各类高中招生考试数学试题2
黑龙江高职对口招生考试数学模拟试题二(含答案)

数学试题第I 卷(选择题,共60分)一. 选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合1{|24}8x A x R =∈<<,{|24}B x R x =∈-<≤,则A B 等于 ( )A. (2,2)-B. (2,4)-C. 1(,2)8D. 1(,4)82. 在复平面内,复数z 满足20131i z i +⋅=()(i 为虚数单位),则复数z 表示的点在 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 抛物线22y x =的准线方程是 ( ) A. 12x =-B. 18x =-C. 12y =D. 18y =- 4. 下列说法正确的是 ( )A. “1>a ”是“()log (01)(0)a f x x a a =>≠+∞,在,上为增函数”的充要条件B. 命题“,R x ∈∃使得0322<++x x ”的否定是:“,R x ∈∀0322>++x x ”C. “1-=x ”是“0232=++x x ”的必要不充分条件D. 命题p :“2cos sin ,≤+∈∀x x R x ”,则⌝p 是真命题 5. 某几何体的三视图如图所示,则该几何体的表面积为( ) A. 18 B. 21 C.24 D.276. 执行右面的程序框图,如果输入72,30m n ==,则输出的n 是( )A. 12B. 6C. 3D. 0 7. 在一次对“学生的数学成绩与物理成绩是否有关”的独立性检验的 试验中,由22⨯列联表算得2K 的观测值7.813k ≈,参照附表:判断在此次试验中,下列结论正确的是 ( )2()P K k ≥0.050 0. 010 0.001 k3.8416.63510.8281111侧视图A. 有99.9%以上的把握认为“数学成绩与物理成绩有关”B. “数学成绩与物理成绩有关” 的概率为99%C. 在犯错误的概率不超过0.01的前提下,认为“数学成绩与物理成绩有关”D. 在犯错误的概率不超过0.001的前提下,认为“数学成绩与物理成绩有关”8. 函数ln xy e x =-的图象是 ( )9. 已知四棱锥P ABCD -中,侧棱都相等,底面是边长为22O ,以PO 为直径的球经过侧棱中点,则该球的体积为 ( ) A.823 B.23 C. 43π D.323π 10. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若cos ,cos ,cos a C b B c A 成等差数列,则B 等于 ( )A .6π B.3π C.4π D.23π 11. 过双曲线22221x y a b-=(0,0a b >>)的右焦点F 作圆222x y a +=的切线FM ,交y轴于点P ,切圆于点M ,若2OM OF OP =+,则双曲线的离心率是 ( ) A.5 B. 3 C. 2 D.212. 函数()f x 的定义域为R ,(0)2f =,对x R ∀∈,有()()1f x f x '+>,则不等式()1x x e f x e ⋅>+的解集为( )A. {|0}x x >B. {|0}x x <C. {|1x x <-或1}x >D. {|1x x <-或01}x <<第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~(24)题为选考题,考生根据要求做答. 二. 填空题:本大题共4小题,每小题5分,共20分.13. 已知直线y x a =+与圆224x y +=交于,A B 两点,且0OA OB ⋅=,其中O 为坐标原点,则正实数a 的值为_______________. 14. 已知x x 2sin ,31)4sin(则=-π的值为________________.15. 已知点(1,2)A -,点(,)P x y 为平面区域M :203602x y x y y +-≥⎧⎪--≤⎨⎪≤⎩内一点,O 是坐标原点,则z OA AP =⋅的最大值为________________.16.已知,6a t ===+=,若,a t 均为正实数,则由以上等式,可推测a t += . 三. 解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 中,37a =,且1413,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)令211n n b a =-(n N *∈),求数列{}n b 的前n 项和n S . 18.(本小题满分12分)2012年伦敦奥运会前夕,在海滨城市青岛举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行了7轮比赛,得分的情况如茎叶图所示(单位:分).(Ⅰ)分别求甲、乙两名运动员比赛成绩的平均分与方差;(Ⅱ)若从甲运动员的7轮比赛的得分中任选3个不低于80分且不高于90分的得分,求这3个得分与其平均分的差的绝对值都不超过2的概率. 19.(本小题满分12分)如图,已知三棱锥A BCD -,,AB BD AD CD ⊥⊥,,E F 分别 为,AC BC 的中点,且BEC ∆为正三角形.(Ⅰ)求证:CD ⊥平面ABD ;(Ⅱ)若3CD =,10AC =,求点C 到平面DEF 的距离.BDC20.(本小题满分12分)如图,已知椭圆22221(0)x y a b a b+=>>的中心在原点,其上、下顶点分别为,A B ,点B在直线:1l y =-上,点A 到椭圆的左焦点的距离为2.(Ⅰ)求椭圆的标准方程;(Ⅱ)设P 是椭圆上异于,A B 的任意一点,点P 在y 轴上的射影为Q ,M 为PQ 的中点,直线AM 交直线l 于点C ,N 为BC 的中点,试探究:P 在椭圆上运动时,直线MN 与圆C:222x y b +=的位置关系,并证明你的结论.21.(本小题满分12分)已知函数()ln af x x x=-. (Ⅰ)若()f x 在3x =处取得极值,求实数a 的值; (Ⅱ)若()53f x x ≥-恒成立,求实数a 的取值范围.答案一、 选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20 分) 13. 2 14.9715. 1- 16. 41 三、解答题(本大题共6小题,共70分。
2020年初中学业水平考试与高中阶段学校招生考试 数学模拟试卷(二)解析版

2020年广西百色初中学业水平考试与高中阶段学校招生考试数学模拟试卷(二)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.(3分)﹣的倒数是()A.﹣2 B.C.2 D.12.(3分)如果一个多边形的内角和比外角和多180°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形3.(3分)一组数据3、2、4、5、2,则这组数据的众数是()A.2 B.3 C.3.2 D.44.(3分)下列计算正确的是()A.x3+x4=x7B.(x+1)2=x2+1C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a5.(3分)若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6 B.4 C.4.8 D.56.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5 7.(3分)如图是由4个完全一样的小正方体组成的几何体,这个几何体的主视图是()A.B.C.D.8.(3分)按一定规律排列的一列数依次是、1、、、、…按此规律,这列数中第100个数是()A.B.C.D.9.(3分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大10.(3分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60nmile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.60nmile B.60nmile C.30nmile D.30nmile 11.(3分)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位12.(3分)如图,在长方形纸片ABCD中,AB=4,AD=6.点E是AB的中点,点F是AD 边上的一个动点.将△AEF沿EF所在直线翻折,得到△GEF.则GC长的最小值是()A.B.C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)因式分解:2ax2﹣4axy+2ay2=.14.(3分)已知,则=.15.(3分)一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是.16.(3分)下列说法正确的是(填序号).①在同一平面内,a,b,c为直线,若a⊥b,b⊥c,则a∥c;②“若ac>bc,则a>b”的逆命题是真命题;③若点M(a,2)与N(1,b)关于x轴对称,则a+b=﹣1;④的整数部分是a,小数部分是b,则ab=3﹣3.17.(3分)三角形ABC中任意一点P(x0,y0)经平移后対应点为P1(x0+5,y0+3),将三角形ABC作同样的平移得到三角形A1B1C1,若A(﹣2,3),则A1的坐标为.18.(3分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)(﹣1)0+(﹣1)﹣2﹣4sin60°+.20.(6分)已知x,y满足方程组,求(x﹣y)2﹣(x+2y)(x﹣2y)的值.21.(6分)如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.22.(8分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.23.(8分)某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图(1)和图(2)):(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?24.(10分)随着城际铁路的开通,从甲市到乙市的高铁里程比快车里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?25.(10分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.26.(12分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B 两点,A点的坐标为(﹣3,0),B点在原点的左侧,与y轴交于点C(0,3),点P是直线BC上方的抛物线上一动点(1)求这个二次函数的表达式;(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C(如图1所示),那么是否存在点P,使四边形POP′C为菱形?若存在,请此时点P的坐标:若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABCP的面积最大,并求出其最大值.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的)1.(3分)﹣的倒数是()A.﹣2 B.C.2 D.1【分析】根据倒数的定义求解即可.【解答】解:﹣的到数是﹣2,故选:A.2.(3分)如果一个多边形的内角和比外角和多180°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,然后求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=360°+180°,解得n=5.故选:B.3.(3分)一组数据3、2、4、5、2,则这组数据的众数是()A.2 B.3 C.3.2 D.4【分析】根据众数的定义即可求出这组数据的众数.【解答】解:在这组数据中2出现了2次,出现的次数最多,则这组数据的众数是2;故选:A.4.(3分)下列计算正确的是()A.x3+x4=x7B.(x+1)2=x2+1C.(﹣a2b3)2=﹣a4b6D.2a2•a﹣1=2a【分析】利用合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则,逐个计算得结论.【解答】解:x3与x4不是同类项,不能加减,故A错误;(x+1)2=x2+2x+1≠x2+1,故B错误;(﹣a2b3)2=a4b6≠﹣a4b6,故C错误;2a2•a﹣1=2a2﹣1=2a,故D正确.