5a6D.(a+2b)(a﹣2b)=a2﹣4b2【考点】平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法,可判断A,根据幂的乘方,可判断B,根据合并同类项,可判断C,根据平方差公式,可判断D.【解答】解:A、底数不变指数相加,故A错误;B、底数不变指数相乘,故B错误;C、系数相加字母部分不变,故C错误;D、两数和乘以这两个数的差等于这两个数的平方差,故D正确;故选:D.11.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则()A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP 【考点】线段垂直平分线的性质.【分析】从已知条件进行思考,根据垂直平分线的性质可得PA=PB,结合图形知BC=PB+PC,通过等量代换得到答案.【解答】解:∵点P在线段AB的垂直平分线上,∴PA=PB.∵BC=PC+BP,∴BC=PC+AP.故选C.12.请你计算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+x n)的结果是()A.1﹣x n+1B.1+x n+1C.1﹣x n D.1+x n【考点】平方差公式;多项式乘多项式.【分析】已知各项利用多项式乘以多项式法则计算,归纳总结得到一般性规律,即可得到结果.【解答】解:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3,…,依此类推(1﹣x)(1+x+x2+…+x n)=1﹣x n+1,故选:A二、填空题(本大题共6小题,每小题3分,共18分)13.点P(﹣1,3)关于y轴的对称点的坐标是(1,3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:P(﹣1,3)关于y轴的对称点的坐标是(1,3),故答案为:(1,3).14.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是9.4×10﹣7m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000094=9.4×10﹣7;故答案为:9.4×10﹣7.15.当x=2时,分式的值是 1 .【考点】分式的值.【分析】将x=2代入分式,即可求得分式的值.【解答】解:当x=2时,原式==1.故答案为:1.16.三角形的三边长分别为,,,则这个三角形的周长为5cm.【考点】二次根式的应用;三角形三边关系.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).17.观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:a n= =﹣;;(2)a1+a2+a3+…+a n= ﹣1 .【考点】分母有理化.【分析】(1)根据题意可知,a1==﹣1,a2==﹣,a3==2﹣,a4==﹣2,…由此得出第n个等式:a n==﹣;(2)将每一个等式化简即可求得答案.【解答】解:(1)∵第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,∴第n个等式:a n==﹣;(2)a1+a2+a3+…+a n=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)=﹣1.故答案为=﹣;﹣1.18.如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= 8 .【考点】作图—复杂作图;线段垂直平分线的性质;含30度角的直角三角形.【分析】根据垂直平分线的作法得出PQ是AB的垂直平分线,进而得出∠EAB=∠CAE=30°,即可得出AE的长.【解答】解:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠C BA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.故答案为:8.三、计算题(本大题共1小题,共8分)19.(1)计算:(4+3)2(2)分解因式:3m(2x﹣y)2﹣3mn2.【考点】二次根式的混合运算;提公因式法与公式法的综合运用.【分析】(1)利用完全平方公式计算;(2)先提公因式3m,然后利用平方差公式分解.【解答】解:(1)原式=16+24+45=61+24;(2)原式=3m[(2x﹣y)2﹣n2]=3m(2x﹣y+n)(2x﹣y﹣n).