全国卷高考数学圆锥曲线大题(带答案)

合集下载

圆锥曲线综合试题(全部大题目)含答案

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。

(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。

6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。

(完整版)圆锥曲线大题20道(含标准答案)

(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

全国一卷圆锥曲线高考题汇编含答案

全国一卷圆锥曲线高考题汇编含答案

圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国Ⅰ卷)(20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l过点B(1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B作AC 的平行线交AD于点E.(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C 1,直线l 交C1于M ,N 两点,过B且与l垂直的直线与圆A 交于P ,Q两点,求四边形M PN Q面积的取值范围.2、(2015全国Ⅰ卷)(14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。

3、(2014全国Ⅰ卷)20.(本小题满分12分)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 3,抛物线E:22x y =的焦点F是C 的一个顶点. (I )求椭圆C 的方程;(II )设P是E 上的动点,且位于第一象限,E 在点P处的切线l 与C 交与不同的两点A,B,线段AB 的中点为D,直线O D与过P且垂直于x 轴的直线交于点M. (i)求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P的坐标.5、(2015山东卷)(20) (本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F为圆心,以1为半径的圆相交,交点在椭圆C上. (Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆2222:144x yEa b+=,P为椭圆C上的任意一点,过点P的直线y kx m=+交椭圆E于A,B两点,射线PO交椭圆E于点Q.(ⅰ)求||||OQOP的值;(ⅱ)求ABQ∆面积最大值.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国Ⅰ卷)(5)已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )(A)(–1,3) (B)(–1,错误!) (C)(0,3)(D)(0,错误!)2、(2015全国Ⅰ卷)(5)已知M(x 0,y 0)是双曲线C :2212x y -=上的一点,F1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是()3 (B )((C)(3-,3) (D)()3、(2014全国Ⅰ卷)4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3CD .3m4、(2016山东卷)(13)已知双曲线E1:22221x y a b-=(a>0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD的中点为E 的两个焦点,且2|AB |=3|B C|,则E 的离心率是_______ .5、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .6、(2014山东卷)(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C2C 的渐近线方程为( )(A)0x = (0y ±= (C)20x y ±= (D)20x y ±=圆锥曲线部分高考试题汇编(抛物线部分)1、(2016全国Ⅰ卷)(10)以抛物线C 的顶点为圆心的圆交C 于A,B 两点,交C的准线于D ,E 两点.已知|AB |=DE |=C 的焦点到准线的距离为( )(A)2 (B )4 (C )6 (D )82、(2015全国Ⅰ卷)(20)(本小题满分12分)在直角坐标系xoy中,曲线C :y=24x 与直线y kx a =+(a >0)交与M ,N两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠O PN ?说明理由。