故选:D.5.(3分)若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6 B.4 C.4.8 D.5【分析】首先根据勾股定理的逆定理可判定此三角形是直角三角形,则最大边上的中线即为斜边上的中线,然后根据直角三角形斜边上的中线等于斜边的一半,从而得出结果.【解答】解:∵62+82=100=102,∴三边长分别为6cm、8cm、10cm的三角形是直角三角形,最大边是斜边为10cm.∴最大边上的中线长为5cm.故选:D.6.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.7.(3分)如图是由4个完全一样的小正方体组成的几何体,这个几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层右边一个小正方形,故选:A.8.(3分)按一定规律排列的一列数依次是、1、、、、…按此规律,这列数中第100个数是()A.B.C.D.【分析】观察发现,是不变的,变的是数字,不难发现数字的规律,代入具体的数就可求解.【解答】解:由、1、、、、、…可得第n个数为.∵n=100,∴第100个数为:故选:B.9.(3分)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是()A.甲的成绩比乙稳定B.甲的最好成绩比乙高C.甲的成绩的平均数比乙大D.甲的成绩的中位数比乙大【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:A.10.(3分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60nmile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.60nmile B.60nmile C.30nmile D.30nmile 【分析】如图作PE⊥AB于E.在Rt△PAE中,求出PE,在Rt△PBE中,根据PB=2PE 即可解决问题.【解答】解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=30nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=60nmile,故选:B.11.(3分)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)(x﹣5),则这个变换可以是()A.向左平移2个单位B.向右平移2个单位C.向左平移8个单位D.向右平移8个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),故选:B.12.(3分)如图,在长方形纸片ABCD中,AB=4,AD=6.点E是AB的中点,点F是AD 边上的一个动点.将△AEF沿EF所在直线翻折,得到△GEF.则GC长的最小值是()A.B.C.2D.2【分析】以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC的长取最小值,根据折叠的性质可知GE=2,在Rt△BCE中利用勾股定理可求出CE的长度,用CE﹣GE即可求出结论.【解答】解:以点E为圆心,AE长度为半径作圆,连接CE,当点G在线段CE上时,GC 的长取最小值,如图所示根据折叠可知:GE=AE=AB=2.在Rt△BCE中,BE=AB=2,BC=6,∠B=90°,∴CE==2,∴GC的最小值=CE﹣GE=2﹣2.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)因式分解:2ax2﹣4axy+2ay2=2a(x﹣y)2.【分析】原式提取2a,再利用完全平方公式分解即可.【解答】解:原式=2a(x2﹣2xy+y2)=2a(x﹣y)2,故答案为:2a(x﹣y)214.(3分)已知,则= 2 .【分析】由得a+b=2ab,整体代入原式=可得答案.【解答】解:∵,∴=2,∴a+b=2ab,则原式===2,故答案为:2.15.(3分)一个不透明的口袋中共有8个白球、5个黄球、5个绿球、2个红球,这些球除颜色外都相同.从口袋中随机摸出一个球,这个球是白球的概率是.【分析】先求出袋子中球的总个数及确定白球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为8+5+5+2=20,而白球有8个,则从中任摸一球,恰为白球的概率为=.故答案为:.16.(3分)下列说法正确的是①③(填序号).①在同一平面内,a,b,c为直线,若a⊥b,b⊥c,则a∥c;②“若ac>bc,则a>b”的逆命题是真命题;③若点M(a,2)与N(1,b)关于x轴对称,则a+b=﹣1;④的整数部分是a,小数部分是b,则ab=3﹣3.【分析】根据平行线的判定定理,不等式的性质,关于x轴对称的点的坐标特征,无理数的估算方法解答.【解答】解:在同一平面内,a,b,c为直线,若a⊥b,b⊥c,则a∥c,①正确;“若ac>bc,则a>b”的逆命题是“若a>b,则ac>bc”,是假命题,②错误;若M(a,2),N(1,b)关于x轴对称,则a=1,b=﹣2,∴a+b=﹣1,③正确;的整数部分是a,小数部分是b,则a=3,b=,∴ab=,故④错误.∴正确的有:①③.故答案为:①③17.(3分)三角形ABC中任意一点P(x0,y0)经平移后対应点为P1(x0+5,y0+3),将三角形ABC作同样的平移得到三角形A1B1C1,若A(﹣2,3),则A1的坐标为(3,6).【分析】根据点P平移前后的坐标,可得出坐标平移规律:横坐标加5,纵坐标加3,从而可得到A1的坐标.【解答】解:∵三角形ABC中任意一点P(x0,y0)经平移后対应点为P1(x0+5,y0+3),∴坐标平移规律是:横坐标加5,纵坐标加3,∴将三角形ABC作同样的平移得到三角形A1B1C1,若A(﹣2,3),则A1的坐标为(﹣2+5,3+3),即(3,6).故答案为(3,6).18.(3分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)M{(﹣2)2,22,﹣22}=;(2)若min{3﹣2x,1+3x,﹣5}=﹣5,则x的取值范围为﹣2≤x≤4 .【分析】(1)根据平均数的定义计算即可.(2)根据题意列出一元一次不等式组解决问题即可.【解答】解:(1)M{(﹣2)2,22,﹣22}==;(2)∵min{3﹣2x,1+3x,﹣5}=﹣5,∴,解得﹣2≤x≤4.故x的取值范围为﹣2≤x≤4.故答案为:;﹣2≤x≤4.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤)19.(6分)(﹣1)0+(﹣1)﹣2﹣4sin60°+.【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、二次根式的性质分别化简得出答案.【解答】解:原式=1+1﹣4×+2=2.20.(6分)已知x,y满足方程组,求(x﹣y)2﹣(x+2y)(x﹣2y)的值.【分析】原式利用完全平方公式,以及平方差公式化简,去括号合并后,求出方程组的解得到x与y的值,代入计算即可求出值.【解答】解:原式=x2﹣2xy+y2﹣x2+4y2=﹣2xy+5y2,,①+②得:3x=﹣3,解得:x=﹣1,把x=﹣1代入①得:y=,则原式=+=.21.(6分)如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.【分析】(1)根据题意得出AE=6,结合平行四边形的面积得出AD=BC=4,继而知点D 坐标,从而得出反比例函数解析式;(2)先根据反比例函数解析式求出点B的坐标,再利用待定系数法求解可得.【解答】解:(1)∵顶点A的坐标是(0,2),顶点C的纵坐标是﹣4,∴AE=6,又▱ABCD的面积是24,∴AD=BC=4,则D(4,2)∴k=4×2=8,∴反比例函数解析式为y=;(2)由题意知B的纵坐标为﹣4,∴其横坐标为﹣2,则B(﹣2,﹣4),设AB所在直线解析式为y=kx+b,将A(0,2)、B(﹣2,﹣4)代入,得:,解得:,所以AB所在直线解析式为y=3x+2.22.(8分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【分析】(1)根据矩形的性质得到EH=FG,EH∥FG,得到∠GFH=∠EHF,求得∠BFG=∠DHE,根据菱形的性质得到AD∥BC,得到∠GBF=∠EDH,根据全等三角形的性质即可得到结论;(2)连接EG,根据菱形的性质得到AD=BC,AD∥BC,求得AE=BG,AE∥BG,得到四边形ABGE是平行四边形,得到AB=EG,于是得到结论.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.23.(8分)某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图(1)和图(2)):(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?【分析】(1)用排球组的人数除以它所占的百分比即可得到全班人数,计算出足球组人数,然后补全频数分布直方图;(2)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好恰好有1人选修排球、1人选修羽毛球所占结果数,然后根据概率公式求解.【解答】解:(1)该班的总人数为12÷24%=50(人),足球科目人数为50×14%=7(人),补全图形如下:(2)设排球为A,羽毛球为B,乒乓球为C.画树状图为:共有12种等可能的结果数,其中有1人选修排球、1人选修羽毛球的占4种,所以恰好有1人选修排球、1人选修羽毛球的概率==,24.(10分)随着城际铁路的开通,从甲市到乙市的高铁里程比快车里程缩短了90千米,运行时间减少了8小时,已知甲市到乙市的普快列车里程为1220千米,高铁平均时速是普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)若从甲市到乙市途经丙市,且从甲市到丙市的高铁里程为780千米.某日王老师要从甲市去丙市参加14:00召开的会议,如果他买了当日10:00从甲市到丙市的高铁票,而且从丙市高铁站到会议地点最多需要0.5小时.试问在高铁列车准点到达的情况下,王老师能否在开会之前赶到会议地点?【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,根据题意可得,高铁走(1220﹣90)千米比普快走1220千米时间减少了8小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,,解得:x=96,经检验,x=96是原分式方程的解,且符合题意,则2.5x=240,答:高铁列车的平均时速为240千米/小时;(2)780÷240=3.25,则坐车共需要3.25+0.5=3.75(小时),从10:00到下午14:00,共计4小时>3.75小时,故王老师能在开会之前到达.25.(10分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.【分析】(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.【解答】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.26.(12分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B 两点,A点的坐标为(﹣3,0),B点在原点的左侧,与y轴交于点C(0,3),点P是直线BC上方的抛物线上一动点(1)求这个二次函数的表达式;(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C(如图1所示),那么是否存在点P,使四边形POP′C为菱形?若存在,请此时点P的坐标:若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABCP的面积最大,并求出其最大值.【分析】(1)利用待定系数法直接将B、C两点直接代入y=x2+bx+c求解b,c的值即可得抛物线解析式.(2)利用菱形对角线的性质及折叠的性质可以判断P点的纵坐标为﹣,令y=﹣即可得x2﹣2x﹣3=﹣,解该方程即可确定P点坐标.(3)由于△ABC的面积为定值,当四边形ABCP的面积最大时,△BPC的面积最大;过P 作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线AC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ABCP 的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABCP的最大面积及对应的P点坐标.【解答】解:(1)∵C点坐标为(0,3)∴y=﹣x2+bx+3把A(﹣3,0)代入上式得,0=9﹣3b+3.解得,b=﹣2.∴该二次函数解析式为:y=﹣x2﹣2x+3.(2)存在.如图1,设P点的坐标为(x,﹣x2﹣2x+3),PP′交CO于E,当四边形POP'C为菱形时,则有PC=PO,连接PP′,则PE⊥CO于E.∴OE=CE=.令﹣x2﹣2x+3=.解得,x1=﹣,x2=(不合题意,舍去).∴P点的坐标为(﹣,).(3)如图2,过点P作y轴的平行线与BC交于点Q,与OA交于点F,设P(x,﹣x2﹣2x+3),设直线AC的解析式为:y=kx+t,则,解得:.∴直线AC的解析式为y=x+3,则Q点的坐标为(x,x+3);当0=﹣x2﹣2x+3,解得:x1=1,x2=﹣3,∴AO=3,OB=1,则AB=4,S四边形ABCP=S△ABC+S△APQ+S△CPQ=AB•OC+QP•OF+QP•AF=×4×3+[(﹣x2﹣2x+3)﹣(x+3)]×3=﹣(x+)2+.当x=﹣时,四边形ABCP的面积最大此时P点的坐标为(﹣,),四边形ABPC的面积的最大值为.。