四、解答题(本大题共4小题,共30分)20.(1)请先将下式化简,再选择一个适当的数代入求值.(1﹣)﹣÷.(2)解方程:=+.【考点】解分式方程;分式的化简求值.【分析】(1)根据分式的混合运算顺序和法则即可得出结果;注意因式分解;(2)把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)(1﹣)﹣÷=﹣×=﹣=(2)去分母得:42x=12x+96+10x ,移项合并得:20x=96,解得:x=4.8,经检验x=4.8是分式方程的解;因此,原方程的解为x=4.8.21.如图,已知点B 、E 、C 、F 在同一条直线上,BE=CF ,AB ∥DE ,∠A=∠D .求证:AB=DE .【考点】全等三角形的判定与性质.【分析】首先得出BC=EF ,利用平行线的性质∠B=∠DEF ,再利用AAS 得出△ABC≌△DEF,即可得出答案.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.22.已知:如图,△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你说明DA﹣DB=DC.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形的性质,可得AB与BC的关系,BD、BE、DE的关系,根据三角形全等的判定,可得△ABE与△CBD的关系,根据全等三角形的性质,可得对应边相等,根据线段的和差,等量代换,可得证明结果.【解答】证明:△ABC和△BDE都是等边三角形,∴AB=BC,BE=BD=DE(等边三角形的边相等),∠ABC=∠EBD=60°(等边三角形的角是60°).∴∠ABC﹣∠EBC=∠EBD﹣∠EBC∠ABE=CBD (等式的性质),在△ABE和△CBD中,,∴△ABE≌△CBD(SAS)∴AE=DC(全等三角形的对应边相等).∵AD﹣DE=AE(线段的和差)∴AD﹣BD=DC(等量代换).23.王师傅检修一条长600米的自来水管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,王师傅原计划每小时检修管道多少米?【考点】分式方程的应用.【分析】设原计划每小时检修管道为xm,故实际施工每天铺设管道为1.2xm.等量关系为:原计划完成的天数﹣实际完成的天数=2,根据这个关系列出方程求解即可.【解答】解:设原计划每小时检修管道x米.由题意,得﹣=2.解得x=50.经检验,x=50是原方程的解.且符合题意.答:原计划每小时检修管道50米.五、综合题(本大题共1小题,共8分)24.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF 均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF 的形状.【考点】全等三角形的判定与性质;等边三角形的判定.【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.2017年2月8日。
2020年天津市南开区八上期末数学试卷(附答案)

∵ DE = DG,
∴ DM = DG,
∵ AD 是 △ABC 的角平分线,DF ⊥ AB,
∴ DF = DN,
在 Rt△DEF 和 Rt△DM N 中, DN = DF,
DM = DE,
∴ Rt△DEF ≌ Rt△DM N (HL),
∵ △ADG 和 △AED 的面积分别为 50 和 38,
∴ S△MDG = S△ADG − S△ADM = 50 − 38 = 12,
∴ △M AC ≌ △OBA (AAS),
∴ CM = OA = 2,M A = OB = 4,
∴ OM = 6,
∴ 点 C 的坐标为 (−6, −2).
(2) 如图 2,过 D 作 DQ ⊥ OP 于 Q 点,
则四边形 OEDQ 是矩形,
∴ DE = OQ,
∵ ∠AP O + ∠QP D = 90◦,∠AP O + ∠OAP = 90◦,
(填序号).
三解答题共 6 题66 分
19. 解方程: 4 x2 − 1
+
x+2 1−x
= −1.
初二数学第!页共*页
20.
计算. (√
(1) 2 5
−
√) 7
(√ 25
+
√) 7
−
(√ 5
−
)2 3
+
(−2)0;
(2) 用简便方法计算:20182 − 2018 × 36 + 182.
.
√
√
15. 已知 x = 5 − 1 ,y = 5 + 1 ,则 x2 + y2 − xy 的值是
.