高考数学真题练习——圆锥曲线的综合高考真题

高考数学真题练习——圆锥曲线的综合高考真题

圆锥曲线的综合一.选择题(共4小题)1.(2020•浙江)已知点(0,0)O ,(2,0)A -,(2,0)B .设点P 满足||||2PA PB -=,且P 为函数y =图象上的点,则||(OP = )A .2B C D 2.(2019•天津)已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),则双曲线的离心率为( )A B C .2D3.(2015•天津)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线过点,且双曲线的一个焦点在抛物线2y =的准线上,则双曲线的方程为( )A .22134x y -=B .22143x y -=C .2212128x y -=D .2212821x y -=4.(2012•山东)已知椭圆2222:1(0)x y C a b a b+=>>,与双曲线221x y -=的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A .22182x y +=B .221126x y +=C .221164x y +=D .221205x y +=二.多选题(共1小题)5.(2020•海南)已知曲线22:1C mx ny +=.( ) A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n =>,则CC .若0mn <,则C 是双曲线,其渐近线方程为y =D .若0m =,0n >,则C 是两条直线 三.填空题(共1小题)6.(2011•山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 . 四.解答题(共10小题)7.(2017•天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点(B B 异于)A ,直线BQ 与x 轴相交于点D .若APD ∆AP 的方程. 8.(2017•浙江)如图,已知抛物线2x y =,点1(2A -,1)4,3(2B ,9)4,抛物线上的点(P x ,13)()22y x -<<,过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PA PQ 的最大值.9.(2016•山东)已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,焦距为(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点(0M ,)(0)m m >的直线交x 轴与点N ,交C 于点A ,(P P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B . (ⅰ)设直线PM ,QM 的斜率分别为1k ,2k ,证明21k k 为定值; (ⅱ)求直线AB 的斜率的最小值.10.(2014•湖南)如图,O 为坐标原点,椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为1F ,2F ,离心率为1e ;双曲线22222:1x y C a b-=的左、右焦点分别为3F ,4F ,离心率为2e,已知12e e =,且24||1F F =.(Ⅰ)求1C 、2C 的方程;(Ⅱ)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于P ,Q两点时,求四边形APBQ 面积的最小值.11.(2013•重庆)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e ,过左焦点1F 作x 轴的垂线交椭圆于A 、A '两点,||4AA '=.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x 轴的直线与椭圆相交于不同的两点P 、P ',过P 、P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.12.(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设: ①失事船的移动路径可视为抛物线21249y x =; ②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t(1)当0.5t =时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向. (2)问救援船的时速至少是多少海里才能追上失事船?13.(2011•浙江)如图,设P 是抛物线21:C x y =上的动点.过点P 做圆222:(3)1C x y ++=的两条切线,交直线:3l y =-于A ,B 两点.(Ⅰ)求2C 的圆心M 到抛物线1C 准线的距离.(Ⅱ)是否存在点P ,使线段AB 被抛物线1C 在点P 处的切线平分?若存在,求出点P 的坐标;若不存在,请说明理由.14.(2011•辽宁)如图,已知椭圆1C 的中心在原点O ,长轴左、右端点M ,N 在x 轴上.椭圆2C 的短轴为MN ,且1C ,2C 的离心率都为e .直线l MN ⊥.l 与1C 交于两点,与2C 交于两点,这四点按纵坐标从大到小依次为A 、B 、C 、D .(Ⅰ)12e =,求||BC 与||AD 的比值; (Ⅱ)当e 变化时,是否存在直线l ,使得//BO AN ,并说明理由.15.(2010•江西)已知抛物线221:C x by b +=经过椭圆22222:1(0)x y C a b a b+=>>的两个焦点.(1)求椭圆2C 的离心率;(2)设(3,)Q b ,又M ,N 为1C 与2C 不在y 轴上的两个交点,若QMN ∆的重心在抛物线1C 上,求1C 和2C 的方程.16.(2010•山东)如图,已知椭圆22221(0)x y a b a b+=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点1F ,2F 为顶点的三角形的周长为1),一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为A 、B 和C 、D . (Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明121k k =;(Ⅲ)(此小题仅理科做)是否存在常数λ,使得||||||||AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.圆锥曲线的综合参考答案与试题解析一.选择题(共4小题)1.(2020•浙江)已知点(0,0)O ,(2,0)A -,(2,0)B .设点P 满足||||2PA PB -=,且P 为函数y =图象上的点,则||(OP = )A B C D 【解答】解:点O (0,0),(2,0)A -,B (2,0).设点P 满足||||2PA PB -=,可知P 的轨迹是双曲线22113x y -=的右支上的点,P 为函数y =221364y x +=在第一象限的点,联立两个方程,解得P ,所以||OP =. 故选:D .2.(2019•天津)已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点),则双曲线的离心率为( )A B C .2D【解答】解:抛物线24y x =的焦点为F ,准线为l . (1,0)F ∴,准线l 的方程为1x =-,l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||(AB OF O =为原点), 2||b AB a ∴=,||1OF =,∴24b a=,2b a ∴=,c ∴==,∴双曲线的离心率为ce a== 故选:D .3.(2015•天津)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线过点,且双曲线的一个焦点在抛物线2y =的准线上,则双曲线的方程为( )A .22134x y -=B .22143x y -=C .2212128x y -=D .2212821x y -=【解答】解:由题意,b a =,抛物线2y =的准线方程为x =2y =的准线上,c ∴2227a b c ∴+==,2a ∴=,b =∴双曲线的方程为22143x y -=.故选:B .4.(2012•山东)已知椭圆2222:1(0)x y C a b a b+=>>,与双曲线221x y -=的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A .22182x y +=B .221126x y +=C .221164x y +=D .221205x y +=【解答】解:由题意,双曲线221x y -=的渐近线方程为y x =± 以这四个交点为顶点的四边形的面积为16,故边长为4,(2,2)∴在椭圆2222:1(0)x y C a b a b+=>>上∴22441a b +=又e =∴22234a b a -= 224a b ∴= 220a ∴=,25b =∴椭圆方程为:221205x y +=故选:D .二.多选题(共1小题)5.(2020•海南)已知曲线22:1C mx ny +=.( ) A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n =>,则CC .若0mn <,则C 是双曲线,其渐近线方程为y =D .若0m =,0n >,则C 是两条直线【解答】解:A .