河南省2022年普通高中招生考试数学试卷(备用卷,含解析)

2022年河南省普通高中招生考试数学试卷(备用卷)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣4的绝对值是()A.4B.C.﹣4D.±42.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A.B.C.D.3.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖4.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°5.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×1066.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x27.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=78.如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×59.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.B.C.D.10.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1B.+C.2+1D.2﹣二、填空题(本大题共5小题,每小题3分,共15分)11.写出一个比大且比小的整数为.12.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为.13.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为.14.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为,线段DH长度的最小值为.15.如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,(﹣x﹣2)÷,然后从﹣2≤x≤2范围内选取一个合适的整数作为x的值代入求值.17.(9分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2022年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2022年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2022年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2022年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.18.(9分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE =90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)19.(9分)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)20.(9分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB 的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.21.(10分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.22.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=,b=;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.23.(11分)综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣4的绝对值是()A.4B.C.﹣4D.±4【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣4的绝对值是4,故选:A.2.下列几何体是由4个相同的小正方体搭成的,其中,主视图、左视图、俯视图都相同的是()A.B.C.D.【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解答】解:A.主视图、左视图、俯视图均为底层是两个小正方形,上层的左边是一个小正方形,故本选项符合题意;B主视图与左视图均为底层是两个小正方形,上层的左边是一个小正方形;而俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;C.主视图是“L”型,俯视图是一行三个小正方形,而左视图是一列两个小正方形,故本选项不合题意.D.主视图为底层两个小正方形,上层的右边是一个小正方形;左视图为底层是两个小正方形,上层的左边是一个小正方形;俯视图的底层左边是一个小正方形,上层是两个小正方形,故本选项不合题意;故选:A.3.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【分析】根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可.【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.4.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°【分析】过点G作HG∥BC,则有∠HGB=∠B,∠HGE=∠E,又因为△DEF和△ABC 都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【解答】解:过点G作HG∥BC,∵EF∥BC,∴GH∥BC∥EF,∴∠HGB=∠B,∠HGE=∠E,∵在Rt△DEF和Rt△ABC中,∠F=30°,∠C=45°∴∠E=60°,∠B=45°∴∠HGB=∠B=45°,∠HGE=∠E=60°∴∠EGB=∠HGE+∠HGB=60°+45°=105°故∠EGB的度数是105°,故选:D.5.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×106【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【解答】解:690万=6900000=6.9×106.故选:D.6.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2【分析】将点A(x1,﹣5),B(x2,2),C(x3,5)分别代入反比例函数y=,求得x1,x2,x3的值后,再来比较一下它们的大小.【解答】解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,∴﹣5=,即x1=﹣2,2=,即x2=5;5=,即x3=2,∵﹣2<2<5,∴x1<x3<x2;故选:C.7.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7【分析】所求方程利用题中的新定义化简,求出解即可.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.8.如图,根据图中的信息,可得正确的方程是()A.π×()2x=π×()2×(x﹣5)B.π×()2x=π×()2×(x+5)C.π×82x=π×62×(x+5)D.π×82x=π×62×5【分析】根据圆柱体的体积计算公式结合水的体积不变,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意,得:π×()2x=π×()2×(x+5).故选:B.9.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.B.C.D.【分析】先根据矩形的性质得AD=BC=5,AB=CD=3,再根据折叠的性质得AF=AD =5,EF=DE,在Rt△ABF中,利用勾股定理计算出BF=4,则CF=BC﹣BF=1,设CE=x,则DE=EF=3﹣x,然后在Rt△ECF中根据勾股定理得到x2+12=(3﹣x)2,解方程即可得到x,进一步得到EF的长,再根据正弦函数的定义即可求解.【解答】解:∵四边形ABCD为矩形,∴AD=BC=5,AB=CD=3,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=5,EF=DE,在Rt△ABF中,BF===4,∴CF=BC﹣BF=5﹣4=1,设CE=x,则DE=EF=3﹣x在Rt△ECF中,∵CE2+FC2=EF2,∴x2+12=(3﹣x)2,解得x=,∴DE=EF=3﹣x=,∴tan∠DAE===,故选:D.10.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为()A.+1B.+C.2+1D.2﹣【分析】根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD 与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【解答】解:如图,∵点C为坐标平面内一点,BC=1,∴C在⊙B上,且半径为1,取OD=OA=2,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=CD,当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM 最大,∵OB=OD=2,∠BOD=90°,∴BD=2,∴CD=2+1,∴OM=CD=,即OM的最大值为+;故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11.写出一个比大且比小的整数为2(或3).【分析】先估算出和的大小,再找出符合条件的整数即可.【解答】解:∵1<<2,3<<4,∴比大且比小的整数为2(或3).故答案为:2(或3).12.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为6.【分析】设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),根据给定的三个条件,即可得出关于a,b的二元一次不等式组,结合a,b均为整数即可得出b的取值范围,再取其中最大的整数值即可得出结论.【解答】解:设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:,∵a,b均为整数∴4<b<7,∴b最大可以取6.故答案为:6.13.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为.【分析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=.