2
2
16. 已知,等腰 △ABC 中,AB = AC,∠BAC = 120◦,P 为直线 BC 上一点,BP = AB,则 ∠AP B 的度数
天津市南开区八年级上学期末数学试卷解析版

天津市南开区八年级(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.2.如果代数式有意义,则实数x的取值范围是()A.x≥﹣3B.x≠0C.x≥﹣3且x≠0D.x≥33.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x4.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.7cm B.4cm C.5cm D.3cm5.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B 的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0)D.(﹣10,3)6.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.若=﹣a,则a的取值范围是()A.﹣3≤a≤0B.a≤0C.a<0D.a≥﹣38.已知是正整数,则满足条件的最大负整数m为()A.﹣10B.﹣40C.﹣90D.﹣1609.已x+=3,则的值是()A.9B.8C.D.10.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm211.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A.1B.2C.3D.412.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E,F分别是AC,BC的中点;④若OD=a,CE+CF=2b,则S=ab.△CEF其中正确的是()A.①②B.③④C.①②④D.①③④二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上13.已知点A(x,3)和B(4,y)关于y轴对称,则(x+y)2019的值为.14.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.15.如图,数轴上点A表示的数为a,化简:a+=.16.如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE⊥AC于点E,Q为BC延长线上一点,取BA=CQ,连接PQ,交AC于M,则EM的长为.17.如果代数式m2+2m=1,那么÷的值为.18.如图,Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF;⑤S 四边形AEDF =AD 2,其中正确结论是 (填序号)三、解答题(共46分)19.(12分)计算(Ⅰ)﹣()﹣1﹣+|﹣2|(Ⅱ)因式分解,(x +2)(x ﹣6)+16(Ⅲ)先化简,再求值: •﹣,其中x =220.(5分)解分式方程:﹣1=.21.(6分)如图所示,△ABC 中,AB =AC ,E 在AC 上,D 在BA 的延长线上,且AD =AE ,连接DE .求证:DE ⊥BC .22.(7分)如图,∠BAC 的角平分线与BC 的垂直平分线交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .若AB =10,AC =8,求BE 长.23.(7分)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.24.(9分)如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=CD,且AE=BE.(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B 出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P 为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.天津市南开区八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的1.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选:D.【点评】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴x≥﹣3且x≠0故选:C.【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的有意义的条件,本题属于基础题型.3.【分析】根据因式分解的意义即可判断.【解答】解:(A)该变形为去括号,故A不是因式分解;(B)该等式右边没有化为几个整式的乘积形式,故B不是因式分解;(D)该等式右边没有化为几个整式的乘积形式,故D不是因式分解;故选:C.【点评】本题考查因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.4.