若0m n >>,则11m n<,则根据椭圆定义,知22111x y m n+=表示焦点在y 轴上的椭圆,故A 正确;B .若0m n =>,则方程为221x y n +=的圆,故B 错误; C .若0m <,0n >,则方程为22111x y m n +=,表示焦点在y轴的双曲线,故此时渐近线方程为y =, 若0m >,0n <,则方程为22111x y m n+=,表示焦点在x轴的双曲线,故此时渐近线方程为y =, 故C 正确;D .当0m =,0n >时,则方程为y =表示两条直线,故D 正确;故选:ACD . 三.填空题(共1小题)6.(2011•山东)已知双曲线22221(0,0)x y a b a b -=>>和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 22143x y -= .【解答】解:由题得,双曲线22221(0,0)x y a b a b-=>>的焦点坐标为,0),(,0),c =且双曲线的离心率为22c a a=⇒=.2223b c a ⇒=-=, 双曲线的方程为22143x y -=.故答案为:22143x y -=.四.解答题(共10小题)7.(2017•天津)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点(B B 异于)A ,直线BQ 与x 轴相交于点D .若APD ∆AP 的方程. 【解答】(Ⅰ)解:设F 的坐标为(,0)c -.依题意可得12212c a p a a c ⎧=⎪⎪⎪=⎨⎪⎪-=⎪⎩,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.(Ⅱ)解:直线l 的方程为1x =-,设直线AP 的方程为1(0)x my m =+≠, 联立方程组11x x my =-⎧⎨=+⎩,解得点2(1,)P m --,故2(1,)Q m -.联立方程组221413x my y x =+⎧⎪⎨+=⎪⎩,消去x ,整理得22(34)60m y my ++=,解得0y =,或2634m y m =-+.2234(34m B m -+∴+,26)34m m -+. ∴直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(32m D m -+,0).2222236||13232m m AD m m -∴=-=++. 又APD ∆,∴22162232||m m m ⨯⨯=+,整理得23|20m m -+=,解得||m,m ∴= ∴直线AP的方程为330x +-=,或330x -=.8.(2017•浙江)如图,已知抛物线2x y =,点1(2A -,1)4,3(2B ,9)4,抛物线上的点(P x ,13)()22y x -<<,过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PA PQ 的最大值.【解答】解:(Ⅰ)由题可知2(,)P x x ,1322x -<<,所以2114(1,1)122APx k x x -==-∈-+, 故直线AP 斜率的取值范围是:(1,1)-; (Ⅱ)由()I 知2(,)P x x ,1322x -<<,所以1(2PA x =--,21)4x -,设直线AP 的斜率为k ,则2114122x k x x -==-+,即12x k =+, 则11:24AP y kx k =++,139:24BQ y x k k =-++,联立直线AP 、BQ 方程可知2234(22k k Q k +-+,22981)44k k k +++,故2321(1k k k PQ k +--=+,4322)1k k k kk --+++,又因为2(1,)PA k k k =----,故323322(1)(1)(1)(1)||||(1)(1)11k k k k k PA PQ PA PQ k k k k+-+--==+=+-++, 所以3||||(1)(1)PA PQ k k =+-, 令3()(1)(1)f x x x =+-,11x -<<, 则22()(1)(24)2(1)(21)f x x x x x '=+-=-+-, 由于当112x -<<时()0f x '>,当112x <<时()0f x '<, 故127()()216max f x f ==,即||||PA PQ 的最大值为2716.9.(2016•山东)已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,焦距为(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点(0M ,)(0)m m >的直线交x 轴与点N ,交C 于点A ,(P P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B . (ⅰ)设直线PM ,QM 的斜率分别为1k ,2k ,证明21k k 为定值; (ⅱ)求直线AB 的斜率的最小值.【解答】解:(Ⅰ)设椭圆的半焦距为c.由题意知24,2a c ==所以2,a b ==C 的方程为22142x y +=.(Ⅱ)证明:(ⅰ)设0(P x ,00)(0y x >,00)y >, 由(0,)M m ,可得0(P x ,2)m ,0(Q x ,2)m -. 所以直线PM 的斜率1002m m m k x x -==,直线QM 的斜率20023m m mk x x --==-, 此时213k k =-.所以21kk 为定值3-. (ⅱ)设1(A x ,1)y ,2(B x ,2)y .直线PA 的方程为y kx m =+, 直线QB 的方程为3y kx m =-+.联立22142y kx m x y =+⎧⎪⎨+=⎪⎩整理得222(21)4240k x mkx m +++-=.由20122421m x x k -=+,可得21202(2)(21)m x k x -=+,所以211202(2)(21)k m y kx m m k x -=+=++.同理222222002(2)6(2),(181)(181)m k m x y m k x k x ---==+++. 所以22222122220002(2)2(2)32(2)(181)(21)(181)(21)m m k m x x k x k x k k x -----=-=++++,22222122220006(2)2(2)8(61)(2)(181)(21)(181)(21)k m m k k m y y m m k x k x k k x ----+--=+--=++++,所以221216111(6)44ABy y k k k x x k k-+===+-.由0m >,00x >,可知0k >, 所以1626k k+,等号当且仅当k 时取得,=,即m =, 所以直线AB10.(2014•湖南)如图,O 为坐标原点,椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ;双曲线22222:1x y C a b-=的左、右焦点分别为3F ,4F ,离心率为2e,已知12e e =,且24||1F F =.(Ⅰ)求1C 、2C 的方程;(Ⅱ)过1F 作1C 的不垂直于y 轴的弦AB ,M 为AB 的中点,当直线OM 与2C 交于P ,Q 两点时,求四边形APBQ 面积的最小值.【解答】解:(Ⅰ)由题意可知,12e e ==12||F F =.123e e =24||1F F =.∴2221b a+=1=. 解得:1a b ==.∴椭圆1C 的方程为2212x y +=,双曲线2C 的方程为2212x y -=;(Ⅱ)由(Ⅰ)可得1(1,0)F -. 直线AB 不垂直于y 轴,∴设AB 的方程为1x ny =-,联立22112x ny x y =-⎧⎪⎨+=⎪⎩,得22(2)210n y ny +--=. 设1(A x ,1)y ,2(B x ,2)y ,0(M x ,0)y , 则120222,22n n y y y n n +==++,12212y yn =-+. 则||AB=. M 在直线AB 上, ∴20222122n x n n =-=-++.直线PQ 的方程为002y ny x x x ==-, 联立22212n y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得222()202n x x -⨯--=.解得2242x n =-,代入2n y x =- 得2222n y n =-.由220n ->,得n <P ∴,Q的坐标分别为(, 则P ,Q 到AB 的距离分别为:2212n nn d +-=,2222n n n d --=P ,Q 在直线A ,B 的两端,∴22122n nn d d +-+=.则四边形APBQ 的面积12213||()22S AB d d n =+=--. ∴当20n =,即0n =时,四边形APBQ 面积取得最小值2.11.(2013•重庆)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e ,过左焦点1F 作x 轴的垂线交椭圆于A 、A '两点,||4AA '=.(Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x 轴的直线与椭圆相交于不同的两点P 、P ',过P 、P '作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.【解答】解:(Ⅰ)由题意知点(,2)A c -在椭圆上,则222()41c a b-+=,即222241a b a b -+=①离心率e =,∴2222212c a b a a -==② 联立①②得:2412b =,所以28b =. 把28b =代入②得,216a =.