故答案为:.14.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为3,线段DH长度的最小值为﹣.【分析】连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于N.首先利用相似三角形的性质证明EM=2FN,推出EM=2,FM=1,当点P与A重合时,PQ的值最大,解直角三角形求出OD,OH即可解决问题.【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O 作ON⊥CD于N.∵四边形ABCD是矩形,DF=CF,AE=EB,∴四边形ADFE是矩形,∴EF=AD=3,∵FQ∥PE,∴△MFQ∽△MEP,∴=,∵PE=2FQ,∴EM=2MF,∴EM=2,FM=1,当点P与A重合时,PQ的值最大,此时PM===2,MQ===,∴PQ=3,∵MF∥ON∥BC,MO=OB,∴FN=CN=1,DN=DF+FN=3,ON==2,∴OD===,∵BH⊥PQ,∴∠BHM=90°,∵OM=OB,∴OH=BM=×=,∵DH≥OD﹣OH,∴DH≥﹣,由于M和B点都是定点,所以其中点O也是定点,当PQ垂直于OD时,O,H,D共线,此时DH最小,∴DH的最小值为﹣,故答案为3,﹣.15.如图,矩形ABCD中,E是AB上一点,连接DE,将△ADE沿DE翻折,恰好使点A 落在BC边的中点F处,在DF上取点O,以O为圆心,OF长为半径作半圆与CD相切于点G.若AD=4,则图中阴影部分的面积为.【分析】连接OG,QG,证明△DOG∽△DFC,得出,设OG=OF=x,则,求出圆的半径为,证明△OFQ为等边三角形,求出CQ,CG,则可由三角形的面积公式求出答案.【解答】解:连接OG,QG,∵将△ADE沿DE翻折,恰好使点A落在BC边的中点F处,∴AD=DF=4,BF=CF=2,∵矩形ABCD中,∠DCF=90°,∴∠FDC=30°,∴∠DFC=60°,∵⊙O与CD相切于点G,∴OG⊥CD,∵BC⊥CD,∴OG∥BC,∴△DOG∽△DFC,∴,设OG=OF=x,则,解得:x=,即⊙O的半径是.连接OQ,作OH⊥FQ,∵∠DFC=60°,OF=OQ,∴△OFQ为等边△;同理△OGQ为等边三角形;∴∠GOQ=∠FOQ=60°,OH=OQ=,∴QH==,∴CQ=∵四边形OHCG为矩形,∴OH=CG=,∴S阴影=S△CGQ===.故答案为:.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,(﹣x﹣2)÷,然后从﹣2≤x≤2范围内选取一个合适的整数作为x的值代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:原式=[﹣(x+2)]•=(﹣)•=•=﹣•=﹣(x﹣3)=﹣x+3,∵x≠±2,∴可取x=1,则原式=﹣1+3=2.17.(9分)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2022年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2022年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2022年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.已知2022年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.【分析】(1)用2000乘以样本中家庭人均纯收入低于2000元(不含2000元)的频率即可;(2)利用加权平均数进行计算即可;(3)求出当地农民2022年家庭人均年纯收入与4000进行大小比较即可.【解答】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:1000×=120(户);(2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)=2.4(千元);(3)根据题意,得,2022年该地区农民家庭人均月纯收入的最低值如下:由上表可知当地农民2022年家庭人均年纯收入不低于:500+300+150+200+300+450+620+790+960+1130+1300+1470>960+1130+1300+1470>4000.所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.18.(9分)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图.量得托板长AB=120mm,支撑板长CD=80mm,底座长DE =90mm.托板AB固定在支撑板顶端点C处,且CB=40mm,托板AB可绕点C转动,支撑板CD可绕点D转动.(结果保留小数点后一位)(1)若∠DCB=80°,∠CDE=60°,求点A到直线DE的距离;(2)为了观看舒适,在(1)的情况下,把AB绕点C逆时针旋转10°后,再将CD绕点D顺时针旋转,使点B落在直线DE上即可,求CD旋转的角度.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839,sin26.6°≈0.448,cos26.6°≈0.894,tan26.6°≈0.500,≈1.732)【分析】(1)通过作垂线,构造直角三角形,利用直角三角形的边角关系,求出CB、AF,即可求出点A到直线DE的距离;(2)画出旋转后的图形,结合图形,明确图形中的已知的边角,再利用直角三角形的边角关系求出相应的角度即可.【解答】解:(1)如图2,过A作AM⊥DE,交ED的延长线于点M,过点C作CF⊥AM,垂足为F,过点C作CN⊥DE,垂足为N,由题意可知,AC=80,CD=80,∠DCB=80°,∠CDE=60°,在Rt△CDN中,CN=CD•sin∠CDE=80×=40mm=FM,∠DCN=90°﹣60°=30°,又∵∠DCB=80°,∴∠BCN=80°﹣30°=50°,∵AM⊥DE,CN⊥DE,∴AM∥CN,∴∠A=∠BCN=50°,∴∠ACF=90°﹣50°=40°,在Rt△AFC中,AF=AC•sin40°=80×0.643≈51.44mm,∴AM=AF+FM=51.44+40≈120.7mm,答:点A到直线DE的距离约为120.7mm;(2)旋转后,如图3所示,根据题意可知∠DCB=80°+10°=90°,在Rt△BCD中,CD=80mm,BC=40mm,∴tan∠D==≈0.500,∴∠D≈26.6°,因此旋转的角度约为:60°﹣26.6°=33.4°,答:CD旋转的角度约为33.4°.19.(9分)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)【分析】(1)分别得出当0<x≤12时和当12<x≤20时,z关于x的函数解析式即可得出答案;(2)设第x个生产周期工厂创造的利润为w万元,①当0<x≤12时,可得出w关于x 的一次函数,根据一次函数的性质可得相应的最大值;②当12<x≤20时,可得出w关于x的二次函数,根据二次函数的性质可得相应的最大值.取①②中较大的最大值即可.【解答】解:(1)由图可知,当0<x≤12时,z=16,当12<x≤20时,z是关于x的一次函数,设z=kx+b,则解得:∴z=﹣x+19,∴z关于x的函数解析式为z=(2)设第x个生产周期工厂创造的利润为w万元,①当0<x≤12时,w=(16﹣10)×(5x+40)=30x+240,∴由一次函数的性质可知,当x=12时,w最大值=30×12+240=600(万元);②当12<x≤20时,w=(﹣x+19﹣10)(5x+40)=﹣x2+35x+360=﹣(x﹣14)2+605,因为﹣<0,∴当x=14时,w最大值=605(万元).综上所述,工厂第14个生产周期创造的利润最大,最大是605万元.20.(9分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB 的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.【分析】(1)连接OD、DB,由已知可知DE垂直平分OB,则DB=DO,再由圆的半径相等,可得DB=DO=OB,即△ODB是等边三角形,则∠BDO=60°,再由等腰三角形的性质及三角形的外角性质可得∠CDB=30°,从而可得∠ODC=90°,按照切线的判定定理可得结论;(2)连接OP,先由已知条件得OP=OB=BC=2OE,再利用两组边成比例,夹角相等来证明△OEP∽△OPC,按照相似三角形的性质得出比例式,则可得答案.【解答】解:(1)如图1中,连接OD、DB,∵点E是线段OB的中点,DE⊥AB交⊙O于点D,∴DE垂直平分OB,∴DB=DO,OE=BE.解法一:∵在⊙O中,DO=OB,∴DB=DO=OB,∴△ODB是等边三角形,∴∠BDO=∠DBO=60°,∵BC=OB=BD,且∠DBE为△BDC的外角,∴∠BCD=∠BDC=∠DBO.∵∠DBO=60°,∴∠CDB=30°.∴∠ODC=∠BDO+∠BDC=60°+30°=90°,∴CD是⊙O的切线;解法二:∵BC=OB,OB=OD,∴===,又∵∠DOE=∠COD,∴△EOD∽△DOC,∴∠CDO=∠DEO=90°,∴CD为圆O的切线;(2)答:这个确定的值是.连接OP,如图2中:由已知可得:OP=OB=BC=2OE.∴==,又∵∠COP=∠POE,∴△OEP∽△OPC,∴==.21.(10分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F 的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可;(2)连接BC与对称轴交于点F,此时△ACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可;(3)设P(m,m2﹣2m﹣3)(m>3),根据相似三角形的比例式列出m的方程解答便可.【解答】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)直线BC与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P(m,m2﹣2m﹣3)(m>3),过P作PH⊥BC于H,过D作DG⊥BC于G,如图2,则PH=5DG,E(m,m﹣3),∴PE=m2﹣3m,DE=m﹣3,∵∠PHE=∠DGE=90°,∠PEH=∠DEG,∴△PEH∽△DEG,∴,∴,∵m=3(舍),或m=5,∴点P的坐标为P(5,12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5,12).22.(10分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x…﹣4﹣3﹣2﹣101234…y…﹣a﹣2﹣4b﹣4﹣2﹣﹣…(1)列表,写出表中a,b的值:a=﹣,b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣的图象关于y轴对称;②当x=0时,函数y=﹣有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣<﹣x﹣的解集.。
2022年单独招生考试数学真题2卷(后面答案解析)