【分析】过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【解答】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.5.【分析】根据轴对称的定义列式求出点B的横坐标,然后解答即可.【解答】解:设点B的横坐标为x,∵点A(4,3)与点B关于直线x=﹣3对称,∴=﹣3,解得x=﹣10,∵点A、B关于直线x=﹣3对称,∴点A、B的纵坐标相等,∴点B(﹣10,3).故选:D.【点评】本题考查了坐标与图形变化﹣对称,熟记对称的性质并列出方程求出点B的横坐标是解题的关键.6.【分析】根据完全平方公式是和的平方加减积的2倍,可得m的值.【解答】解:∵x2+2mx+9是一个完全平方式,∴m=±3,故选:B.【点评】本题考查了完全平方公式,完全平方公式是两数的平方和加减积的2倍,注意符合条件的m值有两个.7.【分析】根据二次根式的概念列出不等式,解不等式即可.【解答】解:由题意得,a≤0,a+3≥0,解得,a≤0,a≥﹣3,则a的取值范围是﹣3≤a≤0,故选:A.【点评】本题考查的是二次根式的性质和化简,掌握二次根式的被开方数是非负数是解题的关键.8.【分析】直接利用二次根式的定义分析得出答案.【解答】解:∵是正整数,∴满足条件的最大负整数m为:﹣10.故选:A.【点评】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.9.【分析】由x+=3得x2+=7,将待求分式分子、分母都除以x2可得原式=,代入计算可得.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,∴x2+=7,则原式===,故选:D.【点评】本题主要考查分式的值,解题的关键是掌握完全平方公式和分式的基本性质.10.【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【解答】解:延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°,在△APB和△EPB中,∴△APB≌△EPB(ASA),∴S△APB =S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC =S△PCE,∴S△PBC =S△PBE+S△PCE=S△ABC=4cm2,故选:C.【点评】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S △PBC =S △PBE +S△PCE =S △ABC .11.【分析】根据余角的性质,可得∠DCA 与∠CBE 的关系,根据AAS 可得△ACD 与△△CBE 的关系,根据全等三角形的性质,可得AD 与CE 的关系,根据线段的和差,可得答案.【解答】解:AD ⊥CE ,BE ⊥CE ,∴∠ADC =∠BEC =90°.∵∠BCE +∠CBE =90°,∠BCE +∠CAD =90°,∠DCA =∠CBE ,在△ACD 和△CBE 中,,∴△ACD ≌△CBE (AAS ),∴CE =AD =3,CD =BE =1,DE =CE ﹣CD =3﹣1=2,故选:B .【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质.12.【分析】根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;关键角平分线的性质判断④.【解答】解:∵∠BAC 和∠ABC 的平分线相交于点O ,∴∠OBA =∠CBA ,∠OAB =∠CAB ,∴∠AOB =180°﹣∠OBA ﹣∠OAB=180°﹣∠CBA ﹣∠CAB=180°﹣(180°﹣∠C )=90°+∠C ,①正确;∵EF ∥AB ,∴∠FOB =∠ABO ,又∠ABO =∠FBO ,∴∠FOB =∠FBO ,∴FO =FB ,同理EO =EA ,∴AE+BF=EF,②正确;当∠C=90°时,AE+BF=EF<CF+CE,∴E,F不是AC,BC的中点,③错误;作OH⊥AC于H,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OD=OH,=×CF×OD×CE×OH=ab,④正确.∴S△CEF故选:C.【点评】本题考查的是角平分线的性质、平行线的性质、角平分线的定义,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上13.【分析】直接利用关于y轴对称点的性质,纵坐标相同,横坐标互为相反数得出x,y的值,进而得出答案.【解答】解:∵点A(x,3)和B(4,y)关于y轴对称,∴x=﹣4,y=3,∴(x+y)2019的值为:﹣1.故答案为:﹣1.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.【分析】根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP 的长.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.