∴椭圆的标准方程为221168x y +=;(Ⅱ)设(,0)Q t ,圆Q 的半径为r ,则圆Q 的方程为222()x t y r -+=, 不妨取P 为第一象限的点,因为PQ P Q '⊥,则()(0)P t t +>. 联立22222()1168x t y r x y ⎧-+=⎪⎨+=⎪⎩,得222421620x tx t r -++-=.由△222(4)4(2162)0t t r =--+-=,得228t r +=又()P t +在椭圆上,所以22())221168t ++=.整理得,218r t -=代入228t r +=,得22221(8)282r r r-+=. 解得:2163r =.所以283t =,t =.此时4t r +=+<. 满足椭圆上的其余点均在圆Q 外. 由对称性可知,当0t <时,t =2163r =. 故所求圆Q的标准方程为2216(3x y +=. 12.(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设: ①失事船的移动路径可视为抛物线21249y x =; ②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t(1)当0.5t =时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向. (2)问救援船的时速至少是多少海里才能追上失事船?【解答】解:(1)0.5t =时,P 的横坐标772P x t ==,代入抛物线方程21249y x =中,得P 的纵坐标3P y =.2⋯分由||AP =海里/时.4⋯分 由7tan 30OAP ∠=,得7arctan 30OAP ∠=,故救援船速度的方向为北偏东arctan 730弧度.6⋯分 (2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为2(7,12)t t .由vt 2221144()337v t t =++.10⋯分 因为2212t t +,当且仅当1t =时等号成立,所以22144233725v ⨯+=,即25v .因此,救援船的时速至少是25海里才能追上失事船.14⋯分13.(2011•浙江)如图,设P 是抛物线21:C x y =上的动点.过点P 做圆222:(3)1C x y ++=的两条切线,交直线:3l y =-于A ,B 两点.(Ⅰ)求2C 的圆心M 到抛物线1C 准线的距离.(Ⅱ)是否存在点P ,使线段AB 被抛物线1C 在点P 处的切线平分?若存在,求出点P 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)因为抛物线1C 准线的方程为:14y =-,所以圆心M 到抛物线1C 准线的距离为:111|(3)|44---=.(Ⅱ)设点P 的坐标为0(x ,2)x ,抛物线1C 在点P 处的切线交直线l 与点D , 因为:2y x =,所以:2y x '=;再设A ,B ,D 的横坐标分别为A x ,B x ,D x ,∴过点0(P x ,2)x 的抛物线1C 的切线的斜率02k x =. 过点0(P x ,20)x 的抛物线1C 的切线方程为:20002()y x x x x -=-① 当01x =时,过点(1,1)P 且与圆2C 相切的切线PA 方程为:151(1)8y x -=-.可得1715A x =-,1B x =,1D x =-,2A B D x x x +≠.当01x =-时,过点(1,1)P -且与圆2C 的相切的切线PB 的方程为:151(1)8y x -=-+.可得1A x =-,1715B x =,1D x =,2A B D x x x +≠.所以210x -≠.设切线PA ,PB 的斜率为1k ,2k , 则:210:()PA y x k x x -=-② 2020:()PB y x k x x -=-.③将3y =-分别代入①,②,③得20003(0)2D x x x x -=≠;20013A x x x k +=-;200123(B x x x k k +=-,20)k ≠ 从而20012112(3)()A B x x x x k k +=-++.21=,即22222010010(1)2(3)(3)10x k x x k x --+++-=, 同理22222020020(1)2(3)(3)10x k x x k x --+++-=, 所以1k ,2k 是方程222220000(1)2(3)(3)10x k x x k x --+++-=的两个不等的根, 从而20012202(3)1x x k k x ++=-,2201220(3)11x k k x +-=-, 因为2A B D x x X +=..所以220001203112(3)()x x x k k x --++=,即120111k k x +=.从而20022002(3)1(3)1x x x x+=+-,进而得48x =,0x = 综上所述,存在点P满足题意,点P的坐标为(.14.(2011•辽宁)如图,已知椭圆1C 的中心在原点O ,长轴左、右端点M ,N 在x 轴上.椭圆2C 的短轴为MN ,且1C ,2C 的离心率都为e .直线l MN ⊥.l 与1C 交于两点,与2C 交于两点,这四点按纵坐标从大到小依次为A 、B 、C 、D .(Ⅰ)12e =,求||BC 与||AD 的比值; (Ⅱ)当e 变化时,是否存在直线l ,使得//BO AN ,并说明理由.【解答】解:()I 因为1C ,2C 的离心率相同,故依题意可设22122:1x y C a b+=,222242:1,(0)b y x C a b a a +=>>设直线:(||)l x t t a =<,分别与1C ,2C 的方程联立,求得(A t,(B t (4分) 当12e =,b =,分别用A y ,B y 表示的A ,B 的纵坐标,可知222||3||:||2||4B A y b BC AD y a ===(6分)(Ⅱ)0t =时的l 不符合题意,0t ≠时,//BO AN 当且仅当BO 的斜率BO k 与AN 的斜率AN k 相等, 即a b t t a=-, 解222221ab e t a a b e-=-=--;因为||t a <,又01e <<,所以22111e e--<-<1e <<所以当20e <时,不存在直线l ,使得//BO AN ;1e <<时,存在直线l ,使得//BO AN . 15.(2010•江西)已知抛物线221:C x by b +=经过椭圆22222:1(0)x y C a b a b+=>>的两个焦点.(1)求椭圆2C 的离心率;(2)设(3,)Q b ,又M ,N 为1C 与2C 不在y 轴上的两个交点,若QMN ∆的重心在抛物线1C 上,求1C 和2C 的方程.【解答】解:(1)因为抛物线1C 经过椭圆2C 的两个焦点1(,0)F c -,2(,0)F c , 所以220c b b +⨯=,即22c b =,由22222a b c c =+=得椭圆2C 的离心率e =. (2)由(1)可知222a b =,椭圆2C 的方程为:222212x y b b += 联立抛物线1C 的方程22x by b +=得:2220y by b --=,解得:2by =-或y b =(舍去),所以x =,即(,),,)22b bM N --,所以QMN ∆的重心坐标为(1,0). 因为重心在1C 上,所以2210b b +⨯=,得1b =. 所以22a =.所以抛物线1C 的方程为:21x y +=,椭圆2C 的方程为:2212x y +=.16.(2010•山东)如图,已知椭圆22221(0)x y a b a b+=>>,以该椭圆上的点和椭圆的左、右焦点1F ,2F 为顶点的三角形的周长为1),一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为A 、B 和C 、D .(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明121k k =;(Ⅲ)(此小题仅理科做)是否存在常数λ,使得||||||||AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)由题意知,椭圆离心率为c a =得a =,又221)a c +=,所以可解得a =,2c =,所以2224b a c =-=,所以椭圆的标准方程为22184x y +=;所以椭圆的焦点坐标为(2,0)±,因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为22144x y -=.(Ⅱ)设点0(P x ,0)y , 则0102y k x =+,0202y k x =-, 2000122000224y y y k k x x x ∴==+--,又点0(P x ,0)y 在双曲线上, ∴2200144x y -=,即2204y x =-, 20122014y k k x ∴==-.(Ⅲ)假设存在常数λ,使得得||||||||AB CD AB CD λ+=恒成立, 则由()II 知121k k =,∴设直线AB 的方程为(2)y k x =+,则直线CD 的方程为1(2)y x k=-, 由方程组22(2)184y k x x y =+⎧⎪⎨+=⎪⎩消y 得:2222(21)8880k x k x k +++-=,设1(A x ,1)y ,2(B x ,2)y ,则由韦达定理得,22121222888,1221k k xx x x k k --+==++, AB∴=,同理可得22221))1221k k CD k k++===++,||||||||AB CD AB CD λ+=,211||||AB CDλ∴=+-==∴存在常数λ,使得||||||||AB CD AB CD λ+=恒成立.。