2022年对口单独招生统一考试数学试卷(一)(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分.)1.直线l :230x y +-=与圆C:22240x y x y ++-=的位置关系是( ) A.相交切不过圆心 B.相切 C.相离 D.相交且过圆心2.双曲线22149x y -=的离心率e=( )A.23B.32 C.2 D.33.将抛物线24y x =-绕顶点按逆时针方向旋转角π,所得抛物线方程为( ) A. 24y x = B. 24y x =- C. 24x y = D. 24x y =-4.在空间中,下列结论正确的是( ) A.空间三点确定一个平面B.过直线外一点有且仅有一条直线与已知直线垂直C.如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D.三个平面最多可将空间分成八块 5. 已知集合 ,,则 MUN=( )A. B.C.D.6.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为( ) A.16B. 0.25C.19D.5187.已知圆锥底面半径为4,侧面面积为60,则母线长为( )A. 8B. 16C.152D. 158.函数y = sin2x 的图像如何平移得到函数sin(2)3y x的图像( )A. 向左平移6个单位B. 向右平移6个单位C. 向左平移3个单位D. 向右平移3个单位9.设动点M 到1(13 0)F ,的距离减去它到2(13 0)F ,的距离等于4,则动点M 的轨迹方程为( ) A. 22 1 (2)49x y x ≤ B. 22 1 (2)49x y x ≥ C.22 1 (2)49y x y ≥D.22 1 (x 3)94x y ≥10.已知函数()3sin 3cos f x xx ,则()12f ( ) A.6B.23C.22D.2611.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有( ) A. 280种B. 240种C. 360种D. 144种12.如下图20图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是( ) A. A ′C ⊥平面DBC ′ B. 平面AB ′D ′//平面BDC ′ C. BC ′⊥AB ′D. 平面AB ′D ′⊥平面A ′AC13. 已知集合A={-1,0,1},集合B={-3,-1,1,3},则A ∩B=( ) A. {-1,1}B. {-1}C. {1,3}D. ∅14. 不等式x2-4x ≤0的解集为( ) A. [0,4]B. (1,4)C. [-4,0)∪(0,4]D. (-∞,0]∪[4,+∞)15. 函数f (x )=ln(x −2)+1x−3的定义域为( )A. (5,+∞)B. [5,+∞)C. (-∞,2]∪[3,+∞)D. (2,3)∪(3,+∞)16. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( ) A. BD⃗⃗⃗⃗⃗B. DB⃗⃗⃗⃗⃗C. AC⃗⃗⃗⃗⃗D. CA⃗⃗⃗⃗⃗ 17. 下列函数以π为周期的是( ) A.y =sin (x −π8)B. y =2cos xC. y =sin xD. y =sin 2x18. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是( ) A. 180B. 380C. 190D. 12019. 已知直线的倾斜角为60°,则此直线的斜率为( ) A. −√33B.2 C . √3 D.√3320. 若sin α>0且tan α<0,则角α终边所在象限是( ) A. 第一象限B. 第二象限C. 第三象限D.第四象限二、填空题(共10小题,每小题3分;共计30分) 1、过点)5,4(A ,且与x 轴平行的直线方程是______2、过点P(-4,-1)且与直线3x -4y+6=0垂直的直线方程是______3、过点)1,2(-p 且与直线0102=+-y x 平行的直线方程是______4、在∆ABC 中,已知∠B=︒30,∠C=︒135,AB=4,则AC=______5、已知函数bx y +-=sin 31的最大值是97,则b=______6、75sin 15sin +的值是______.7、如果∆ABC 的三个内角A ,B ,C 成等差数列,则B 一定等于______. 8、已知2tan -=α,71tan =+)(βα,则βtan 的值为______ .9、三个数2,x ,10成等差数列,则=x ______10、已知b kx x f +=)(,且1)1(=-f ,3)2(=-f ,则=k ______,=b ______ 三、大题:(满分30分) 1、已知函数3()x x b f x x ++=,{}n a 是等差数列,且2(1)a f =,3(2)a f =,4(3)a f =.(1)求{}n a 的前n 项和; (2)求()f x 的极值.2、已知集合A 是由a -2,2a2+5a,12三个元素组成的,且-3∈A ,求a.参考答案: 一、选择题: 1-5题答案:DCADA 6-10题答案:ADABA 11-15题答案:BCAAD16-20题答案:CDCCB 答案解析:1、答案.D 【解析】圆的方程化为标准方程:22(1)(2)5x y ++-=,圆心到直线的距离d ==,即直线与圆相交且过圆心.2、答案.C 【解析】由双曲线的方程可知2,3,a b c ====c e a ==.3、答案.A 【解析】抛物线24y x =-绕顶点按逆时针方向旋转角π后形状不变,焦点位置由x 轴负半轴变为x 轴正半轴.所得抛物线方程为24y x =.4、答案.D 【解析】空间不共线的三点才可以确定一个平面;过直线外一点有无数条直线与已知直线垂直;如果平面外一条直线与平面内的一条直线平行,那么这条直线与此平面平行,C 中缺少了条件直线不在平面内.5、答案. A 【解析】因为集合,,所以二、填空题: 参考答案: 1、5=y ; 2、4x+3y+19=0 ; 3、042=+y x -; 4、22;5、94;6、26;7、︒60; 8、3; 9、6; 10、-2,-1. 三、大题: 1、【解析】(1)由3()x x b f x x ++=得211(1)21ba fb ++===+,3322(2)522b b a f ++===+,3433(3)1033b ba f ++===+,由于{}n a 为等差数列,∴2432a a a +=,即(2)(10)2(5)32b b b +++=+,解得6b =-,∴22624a b =+=-+=-,3655222b a =+=-+=,461010833b a =+=-+=,设数列{}n a 的公差为d ,则326d a a =-=,首项1210a a d =-=-,故数列{}n a 的通项公式为1(1)616n a a n d n =+-=-,∴数列{}n a 的前n 项和为21()(10616)31322n n n a a n n S n n +-+-===-;(2)法一(导数法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,332226262(3)()2x x f x x x x x ++'=+==,当330x+<,即x <()0f x '<,函数()f x 在(,-∞上单调递减,当330x +>,即x >时,()0f x '>,函数()f x 在()+∞上单调递增,故函数()f x 在x =极小值为53(31f =+,无极大值.法二(基本不等式法):33266()1(0)x x b x x f x x x x x x +++-===-+≠,当0x >时,26()1f x x x =-+为单调递增函数,故()f x 在(0,)+∞上无极值.当0x <时,则6x ->,∴2222663333()1()()1()()()1()()1f x x x x x x x x x x =-+=-++=-+++≥+-----53131==+,当且仅当23()x x -=-,即x =综上所述,函数()f x 在x =53(31f =+,无极大值.【评注】本题考查等差数列的通项公式以及前n 项和、函数单调性及应用,数列与函数进行结合考查,综合性较强,属于中档题. 解:由-3∈A ,可得-3=a -2或-3=2a2+5a , ∴a =-1或a =-32.则当a =-1时,a -2=-3,2a2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a2+5a =-3, ∴a =-32.2022年对口单独招生统一考试数学试卷(二)(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分.) 1、已知f(12x -1)=2x +3,f(m)=8,则m 等于( ) A 、14B 、-14C 、32D 、-322、函数y =lg x +lg(5-2x)的定义域是( )A 、)25,0[B 、⎥⎦⎤⎢⎣⎡250,C 、)251[,D 、⎥⎦⎤⎢⎣⎡251,3、函数y =log2x -2的定义域是( )A 、(3,+∞)B 、[3,+∞)C 、(4,+∞)D 、[4,+∞)4、函数12--=x x y 的图像是 ( ) A.开口向上,顶点坐标为)(45,21-的一条抛物线; B.开口向下,顶点坐标为)(45,21-的一条抛物线; C.开口向上,顶点坐标为)(45,21-的一条抛物线; D.开口向下,顶点坐标为)(45,21-的一条抛物线;5、函数()35x x x f +=的图象关于( )A 、y 轴对称B 、直线y =-x 对称C 、坐标原点对称D 、直线y =x 对称6、已知函数 f(x)的图象与函数 y=sinx 的图象关于 y 轴对称,则 f(x)=( ) (A)-cosx (B)cosx (C)-sinx (D)sinx7、已知平面向量, 则与的夹角是( )8、函数y=(x ≠-5)的反函数是( )(A) y=x -5(x ∈R) ( B) y=-+5(x ≠0)(C) y=x+5(x∈R)(D) y=(x≠0)9、不等式的解集是( )(A){x|0<x<1}(B){x|1<x<∞}(C){x|-∞<x<0}(D){x|-∞<x<0}10、已知函数之,则F(x)是区间( )(A)()上的增函数(B)上的增函数(C)上的增函数(D)上的增函数11、已知直线L过点(-1,1),且与直线x-2y-3=0垂直,则直线L的方程是( )(A)2x+y-1=0(B)2x+y-3=0(C)2x-y-3=0(D)2x-y-1=012、已知圆锥曲线母线长为5,底面周长为6π,则圆锥的体积是( )(A)6π(B)12π(C)18π(D)36π13、是等差数列{}的前n项合和,已知=-12,=-6,则公差d=( )(A)-1(B)-2(C)1(D)214、将3名教练员与6名运动员分为3组,每组一名教练员与2名运动员,不同的分法有( )(A)90中(B)180种(C)270种(D)360种15、吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美。
九年级数学下册学业考试样卷2

2010年高中段学校招生考试 数 学 试 题(样 题)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;共120分.考试时间120分钟.2.答第Ⅰ卷前务必将自己的姓名、考号、考试科目涂写在答题卡上.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案,不能答在试卷上.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分) 1、 下列各式,运算结果为负数的是(A ))3()2(---- (B ))3()2(-⨯- (C )2)2(-- (D )3)3(-- 2、下列运算正确的是 A .3362a a a +=B .3)a (-5a (-=8a -C .b a 2(2-3)● 4a = -246a 3b D .221114416339a b a b b a ⎛⎫⎛⎫---=-⎪⎪⎝⎭⎝⎭3、如图,是一个工件的三视图,则此工件的全面积是(A )85πcm 2(B )90πcm 2(C )155πcm 2(D )165πcm 24、 抛物线1822-+-=x x y 的顶点坐标为(A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9)5、如图,下列条件之一能使ABCD 是菱形的为ABCD(第5题)①AC BD ⊥ ②90BAD ∠=③AB BC = ④AC BD =A .①③B .②③C .③④D .①②③6、某校为了了解七年级学生的身高情况(单位:cm ,精确到1cm ),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在 (A )第二组 (B )第三组 (C )第四组 (D )第五组7、 在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A 、C 两地的距离为 (A )km 3310 (B )km 335 (C )km 25 (D )km 358、 如图,双曲线)0(>k xky =经过矩形OABC 的边BC 的中点E ,交AB 于点D 。
2019高考数学【全国I】卷试卷解析(2)

D. A=1+ 1 2A
此时,不满足条件 k 2 ,退出循环,输出 A 的值为 1 , 2+ 1 2+ 1 2
观察 A 的取值规律可知图中空白框中应填入 A = 1 . 2+ A
9.记 Sn 为等差数列{an}的前 n 项和.已知 S4 = 0,a5 = 5,则( )
A. an = 2n - 5
【答案】A
分, 2R = 2 + 2 + 2 = 6 ,即 R = 6 , \V = 4 pR3 = 4 p ´ 6 6 = 6p ,故选 D.