【点评】本题主要考查了直线外一点到直线的距离垂线段最短、角平分线的性质,解题的关键在于确定好DP垂直于BC.15.【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【解答】解:由数轴可得:0<a<2,则a+=a+=a+(2﹣a)=2.故答案为:2.【点评】此题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题关键.16.【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFM≌△QCM,推出FM=CM,推出ME=AC即可.【解答】解:过P作PF∥BC交AC于F,如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFM=∠QCM,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ,在△PFM和△QCM中,,∴△PFM≌△QCM(AAS),∴FM=CM,∵AE=EF,∴EF+FM=AE+CM,∴AE+CM=ME=AC,∵AC=3,∴ME=,故答案为:.【点评】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用;熟练掌握等边三角形的性质与判定,证明三角形全等是解决问题的关键.17.【分析】先化简,再整体代入解答即可.【解答】解:÷==m2+2m,因为m2+2m=1,所以÷的值为1,故答案为:1【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.【分析】先由ASA证明△AED≌△CFD,得出AE=CF,DE=FD;再由全等三角形的性质得到BE+CF=AB,由勾股定理求得EF与AB的值,通过比较它们的大小来判定④的正误;先得出S四边形AEDF =S △ADC =AD 2,从而判定⑤的正误.【解答】解:∵Rt △ABC 中,AB =AC ,点D 为BC 中点,∴∠C =∠BAD =45°,AD =BD =CD ,∵∠MDN =90°,∴∠ADE +∠ADF =∠ADF +∠CDF =90°,∴∠ADE =∠CDF .在△AED 与△CFD 中,,∴△AED ≌△CFD (ASA ),∴AE =CF ,ED =FD .故①②正确;又∵△ABD ≌△ACD ,∴△BDE ≌△ADF .故③正确;∵△AED ≌△CFD ,∴AE =CF ,ED =FD ,∴BE +CF =BE +AE =AB =BD ,∵EF =ED ,BD >ED , ∴BE +CF >EF .故④错误;∵△AED ≌△CFD ,△BDE ≌△ADF ,∴S 四边形AEDF =S △ADC =AD 2.故⑤错误.综上所述,正确结论是①②③.故答案是:①②③.【点评】本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,图形的面积等知识,综合性较强,有一定难度.三、解答题(共46分)19.【分析】(Ⅰ)先化简各二次根式,根据负整数指数幂和绝对值性质计算、化简,再合并同类二次根式即可得;(Ⅱ)先将原式展开、合并,再根据完全平方公式因式分解即可得;(Ⅲ)先根据分式的混合运算顺序和运算法则化简,再将x 的值代入计算可得.【解答】解:(Ⅰ)原式=2﹣4﹣+2﹣=﹣2;(Ⅱ)原式=x2﹣4x﹣12+16=x2﹣4x+4=(x﹣2)2;(Ⅲ)原式=•﹣=﹣=﹣=,当x=2时,原式==.【点评】本题主要考查二次根式的混合运算、因式分解与分式的化简求值,解题的关键是熟练掌握二次根式与分式的混合运算顺序和运算法则.20.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣x2+2x=x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【分析】过A作AM⊥BC于M,根据等腰三角形三线合一的性质得出∠BAC=2∠BAM,由三角形外角的性质及等边对等角的性质得出∠BAC=2∠D,则∠BAM=∠D,根据平行线的判定得出DE∥AM,进而得到DE⊥BC.【解答】证明:如图,过A作AM⊥BC于M,∵AB=AC,∴∠BAC=2∠BAM,∵AD=AE,∴∠D=∠AED,∴∠BAC=∠D+∠AED=2∠D,∴∠BAC=2∠BAM=2∠D,∴∠BAM=∠D,∴DE∥AM,∵AM⊥BC,∴DE⊥BC.【点评】本题考查了等腰三角形的性质,三角形外角的性质,平行线的判定等知识,难度适中.准确作出辅助线是解题的关键.22.【分析】首先连接CD,BD,由∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF ⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD,DF=DE,继而可得AF =AE,易证得Rt△CDF≌Rt△BDE,则可得BE=CF,继而求得答案.【解答】解:如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=10,AC=8,∴BE=1.【点评】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.23.