圆锥曲线高考真题专练(含答案)

圆锥曲线高考真题专练(含答案)

(一)数学全国1卷设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x=1.由已知可得,点A 的坐标为或(1,.所以AM 的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++.则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB∠=∠.已知椭圆C:2222=1x ya b+(a>b>0),四点P1(1,1),P2(0,1),P3(–1,P4(1,C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解:(1)由于3P,4P两点关于y轴对称,故由题设知C经过3P,4P两点.又由222211134a b a b+>+知,C不经过点P1,所以点P2在C上.因此222111314ba b⎧=⎪⎪⎨⎪+=⎪⎩,解得2241ab⎧=⎪⎨=⎪⎩.故C的方程为2214xy+=.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知0t≠,且||2t<,可得A,B的坐标分别为(t,),(t,).则121k k+-=-,得2t=,不符合题设.从而可设l:y kx m=+(1m≠).将y kx m=+代入2214xy+=得222(41)8440k x kmx m+++-=由题设可知22=16(41)0k m∆-+>.设A(x1,y1),B(x2,y2),则x1+x2=2841kmk-+,x1x2=224441mk-+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-.当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--,所以l 过定点(2,1-) 数学全国1卷设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E. (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C1,直线l 交C1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(I )13422=+y x (0≠y );(II ))38,12[ 【解析】试题分析:(I )利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。

高考数学圆锥曲线专题训练(附答案解析)

高考数学圆锥曲线专题训练(附答案解析)