2
3
38
二、填空题: 本题共 4 小题,每小题 5 分,共 20 分。
13.曲线 y = 3(x2 + x)ex在点 (0, 0)处的切线方程为
.
【答案】 3x - y = 0
B. an = 3n -10
C. Sn = 2n2 - 8n
D.
Sn
=
1 2
n2
ቤተ መጻሕፍቲ ባይዱ
-
2n
【考点】等差数列通项公式及其前 n 项和基本公式
【解析】
⎧ ⎪ ⎨ ⎪ ⎩
S4
= 4a1 +
a5 = a1
d 2
+
´4´3 =
4d = 5
0
,解得% a1
d
= -3
,∴
=2
an
=
2n
- 5 ,故选
A.
10.已知椭圆 C 的焦点为 F1( -1, 0),F2(1, 0),过 F2 的直线与 C 交于 A,B 两点.若
由椭圆的定义有 2a = BF1 + BF2 = 4n ,\ AF1 = 2a - AF2 = 2n .
2023年新高考2卷数学试题教师版

2023年普通高等学校招生全国统一考试新高考II卷数学适用范围:辽宁,海南,重庆,安徽,黑龙江,吉林,云南,山西.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,(1+3i)(3-i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】z=(1+3i)(3-i)=3-i+9i-3i2=6+8i,故在第一象限,故选A;2.设集合A=0,-a,B=1,a-2,2a-2,若A⊆B,则a=()A.2B.1C.23 D.-1【答案】【参考解析1】直接验证选项,观察BD,因此先验证a=1,此时A={0,-1},B={1,-1,0},满足,故直接选B;【参考解析2】依题有a-2=0或2a-2=0;当a-2=0时,解得a=2,此时A={0,-2},B={1,0,2},不满足;当2a-2=0时,解得a=1,后面同解析1;3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同的抽样结果共有() A.C45400∙C15200种 B.C20400∙C40200种 C.C30400∙C30200种 D.C40400∙C20200种【答案】【参考解析】由分层抽样已知初中部抽40人,高中部抽20人,所以为C40400C20200,故选D;4.若f(x)=(x+a)2x-12x+1ln为偶函数,则a=()A.-1B.0C.12 D.1【答案】【参考解析】由九大奇函数易知y=ln 2x-12x+1为奇函数,所以y=x+a也要为奇函数,故a=0,故选B;5.已知椭圆C:x23+y2=1的左、右焦点分别为F1,F2,直线y=x+m与C交于A,B两点,△F1AB的面积是△F2AB的2倍,则m=()A.23 B.23 C.-23 D.-23【答案】【参考解析】依题有|-2+m |2=2×|2+m |2,解得m =-23或m =-32(舍),故选C ;6.已知函数f (x )=a e x -x ln 在区间(1,2)内单调递增,则a 的最小值为()A.e 2B.eC.e -1D.e -2【答案】【参考解析】f x =ae x -1x ≥0在(1,2)上恒成立,即0<1a≤xe x 在(1,2)上恒成立,令g x =xe x ,则g x =x +1 e x 在(1,2)上单增,所以1a≤g 1 =e ,所以a ≥e -1,故选C ;7.已知α为锐角,αcos =1+54,则α2sin =()A.3-58B.-1+58C.3-54D.-1+54【答案】【参考解析1】由二倍角公式得cos α=1+54=1-2sin 2α2⇒sin 2α2=3-58,用代选项验证法知D 对;【参考解析2】由二倍角公式得cos α=1+54=1-2sin 2α2⇒sin 2α2=3-58=6-2516=5-14 2,所以sin α2=±-1+54,而sin α2=--1+54无选项对应,故本题肯定不满足,故选D ;8.记S n 为等比数列{a n }的前n 项和,若S 4=-5,S 6=21S 2,则S 8=()A.120B.85C.-85D.-120【答案】【参考解析1】依题有a 11-q 4 1-q =-5a 11-q 61-q =21×a 11-q 2 1-q⇒q 2=4a 11-q =13,所以S 8=a 11-q 8 1-q =13×1-44 =-85,故选C :【参考解析2】易知S 2,S 4-S 2,S 6-S 4,S 8-S 6也为等比数列,所以(S 4-S 2)2=S 2·(S 6-S 4),解得S 2=-1或S 2=54,当S 2=-1时,(S 6-S 4)2=(S 4-S 2)·(S 8-S 6)⇒S 8=-85;当S 2=54时,与S 4=-5联立会推出q 2=-5,故舍去;二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,∠APB =120°,PA =2,点C 在底面圆上,且二面角P -AC -O 为45°,则()A.该圆锥的体积为πB.该圆锥的侧面积为43πC.AC =22D.△PAC 的面积为3【答案】【参考解析】如上图所示,由几何关系易知PO =1=h ,AO =BO =3=r ,取AC 中点为H ,则二面角P -AC -O 即为∠PHO =45°,所以OH =PO =1,所以AH =CH =AO 2-OH 2=2,所以AC =22,对于A :V =13πr 2h =π,故A 对;对于B :S 侧=πrl =23π,故B 错;对于C :由前面分析知对;对于D :S PAC =12×AC ×PH =2故D 错;综上,选AC .10.设O 为坐标原点,直线y =-3(x -1)过抛物线C :y 2=2px (p >0)的焦点,且与C 交于M ,N 两点,l 为C 的准线,则()A.p =2B.|MN |=83C.以MN 为直径的圆与l 相切D.△OMN 为等腰三角形【答案】【参考解析】易知焦点为(1,0),所以p2=1⇒p =2,故A 对;由抛物线常见结论知|MN |=4sin 22π3=163,故B 错;(下面增加联立的常规过程);联立y =-3x -1 y 2=4x⇒3x 2-10x +3=0,所以M 13,233 ,N 3,-23 ,所以|MN |=163,故B 错;同样由抛物线常见结论知C 对;由前面知|OM |=133,|ON |=21,|MN |=163故D 错;综上,选AC .考后分析C :圆心为M 53,-233 ,r =|MN |2=83=53+1,故C 对;11.若函数f (x )=a x ln +b x +cx2(a ≠0)既有极大值又有极小值,则()A.bc >0B.ac >0C.b 2+8ac >0D.ac <0【答案】【参考解析】因为f x =a ln x +b x +cx2a ≠0 ,所以定义域x >0,易知f x =ax 2-bx -2cx3,令ax 2-bx -2c =0,则题目等价于有两个不相等的正解:x 1,x 2,故Δ>0x 1+x 2>0x 1x 2>0 ⇒b 2+8ac >0b a >0-2c a>0 ⇒b 2+8ac >0ac <0bc <0故选BCD12.在信道内传输0,1信号,信号的传输相互独立,发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输,单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次,收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如:若依次收到1,0,1,则译码为1)()A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)2D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率【答案】【参考解析】关键信息:发0收1概率为α;发0收0概率为1-α;发1收0概率为β;发1收1概率为1-β;对于A :则为发1收1概率为1-β,发0收0概率为1-α,发1收1概率为1-β,故P A =1-α 1-β 2,A 对;对于B :则为发1收1概率为1-β,发1收0概率为β,发1收1概率为1-β,故P B =β1-β 2,B 对;对于C :分为发1收2个1和1个0和发1收3个1,所以P C =C 23⋅β1-β 2+C 33⋅1-β 3=3β1-β 2+1-β 3,故C 错;对于D :三次译码为0,分为发0收2个0和1个1和发0收3个0,此时P 1=C 23⋅α1-α 2+C 33⋅1-α 3=3α1-α 2+1-α 3,单次译码为0:P 2=(1-α),P 1-P 2=3α(1-α)2+(1-α)3-(1-α)=α(1-α)(1-2α)>0,故D 对;综上,选ABD ;三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 满足a -b =3,a +b =2a -b ,则b =.【答案】【参考解析】因为|a +b |=|2a -b |,所以a 2+2a ⋅b +b 2=4a 2-4a ⋅b +b 2⇒a 2-2a ⋅b =0,又因为|a -b |=3⇒a 2-2a ⋅b +b 2=3⇒b 2=3⇒|b|=3.14.底面边长为4的正四棱锥被平行于底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.【答案】【参考解析】由相似易知剩下的棱台的高为3,所以V 棱锥合=13S 上底+S 下底+S 上底S 下底 h =134+16+4×16 ×3=28;【参考解析2】由相似易知剩下的棱台的高为3,所以V 棱锥侧=13×42×6-13×22×3=28;15.已知直线x -my +1=0与⊙C :(x -1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.