【分析】设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据速度=路程÷时间结合“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G92次列车从太原南到北京西的行驶时间需要x小时,则“和谐号”列车的行驶时间需要x小时,根据题意得:=+40,解得:x=,经检验,x=是原分式方程的解,∴x+=.答:乘坐“复兴号”G92次列车从太原南到北京西需要小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.【分析】(1)只要证明△AOE≌△BCE即可解决问题;(2)分两种情形讨论求解即可①当点Q在线段BD上时,QD=2﹣4t,②当点Q在射线DC上时,DQ=4t﹣2时;(3)分两种情形求解即可①如图2中,当OP=CQ时,BOP≌△FCQ.②如图3中,当OP=CQ时,△BOP≌△FCQ;【解答】解:(1)如图1中,∵AD是高,∴∠ADC=90°,∵BE是高,∴∠AEB=∠BEC=90°,∴∠EAO+∠ACD=90°,∠EBC+∠ECB=90°,∴∠EAO=∠EBC,在△AOE和△BCE中,,∴△AOE≌△BCE,∴AO=BC=5.(2)∵BD=CD,BC=5,∴BD=2,CD=3,由题意OP=t,BQ=4t,①当点Q在线段BD上时,QD=2﹣4t,∴S=•t(2﹣4t)=﹣2t2+t(0<t<).②当点Q在射线DC上时,DQ=4t﹣2,∴S=•t(4t﹣2)=2t2﹣t(<t≤5).(3)存在.①如图2中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴5﹣4t═t,解得t=1,②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴4t﹣5=t,解得t=.综上所述,t=1或s时,△BOP与△FCQ全等.【点评】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南开区第一学期八年级数学期末检测一.选择题(本大题共12小题,每小题3分,共36分)1.在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是( )A .B .C .D .2. 已知021)(2x x x +---有意义,则x 的取值范围是( ) A.2x ≠ B.2x ≠± C. 1x ≠ D.12x x ≠≠且 3. 将0.00002018用科学记数法表示应为( )A .4102.018-⨯B .5102.018-⨯C .6102.018-⨯D .4100.2018-⨯ 4.如图,在△ABC 中,AC =DC =DB ,∠ACB =105°,则∠B 的大小为( )A .15°B .20°C .25°D .40°5.下列计算:①22=,2,③2(12-=,④1=-,其中正确的有( ) A .1个 B .2个 C .3个 D .4个6.如图①AB AD =,②∠B =∠D ,③∠BAC =∠DAC ,④BC =DC ,以上4等式中的2个等式不能作为依据来证明△ABC ≌△ADC 的是( )A. ①② B .①③ C. ①④ D. ②③ 7.将下列多项式因式分解,结果中不含有因式(x -2)的是( )A .24x -B .32412x x x --C .22x x -D .2(3)2(3)1x x -+-+ 8. 已知115x y-=,则分式2322x xy y x xy y +---的值为( )AB DA .1B .5C .137D .1339.( )A .B .-C. D .-10.如图,△ABC 和△'''A B C 关于直线l 对称,下列结论中正确的有( ) ①△ABC ≌△'''A B C , ②∠BAC =∠'''B A C ,③直线l 垂直平分'CC , ④直线BC 和''B C 的交点不一定在直线l 上。
A .4个B .3个C .2个D .1个 11.如果一个等腰三角形的周长为27,且两边的差为12,则这个等腰三角形的腰长为( ). A. 13 B.5 C.5或13 D. 112. 如图,△ABC 中,BC 的垂直平分线DP 与BAC ∠的角平分线相交于点D ,垂足为点P ,若84BAC ∠=︒,则BDC ∠=( ).A. 84︒B.96︒C.100︒D. 不能确定 二.填空题(共6小题,共18分)13.在平面直角坐标系中,点()2,3P -关于x 轴的对称点在第__________象限.14.2933a a a -=++__________. 15.如图,AD 是ABC △中BAC ∠的角平分线,DE AB ⊥于E ,7ABC S =△,DE=2,AB=4,则AC 的长是__________.16.二次根式-则正整数a 的最小值为__________,其和为__________.17.如图,已知点D 、点E 分别是等边三角形ABC 中BC 、AB 边的中点,5AD =,点F 是AD 边上的动点,则BF EF +的最小值为18. 在平面直角坐标系中,点()20A ,,()04B ,,作BOC ,使BOC 与ABO 全等,则点C 坐标为 (点C 与点A 不重合).三.