高中数学圆锥曲线专题*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡阅卷人一、单选题(共10题;共20分)得分1. ( 2分) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.2. ( 2分) 古希腊数学家阿波罗尼奥斯的著作圆锥曲线论中给出了圆的另一种定义:平面内,到两个定点A、B距离之比是常数的点M的轨迹是圆若两定点A、B的距离为3,动点M满足,则M点的轨迹围成区域的面积为A. B. C. D.3. ( 2分) 已知、为双曲线的左、右焦点,过右焦点的直线,交的左、右两支于、两点,若为线段的中点且,则双曲线的离心率为()A. B. C. D.4. ( 2分) 已知双曲线的右焦点为,点,为双曲线左支上的动点,且周长的最小值为16,则双曲线的离心率为()A. 2B.C.D.5. ( 2分) 关于曲线:性质的叙述,正确的是()A. 一定是椭圆B. 可能为抛物线C. 离心率为定值D. 焦点为定点6. ( 2分) 古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9C. (x+5)2+y2=16D. x2+(y+5)2=97. ( 2分) 已知是双曲线上一点,且在轴上方,,分别是双曲线的左、右焦点,,直线的斜率为,的面积为,则双曲线的离心率为()A. 3B. 2C.D.8. ( 2分) 在正四面体中,点为所在平面上的动点,若与所成角为定值,则动点的轨迹是()A. 圆B. 椭圆C. 双曲线D. 抛物线9. ( 2分) 已知,及抛物线方程为,点在抛物线上,则使得为直角三角形的点个数为()A. 1个B. 2个C. 3个D. 4个10. ( 2分) 已知双曲线的左、右焦点分别为,,若双曲线上存在点P使,则离心率的取值范围是()A. B. C. D.阅卷人二、填空题(共10题;共10分)得分11. ( 1分) 已知正实数是的等比中项,则圆锥曲线=1的离心率为________12. ( 1分) 设抛物线的焦点为F,过点F的直线l与抛物线交于A,B两点,且,则弦长________.13. ( 1分) 已知双曲线:(,)的左,右焦点分别为,,过右支上一点作双曲线的一条渐近线的垂线,垂足为.若的最小值为,则双曲线的离心率为________.14. ( 1分) 若椭圆的离心率为,则的短轴长为________.15. ( 1分) 从抛物线图象上一点作抛物线准线的垂线,垂足为,且,设为抛物线的焦点,则的面积为________.16. ( 1分) 设抛物线的焦点为,过点的直线与抛物线交于,两点,且,点是坐标原点,则的面积为________17. ( 1分) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.18. ( 1分) 已知为椭圆的左焦点,过点的直线交椭圆于两点,若,则直线的斜率为________.19. ( 1分) 椭圆的左、右焦点分别为、,点P在椭圆C上,已知,则________.20. ( 1分) 已知椭圆的右顶点为A,左,右焦点为F1,F2,过点F2与x轴垂直的直线与椭圆的一个交点为B.若|F1F2|=2,|F2B| ,则点F1到直线AB的距离为________.阅卷人三、解答题(共30题;共280分)得分21. ( 10分) 已知椭圆E:=1(a>b>0)的上、下焦点分别为F1,F2,点D在椭圆上,DF2⊥F1F2,△F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.(1)求椭圆E与抛物线C的方程;(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.22. ( 10分) 椭圆C1:+y2=1,椭圆C2:(a>b>0)的一个焦点坐标为(,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).(1)求椭圆C2的方程;(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.23. ( 10分) 已知A(1,)是离心率为的椭圆E:+ =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.(1)求椭圆E的方程;(2)试证明直线BC的斜率为定值,并求出这个定值;(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.24. ( 10分) 设抛物线C1:y2=8x的准线与x轴交于点F1,焦点为F2.以F1,F2为焦点,离心率为的椭圆记为C2.(Ⅰ)求椭圆C2的方程;(Ⅱ)设N(0,﹣2),过点P(1,2)作直线l,交椭圆C2于异于N的A、B两点.(ⅰ)若直线NA、NB的斜率分别为k1、k2,证明:k1+k2为定值.(ⅱ)以B为圆心,以BF2为半径作⊙B,是否存在定⊙M,使得⊙B与⊙M恒相切?若存在,求出⊙M的方程,若不存在,请说明理由.25. ( 10分) 在平面直角坐标系xOy中,椭圆:的离心率为,y轴于椭圆相交于A、B两点,,C、D是椭圆上异于A、B的任意两点,且直线AC、BD相交于点M,直线AD、BC相交于点N.(1)求椭圆的方程;(2)求直线MN的斜率.26. ( 10分) 已知椭圆C:(a>b>0)的离心率为,左、右焦点分别为F1,F2,点G在椭圆C上,且• =0,△GF1F2的面积为2.(1)求椭圆C的方程;(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当最大时,求直线l的方程.27. ( 10分) 已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,且,点在椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程.28. ( 10分) 设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.29. ( 10分) 如图,在平面直角坐标系中,已知椭圆的左、右顶点分别为,,过右焦点的直线与椭圆交于,两点(点在轴上方).(1)若,求直线的方程;(2)设直线,的斜率分别为,.是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.30. ( 10分) 已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C 相交于点.(1)求抛物线的方程;(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.31. ( 10分) 已知椭圆的长轴长为4,离心率为.(I)求C的方程;(II)设直线交C于A,B两点,点A在第一象限, 轴,垂足为M, 连结BM并延长交C于点N.求证:点A在以BN为直径的圆上.32. ( 10分) 已如椭圆E:()的离心率为,点在E上.(1)求E的方程:(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由33. ( 5分) 已知点P(x,y)满足条件.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)直线l与圆O:x2+y2=1相切,与曲线C相较于A,B两点,若,求直线l的斜率.34. ( 5分) 设直线l:y=k(x+1)(k≠0)与椭圆3x2+y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.(Ⅰ)证明:a2>;(Ⅱ)若,求△OAB的面积取得最大值时的椭圆方程.35. ( 15分) 已知点在抛物线上,是直线上的两个不同的点,且线段的中点都在抛物线上.(Ⅰ)求的取值范围;(Ⅱ)若的面积等于,求的值.36. ( 5分) 如图,曲线Γ由曲线C1:(a>b>0,y≤0)和曲线C2:(a>0,b>0,y>0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.37. ( 5分) 已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.(Ⅰ)求椭圆的方程(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.38. ( 10分) 如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.(1)求抛物线C的方程.(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.39. ( 10分) 已知椭圆过点,且离心率为.(1)求椭圆的标准方程;(2)若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点(点在一象限),使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.40. ( 5分) 已知椭圆E: 过点(0,1)且离心率.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.41. ( 10分) 已知抛物线,抛物线与圆的相交弦长为4. (1)求抛物线的标准方程;(2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.42. ( 10分) 设椭圆的左、右焦点分别为,、,,点在椭圆上,为原点.(1)若,,求椭圆的离心率;(2)若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).①求椭圆的方程;②设直线:与椭圆相交于、两点,若的面积为1,求实数的值.43. ( 10分) 已知椭圆C:(a>b>0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.44. ( 10分) 在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.(1)求曲线的方程;(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.45. ( 10分) 已知点,分别是椭圆的长轴端点、短轴端点,为坐标原点,若,.(1)求椭圆的标准方程;(2)如果斜率为的直线交椭圆于不同的两点(都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.46. ( 10分) 已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.47. ( 10分) 已知椭圆C:=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C 上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.48. ( 10分) 已知椭圆C:+ =1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:• 为定值.49. ( 10分) 已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.(1)求椭圆的方程;(2)证明:直线恒过定点.50. ( 10分) 如图,中心为坐标原点O的两圆半径分别为,,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线、,交于点P.(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;(2)直线l:与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为时,求的取值范围.答案解析部分一、单选题1.【答案】D【考点】椭圆的简单性质【解析】【解答】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则 =2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故答案为:D.【分析】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则利用两点距离公式得出,∵△MAB面积的最大值为8,△MCD面积的最小值为1,利用三角形面积公式求出a,b的值,再利用椭圆中a,b,c三者的关系式结合离心率公式变形求出椭圆的离心率。