【答案】【参考解析】S =12r 2sin ∠ACB =85⇒sin ∠ACB =45所以cos ∠ACB =±35,由余弦定理得AB =r 2+r 2-2r 2cos ∠ACB ,所以AB =855或AB =455,套弦长公式得d =255或d =455,套心线距得21+m 2=255⇒m =±2或21+m2=455⇒m =±12,故填2, -2,12,-12中的一个即可.16.已知函数f (x )=(ωx +φ)sin ,如图,A ,B 是直线y =12与曲线y =f (x )的两个交点,若AB =π6,则f (π)=.【答案】【参考解析】由按图索骥法易知ωx A +φ=π6+2k π,;ωx B +φ=5π6+2k π,两式相减得ωx B -x A =4π6⇒ω×π6=4π6⇒ω=4,所以f (x )=sin (4x +φ),将2π3,0 代入得4×2π3+φ=2k π⇒φ=2k π-8π3,所以f x =sin 4x +2k π-8π3 =sin 4x -2π3.所以f π =sin 4π-2π3 =sin -2π3 =-32.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 面积为3,D 为BC 的中点,且AD =1.(1)若∠ADC =π3,求tan B ;(2)若b 2+c 2=8,求b ,c .【答案】(1)如图,过A 点作AH ⊥BC 交BC 于点H ,xy122π3A BO则AH =AD sin π3=32,DH =AD cosπ3=12,由题易知S ABC =12×BC ×AH =3⇒BC =23AH=4,所以tan B =AH BH =AH BD +DH =35;(思路2:后面也可以用余弦定理算AB ,再用余弦定理算,只是没解析1简洁.)(2)由中点与向量易知2AD =AB +AC,所以4AD 2=AB 2+AC 2+2AB ⋅AC,即4=b 2+c 2+2bc cos A ,由余弦定理得4=b 2+c 2+b 2+c 2-a 2⇒a =23,由面积公式得S ABC =12bc sin A =3⇒sin A =23bc,而cos A =b 2+c 2-a 22bc =-2bc,因为sin 2A +cos 2A =1⇒23bc 2+-2bc 2=1⇒bc =4,与b 2+c 2=8联立解得b =c =2.18.(12分)若等差数列{a n },数列{b n }满足b n =a n -6,n 为奇数,2a n ,n 为偶数, 记S n ,T n 分别为{a n },{b n }的前n 项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:n >5时,T n >S n .【答案】【参考解析】(1)设{a n }的首项为a ₁,公差为d ,因为S 4=32,所以4a 1+4×32d =32⇒2a 1+3d =16,又因为T 3=16,所以b 1+b 2+b 3=16⇒(a 1-6)+2a 2+(a 3-6)=16⇒4a 2=28⇒a 2=7=a 1+d ,②联立①②解得a 1=5d =2,所以a n =a 1+n -1 d =2n +3,n ∈N ∗.(2)由(1)知S n =a 1+a n n2=n 2+4n (或用S n =na 1+n n -1 2d =n 2+4n )当n 为奇数时,T n =b 1+b 3+⋯b n +b 2+b 4+⋯b n -1=a 1+a 3+⋯a n -6×n +12+2a 2+a 4+⋯a n -1=2S n -a 1+a 3+⋯a n -3n +1=2S n -a 1+a n ⋅n +12 2-3n +1所以T n -S n =n 2-3n -102=n +2 n -5 2,因为n >5,所以T n -S n >0(或类比二次函数性质知T n -S n =n 2-3n -102>52-3×5-102=0)故n 为奇数时成立;当n 为偶数时,T n -S n =T n -1-S n -1+b n -a n =n -12-3n -1 -102+2a n -a n =n n -12>0,综上,当n >5时, T n >S n .19.(12分)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:频率/组距0.0340.0020.012951001101151201251300.0360.040105指标频率/组距0.0340.0020.01070758590951001050.0360.04080指标0.038患病者未患病者利用该指标制定一个检测标准,需要确定临界值c ,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为p (c );误诊率是将未患病者判定为阳性的概率,记为q (c ).假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p (c )=0.5%时,求临界值c 和误诊率q (c );(2)设函数f (c )=p (c )+q (c ),当c ∈[95,105]时,求f (c )的解析式,并求f (c )在区间[95,105]的最小值.【答案】解析(1)因为0.002×5=0.01>0.5%,故c ∈[95,100],由比例得c =0.002×5×c -95100-c =0.5%⇒c =97.5;q c =0.010×5×100-97.5100-95+0.002×5=0.035;所以临界值c =97.5,误诊率q (c )=0.035.(2)①当c ∈[95,100]时, p c =0.002×5×c -95100-95=0.002c -95 ,q c =0.010×5×100-c100-95+0.002×5=0.01101-c ;所以f (c )=p (c )+q (c )=0.82-0.008c ≥0.82-0.008×100=0.02;①当c ∈(100,105]时, p c =0.002×5+0.012×5×c -100105-100=0.01+0.012c -100 ,q c =0.002×5×105-c105-100=0.002105-c ,所以.f (c )=p (c )+q (c )=0.01c -0.98≥0.01×100-0.98=0.02;综上,所以f (c )的解析式为f c =0.82-0.008c ,95≤c ≤1000.01c -0.98,100<c ≤105 ,f (c )在区间[95,105]的最小值0.02.20.(12分)如图,三棱锥A -BCD ,DA =DB =DC ,BD ⏊CD ,∠ADB =∠ADC =60°,E 为BC 的中点.(1)证明:BC ⏊DA ;(2)点F 满足EF =DA,求二面角D -AB -F 的正弦值.【答案】【参考解析】(1)如图,连接AE ,DE ,因为DB =DC ,DA =DA ,∠ADB =∠ADC ,所以△ADC ≅△ADB ,所以AC =AB ,又因为E 为BC 的中点,所以BC ⊥AE ,BC ⊥DE ,而AE ∩DE =E ,AE ,DE ⊂平面ADE ,BC ⊄平面ADE ,所以BC ⊥平面ADE ,又因为AD ⊂平面ADE ,所以BC ⊥DA ;(2)不妨设. DA =DB =DC =2,因为∠ADB =∠ADC =60°,所以△ADB 和△ADC 为等边三角形,所以. AC =AB =2,又因为BD ⊥CD ,所以BC =DC 2+DB 2=2,所以DE =AE =1,所以DE 2+AE 2=AD 2,故由勾股定理逆定理知DE ⊥AE ,故可建立如图所示的空间直角坐标系所以D (1,0,0),A (0,0,1),B (0,1,0),E (0,0,0), AB =0,1,-1 ,因为EF =DA=-1,0,1 ,,所以F =(-1,0,1),所以AF=-1,0,0 ,设平面DAB 的一个法向量m=x 1,y 1,z 1 ,则m ⋅DA=0m ⋅AB =0⇒-x 1+z 1=0y 1-z 1=0 ,令x 1=1⇒m =1,1,1 ,设平面ABF 的一个法向量n=x 2,y 2,z 2 ,则n ⋅AF=0n ⋅AB=0⇒-x 2=0y 2-z 2=0 ,令y 1=1⇒n =0,1,1 ,ABCDEF所以cos n ,m =n ⋅m|n ||m |=23×2=63,设二面角D -AB -F 的大小为θ,所以sin θ=1-cos 2n ,m=33.所以二面角D -AB -F 的正弦值为33.21.(12分)双曲线C 的中心为坐标原点,左焦点为(-25,0),离心率为 5.(1)求C 的方程;(2)记C 的左、右顶点分别为A 1,A 2.过点(-4,0)的直线与C 的左支交于M ,N 两点,M 在第二象限,直线MA 1与NA 2交于P ,证明:P 在定直线上.【答案】【参考解析】(1)因为左焦点为-25,0 ,离心率为5.所以c =25,e =ca=5⇒a =2⇒a 2=4所以b 2=c 2-a 2=16,所以C 的方程为x 24-y 216=1.(2)显然斜率不为零,故可设直线MN 方程为x =my -4,联立x =my -4x 24-x 216=1消x 得(4m 2-1)y 2-32my +48=0,设.M (x 1,y 1),N (x 2,y 2) ,则y 1+y 2=32m4m 2-1y 1y 2=484m 2-1,所以my 1y 2=32y 1+y 2 ,易知直线MA 1方程为y =y 1x 1+2x +2 ,直线NA 2方程为y =y 2x 2-2x -2 ,联立得x +2x -2=y 2y 1⋅x 1+2x 2-2=y 2my 1-2 y 1my 2-6=my 1y 2-2y 2my 1y 2-6y 1=32y 1+y 2-2y232y 1+y 2 -6y 1=-13即x +2x -2=-13⇒x =-1,所以P 在定直线上x =-1上.22.(12分)(1)证明:当0<x <1时,x -x 2<x sin <x ;(2)已知函数f (x )=ax cos -(1-x 2)ln ,若x =0是f (x )的极大值点,求实数a 的取值范围.