解答题(共46分) 19.计算(本题12分)(1)计算:(112()2--(2)因式分解:()()43a b a b ab -++(3)化简:22226951222a ab b b a b a ab a b a⎛⎫-+÷--- ⎪--⎝⎭20.解分式方程(本题5分) ()()31112x x x x -=--+21. (本题6分)已知:如图,ABC 和BDE 都是等边三角形,且A ,E ,D 三点在一直线上.请你证明DA DB DC -=.22. (本题7分)如图,已知180B CDE ∠+∠=︒,AC CE =.求证:AB DE =.23. (本题8分)甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?24. (本题8分)如图1,直线AB 交x 轴于点()40A ,,交y 轴于点()0,4B -,(1)如图,若C 的坐标为()10-,,且AH BC ⊥于点H ,AH 交OB 于点P ,试求点P 的坐标;(2)在(1)的条件下,如图2,连接OH ,求证:45OHP ∠=︒;(3)如图3,若点D 为AB 的中点,点M 为y 轴正半轴上一动点,连结MD ,过点D 作DN DM ⊥交x 轴于N 点,当M 点在y 轴正半轴上运动的过程中,式子BDMADNSS﹣的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.【试卷分析】南开区初二试卷分析本套试卷与去年南开区期末试卷相比,所考知识点及题型变化不大,题目难度与去年持平,均为我们课上讲过的常见题目,以下几题相对来说比较容易丢分:第8题:通过将已知式子变形,利用整体带入求已知式子;第9题:考查二次根式的双重非负性、不要忘记变形前后的式子正负情况应保持一致;第12题:考查角平分线和垂直平分线综合,需要添加辅助线构造全等; 第16题:不要忽视a 为正整数; 第18题:三种情况需要考虑全;第22:根据已知条件添加辅助线构造全等; 第23和24题为我们课上讲过的原题.【参考答案】 一.选择题二.填空题三.解答题(19)(Ⅰ) 解:原式23232--+-= 3分 33-= 4分 (Ⅱ)解:原式ab b ab a 34322+--=224b a -= 2分 )2)(2(b a b a -+= 4分(III )解:原式a b a b a b b a a b a 12)4(5)2()3(2222----÷--=a ab a b b a b a a b a 1)3)(3(2)2()3(2--+-⨯--= 2分)3(3)3(3a b a ab a b a a b ++-+-=)3(2b a a a+-=b a 32+-= 4分(20)解:去分母,得3)2)(1()2(=+--+x x x x 2分 去括号,得 32222=+--+x x x x解得 1=x 4分 检验:当1=x 时,0)2)(1(=+-x x∴原方程无解 5分 (21)证明:∵△ABC 和△BDE 都是等边三角形,∴AB=BC ,BE=BD=DE ,∠ABC=∠EBD=60°. ∴∠ABC ﹣∠EBC=∠EBD ﹣∠EBC 即:∠ABE=CBD , 在△ABE 和△CBD 中,,∴△ABE ≌△CBD (SAS ) 3分 ∴AE=DC 4分 ∵AE=AD -DE ;DE=BD∴AD ﹣BD=DC . 6分(22)证明:延长CD 至点F ,使CH=BC ,连结EH 1分 在在△ABC 与△EHC 中,⎪⎩⎪⎨⎧=∠=∠=CH BC ECH ACB CE AC ∴△ABC ≌△EHC (SAS ), 3分 ∴AB=EH ,H B ∠=∠ 4分 ∵∠B+∠CDE=180°,∠HDE+∠CDE=180°∴∠HDE=∠B=∠H,∴DE=HE. 6分∵AB=HE,∴AB=DE. 7分(23)解:(I)设乙队单独施工,需要x天才能完成该项工程, 1分∵甲队单独施工30天完成该项工程的,∴甲队单独施工90天完成该项工程,根据题意可得:+15(+)=1, 3分解得:x=30,检验得:x=30是原方程的根,且符合题意答:乙队单独施工,需要30天才能完成该项工程; 5分(II)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程. 8分(24)(本题8分)解(1)∵a=4,b=﹣4,则OA=OB=4.∵AH⊥BC于H,∴∠OAP+∠OPA=∠BPH+∠OBC=90°,∴∠OAP=∠OBC在△OAP与△OBC中,,∴△OAP≌△OBC(ASA)∴OP=OC=1,则P(0,﹣1). 3分(2)过O分别做OM⊥CB于M点,ON⊥HA于N点,在四边形OMHN中,∠MON=360°﹣3×90°=90°,∴∠COM=∠PON=90°﹣∠MOP.在△COM与△PON中,,∴△COM≌△PON(AAS)∴OM=ONHO平分∠CHA,∴∠OHP=∠CHA=45°; 6分(3)S△BDM﹣S△ADN的值不发生改变.S△BDM﹣S△ADN=4.连接OD,则OD⊥AB,∠BOD=∠AOD=45°,∠OAD=45°∴OD=AD,∴∠MDO=∠NDA=90°﹣∠MDA在△ODM与△ADN中,,∴△ODM≌△ADN(ASA),∴S△ODM=S△ADN,S△BDM﹣S△ADN=S△BDM﹣S△ODM=S△BOD=S△AOB=×AO•BO=××4×4=4. 8分。