圆锥曲线全国卷高考真题解答题(含解析))

圆锥曲线全国卷高考真题解答题(含解析))

圆锥曲线全国卷高考真题解答题一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.9.2017年全国普通高等学校招生统一考试理科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .10.2018年全国卷Ⅲ理数高考试题文已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.已知椭圆C :2222=1x y a b +(a>b>0),四点P 1(1,1),P 2(0,1),P 3(–1P 4(1中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.12.2018年全国普通高等学校招生统一考试理数(全国卷II )设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.13.2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.14.2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.15.2018年全国卷Ⅲ文数高考试题已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:2FP FA FB =+.16.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)设A 、B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM BM ⊥,求直线AB 的方程.17.2017年全国普通高等学校招生统一考试文科数学(新课标2卷)设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .18.2017年全国普通高等学校招生统一考试文科数学(新课标3卷)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.19.(2016新课标全国卷Ⅰ文科)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求OH ON;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.20.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,点在C 上(1)求C 的方程(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.21.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)已知曲线2:,2x C y D =,为直线12y上的动点,过D 作C 的两条切线,切点分别为,A B .(1)证明:直线AB 过定点: (2)若以50,2E ⎛⎫⎪⎝⎭为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.22.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷带解析)设1F , 2F 分别是椭圆C : 22221(0)x y a b a b+=>>的左、右焦点, M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a , b .23.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积24.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==.因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或. 【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小. 2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AFc ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF,()0,2A -所以23c =,c =又222,2c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = 239k =+2(3)23(9)mk k k -⨯+.解得147k =247k =.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,,)N a a .∵12y x '=,故24x y =在x =2a a C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设的方程为.(1)由在线段上,又;(2)设与轴的交点为(舍去),.设满足条件的的中点为.当与轴不垂直时.当与轴垂直时与重合所求轨迹方程为.试题解析:由题设,设,则,且.记过两点的直线为,则的方程为.............3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以..................5分(2)设与轴的交点为,则,由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为.........12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围. 【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =.因此AMN 的面积AMNS11212144227749=⨯⨯⨯=.(Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当32k =时上式不成立,因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->,解得322k <<. 因此k 的取值范围是()32,2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.8.2016年全国普通高等学校招生统一考试理科数学(新课标1卷) 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)答案见解析;(Ⅱ).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k 的函数,再求最值。

圆锥曲线历年高考题(整理)附答案.

圆锥曲线历年高考题(整理)附答案.

数学圆锥曲线测试高考题一、选择题:1. (2006全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )322. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )(A )2 3 (B )6 (C )4 3 (D )123.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( )A .43 B .75 C .85D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) A.2 B.223C. 2D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率6.(2006辽宁卷)曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同7.(2006安徽高考卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .48.(2006辽宁卷)直线2y k =与曲线2222918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( )(A)1 (B)2 (C)3 (D)4二、填空题:9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。

10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11,2A ⎛⎫⎪⎝⎭,则求该椭圆的标准方程为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国卷高考数学圆锥曲线大题(带答案)1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ⋅= 求点G 的横坐标的取值范围.2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是,425=x 其左、右顶点分别 是A 、B ;双曲线1:22222=-b y a x C 的一条渐近线方程为3x -5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若=. 求证:.0=•4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa.(1)用半焦距c表示椭圆的方程及tanα;(2)若2<tanα<3,求椭圆率心率e的取值范围.5. 已知椭圆2222byax+(a>b>0)的离心率36=e,过点A(0,-b)和B(a,0)的直线与原点的距离为23(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA MCMB MA ==GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围7. 设R y x ∈,,j i,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若jy i x b j y i x a)2(,)2(-+=++=,且8||||=+b a(Ⅰ)求动点M(x,y)的轨迹C 的方程;(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.8. 已知抛物线C :)0,0(),(2>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的垂直平分线交x 轴于点N (p ,0).(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于E ,设λ=EC AE ,当4332≤≤λ时,求双曲线的离心率e 的取值范围.x10. 已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B两点,点Q 是点P 关于原点的对称点.(1) 设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.12. 已知动点P (p ,-1),Q (p ,212p +),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹为曲线C.(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、)0,1(F 2,动点P 满足22|PF ||PF |21=,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,(1)求曲线C 的方程;(2)求m 的值。

14. 已知双曲线)0,0(12222>>=-b a b y a x 的左右两个焦点分别为21F F 、,点P 在双曲线右支上.(Ⅰ)若当点P 的坐标为)516,5413(时,21PF PF ⊥,求双曲线的方程; (Ⅱ)若||3||21PF PF =,求双曲线离心率e 的最值,并写出此时双曲线的渐进线方程.15. 若F 1、F 2为双曲线122=-b y a x 的左右焦点,O 为坐标原点,P 在双曲线的左支上,点M在右准线上,且满足;)0,1 λλF +==.(1)求该双曲线的离心率;(2)若该双曲线过N (2,3),求双曲线的方程;(3)若过N (2,3)的双曲线的虚轴端点分别为B 1、B 2(B 1在y 轴正半轴上),点A 、B 在双曲线上,且B B A B B B A B 1122,⊥=求λ时,直线AB 的方程.16. 以O 为原点,OF 所在直线为x 轴,建立如 所示的坐标系。

设1OF FG •=,点F 的坐标为(,0)t ,[3,)t ∈+∞,点G 的坐标为00(,)x y 。

(1)求x 关于t 的函数0()x f t =的表达式,判断函数()f t 的单调性,并证明你的判断;(2)设ΔOFG的面积S =,若以O 为中心,F 为焦点的椭圆经过点G ,求当||OG 取最小值时椭圆的方程;(3)在(2)的条件下,若点P 的坐标为9(0,)2,C 、D 是椭圆上的两点,且(1)PC PD λλ=≠,求实数λ的取值范围。

17. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程;(Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q 的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积的取值范围。

18. 如图所示,O 是线段AB 其中c a <。

(1)若圆A 外的动点P 到B 的距离等于它到圆周的最短距离,建立适当坐标系,求动点P 的轨迹方程,并说明轨迹是何种曲线; (2)经过点O 的直线l 与直线AB 成60°角,当c =2,a =1时,动点P 的轨迹记为E ,设过点B 的直线m 交曲线E 于M 、N 两点,且点M 在直线AB 的上方,求点M 到直线l 的距离d 的取值范围。

A O B19. 设O 为坐标原点,曲线016222=+-++y x y x 上有两点P 、Q 满足关于直线04=++my x 对称,又以PQ 为直径的圆过O 点.(1)求m 的值; (2)求直线PQ 的方程.20. 在平面直角坐标系中,若(3,),(3,)a x y b x y =-=+,且4a b +=,(1)求动点(,)Q x y 的轨迹C 的方程;(2)已知定点(,0)(0)P t t >,若斜率为1的直线l 过点P 并与轨迹C 交于不同的两点,A B ,且对于轨迹C 上任意一点M ,都存在[0,2]θπ∈,使得cos sin OM OA OB θθ=⋅+⋅成立,试求出满足条件的实数t 的值。

21. 已知双曲线12222=-b y a x (a>0,b>0)的右准线与2l 一条渐近线l 交于两点P 、Q ,F 是双曲线的右焦点。

(I )求证:PF ⊥l ;(II )若△PQF 为等边三角形,且直线y=x+b 交双曲线于A ,B 两点,且30=AB ,求双曲线的方程;(III )延长FP 交双曲线左准线1l 和左支分别为点M 、N ,若M 为PN 的中点,求双曲线的离心率e 。

22. 已知又曲线 在左右顶点分别是A ,B ,点P 是其右准线上的一点,若点A 关于点P 的对称点是M ,点P 关于点B 的对称点是N ,且M 、N 都在此双曲线上。

(I )求此双曲线的方程; (II )求直线MN 的倾斜角。

23. 如图,在直角坐标系中,点A (-1,0),B (1,0),P (x ,y )(y ≠0)。

设AP OP BP →→→、、与x 轴正方向的夹角分别为α、β、γ,若αβγπ++=。

(I )求点P 的轨迹G 的方程;(II )设过点C (0,-1)的直线l 与轨迹G 交于不同两点M 、N 。

问在x 轴上是否存在yPA BO x24. 设椭圆()2222x y C :1a b 0a b +=>>过点)M ,1,且焦点为()1F 0。

(1)求椭圆C 的方程; (2)当过点()P 4,1的动直线与椭圆C 相交与两不同点A 、B 时,在线段AB 上取点Q ,满足AP QB AQ PB=,证明:点Q 总在某定直线上。

25. 平面直角坐标系中,O 为坐标原点,给定两点A (1,0)、B (0,-2),点C 满足αβα其中,OB OA OC +=、12,=-∈βαβ且R(1)求点C 的轨迹方程;(2)设点C 的轨迹与双曲线)0,0(12222>>=-b a b y a x 交于两点M 、N ,且以MN 为直径的圆过原点,求证:为定值2211b a -.26. 设)0,1(F ,M 、P 分别为x 轴、y 轴上的点,且PM•0=,动点N 满足:2-=.(1)求动点N 的轨迹E 的方程;(2)过定点)0)(0,(>-c c C 任意作一条直线l 与曲线E 交与不同的两点A 、B ,问在x 轴上是否存在一定点Q ,使得直线AQ 、BQ 的倾斜角互补?若存在,求出Q 点的坐标;若不存在,请说明理由.27. 如图,直角梯形ABCD 中,∠︒=90DAB ,AD ∥BC ,AB=2,AD=23,BC=21椭圆F 以A 、B 为焦点,且经过点D ,(Ⅰ)建立适当的直角坐标系,求椭圆F 的方程;(Ⅱ)是否存在直线l 与M 、F 交于椭圆N 两点,且线段C MN 的中点为点,若存在,求直线l 的方程;若不存在,说明理由.C BD28. 如图所示,B (– c ,0),C (c ,0),AH ⊥BC ,垂足为H ,且HC BH 3=. (1)若AC AB ⋅= 0,求以B 、C 为焦点并且经过点A 的椭圆的离心率; (2)D 分有向线段AB 的比为λ,A 、D 同在以B 、C 为焦点的椭圆上,当 ―5≤λ≤27-时,求椭圆的离心率e 的取值范围.29. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA ;②MCMB MA ==;③GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围答案:1.解:(Ⅰ) 以A 点为坐标原点,l1为x 轴,建立如图所示的坐标系,则D(1,0),B(4,0),设M (x ,y ), 则N (x ,0). ∵|BN|=2|DM|, ∴|4-x|=2(x -1)2+y2 , 整理得3x2+4y2=12, ∴动点M 的轨迹 方程为x24+ y23 =1 .(Ⅱ)∵(R),AG AD λλ=∈∴A 、D 、G 三点共线,即点G 在x 轴上;又∵2,GE GF GH +=∴H 点为线段EF 的中点;又∵0,GH EF ⋅=∴点G 是线段EF 的垂直平分线GH 与x 轴的交点。

相关文档
最新文档