【答案】(1)令g (x )=x -sin x ,所以g '(x )=1-cos x ≥0,g (x )在(0,1)上单调递增,所以g (x )>g (0)=0,故sin x <x ,右边得证;令h (x )=x -x 2-sin x ,则h '(x )=1-2x -cos x ,令m (x )=1-2x -cos x ,则m x =-2+sin x <0,所以m (x )在(0,1)上单调递减,所以h x =m x <m 0 =0,所以h (x )在(0,1)上单调递减,所以h (x )<m (0)=0,故x -x 2<sin x ,,左边得证;综上,当0<x <1时,x -x 2<sin x <x .(2)因为f(x)=cos ax-ln(1-x2),定义域为-1<x<1,所以f x =-a sin ax+2x1-x2,则f'(0)=0,显然f'(x)为奇函数,f 'x =-a2cos ax+21+x21-x22,f 'x =a3sin ax+23+x21-x24,①当a=0时,显然x=0是f(x)的极小值点,不满足;②当a>0时,取π2a与1的较小者为m,则当0<x<m时, sin ax>0,从而f"(x)>0,所以f"(x)在(0,m)上单调递增,所以. f 'x >f '0 =2-a2,1°当2-a2≥0,0<a≤2时,.f"(x)≥0,所以f'(x)在(0,m)上单调递增,所以. f x >f 0 =0,所以f(x)在(0,m)上单调递增,由奇函数性质知f(x)在(-m,0)上单调递减,故x=0是f(x)的极小值点,不满足;2°当2-a2<0,a>2时,f"(x)<0,而f 'π2a>0,所以f"(x)在(0,m)上有唯一的零点x1,所以当0<x<x1时,f"(x)<0,当x1<x<m时,.f"(x)>0,考虑到f'(x)为奇函数,所以f'(x)在(-x1,0)上单调递增,在(0,x1)上单调递减,故x=0是f(x)的极大值点,故满足;③当a<0时,令-a=t(t>0),则f x =t sin-tx+2x1-x2=-t sin tx+2x1-x2,由前文分析知:t>2,即a<-2;综上,a的取值范围是-∞,-2∪2,+∞.。
2024年河南省普通高中招生考试《数学》试卷(附答案)

2024年河南省普通高中招生考试试卷数 学注意事项:1. 本试卷共6页,三个大题,满分 120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1.如图,数轴上点 P 表示的数是A. -1B.0C.1D.22. 据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为 A.5784×10⁸ B.5.784×10¹⁰ C.5.784×10′′ D.0.5784×10¹² 3.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为 A.60° B.50° C.40° D.30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为(第4题)A. x>2B. x<0C. x<-2D. x>-36. 如图,在▱ABCD 中,对角线AC,BD 相交于点O,点E 为OC 的中点,EF∥AB 交BC 于点 F.若AB = 4,则EF 的长为 A. 12 B.1 C. 43 D.2 7. 计算 (a ⋅a ,⋯⋅a )3的结果是a 个A. a ⁵B. a ⁶C. a ⁴⁺³D. a³a数学试卷 第1页(共6页)8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为A. 19B. 16C. 15D. 139. 如图,⊙O 是边长为4 √3的等边三角形ABC 的外接圆,点D 是BC 的中点,连接BD,CD.以点 D为圆心,BD 的长为半径在⊙O 内画弧,则阴影部分的面积为 A.8π3 B.4π C.16π3 D.16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I 与使用电器的总功率P 的函数图象(如图1),插线板电源线产生的热量Q 与I 的函数图象(如图2).下列结论中错误..的是A. 当P =440 W 时, I =2 AB. Q 随I 的增大而增大C. I 每增加 1 A,Q 的增加量相同D.P 越大,插线板电源线产生的热量Q 越多二、填空题(每小题3分,共15分)11. 请写出2m 的一个同类项: .12.2024年3月是第8个全国近视防控宣传教育月,其主题是“有效减少近视发生,共同守护光明未来”.某校组织各班围绕这个主题开展板报宣传活动,并对各班的宣传板报进行评分,得分情况如图,则得分的众数为 分.数学试卷 第 2页(共6页)13. 若关于x的方程12x2−x+c=0有两个相等的实数根,则c的值为 .14. 如图,在平面直角坐标系中,正方形ABCD的边AB在x轴上,点A的坐标为(-2,0),点 E在边 CD 上. 将△BCE沿BE折叠,点C落在点F 处. 若点 F的坐标为(0,6),则点 E 的坐标为 .15. 如图,在Rt△ABC 中,∠ACB =90°,CA = CB =3,线段 CD 绕点 C 在平面内旋转,过点B作AD的垂线,交射线AD于点E.若CD=1,则AE的最大值为,最小值为 .三、解答题(本大题共8个小题,共75分)16. (10分)(1) 计算:√2×√50−(1−√3)0; (2) 化简:(3a−2+1)÷a+1a2−4.17.(9分)为提升学生体质健康水平,促进学生全面发展,学校开展了丰富多彩的课外体育活动.在八年级组织的篮球联赛中,甲、乙两名队员表现优异,他们在近六场比赛中关于得分、篮板和失误三个方面的统计结果如下.比赛得分统计图队员平均每场得分平均每场篮板平均每场失误甲26.582乙26103根据以上信息,回答下列问题.(1)这六场比赛中,得分更稳定的队员是 (填“甲”或“乙”);甲队员得分的中位数为27.5分,乙队员得分的中位数为分.(2)请从得分方面分析:这六场比赛中,甲、乙两名队员谁的表现更好.(3)规定“综合得分”为:平均每场得分×1+平均每场篮板×1.5+平均每场失误×(-1),且综合得分越高表现越好.请利用这种评价方法,比较这六场比赛中甲、乙两名队员谁的表现更好.数学试卷第 3 页(共6页)18.(9分)如图,矩形ABCD的四个顶点都在格点(网格线的交点)上,对角线AC,BD相交(x⟩0)的图象经过点 A.于点 E,反比例函数y=kx(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A的三个格点,再画出反比例函数的图象.(3)将矩形ABCD向左平移,当点E落在这个反比例函数的图象上时,平移的距离为 .19.(9分)如图,在Rt△ABC中,CD是斜边AB上的中线,BE‖DC交AC的延长线于点 E.(1)请用无刻度的直尺和圆规作∠ECM,使∠ECM=∠A,且射线 CM交 BE 于点 F(保留作图痕迹,不写作法).(2) 证明(1) 中得到的四边形 CDBF是菱形.20.(9分)如图1,塑像AB在底座BC上,点D 是人眼所在的位置.当点 B 高于人的水平视线DE时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A,B两点的圆与水平视线DE相切时(如图2),在切点P处感觉看到的塑像最大,此时∠APB为最大视角.(1)请仅就图2的情形证明∠APB>∠ADB.(2) 经测量,最大视角∠APB为30°,在点P处看塑像顶部点A 的仰角∠APE为60°,点P到塑像的水平距离PH为6m . 求塑像AB的高(结果精确到0.1m.参考数据:√3≈1.73).数学试卷第4页(共6页)21.(9分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1) 若要从这两种食品中摄入4600 kJ热量和70g蛋白质,应选用A,B 两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?22.(10分)从地面竖直向上发射的物体离地面的高度h(m)满足关系式ℎ=−5t²+v₀t,其中t(s)是物体运动的时间,v₀(m/s)是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后 s时离地面的高度最大(用含v₀的式子表示).(2)若小球离地面的最大高度为20m,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s.”已知实验楼高15 m,请判断他的说法是否正确,并说明理由.数学试卷第5页(共6页)23. (10分) 综合与实践在学习特殊四边形的过程中,我们积累了一定的研究经验.请运用已有经验,对“邻等对补四边形”进行研究.定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形.(1)操作判断用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有 (填序号).(2)性质探究根据定义可得出邻等对补四边形的边、角的性质.下面研究与对角线相关的性质.如图2,四边形ABCD是邻等对补四边形,AB=AD,,AC 是它的一条对角线.①写出图中相等的角,并说明理由;②若.BC=m,DC=n,∠BCD=2θ,,求AC 的长(用含m,n,θ的式子表示).(3)拓展应用如图3,在Rt△ABC中,∠B=90°,AB=3,BC=4,,分别在边BC,AC上取点M,N,使四边形ABMN是邻等对补四边形.当该邻等对补四边形仅有一组邻边相等时,请直接写出 BN的长.数学试卷第6页(共6页)2024年河南省普通高中招生考试数学试题参考答案(注:第15题只填对1空得2分)三、解答题(本大题共8个小题,共75分)16.(1)原式=10-1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分=9.……………………………………………………………………5分(2) 原式=a+1a−2⋅(a+2)(a−2)a+1…4分=a+2.………………………………………………………………………5分17.(1)甲29⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分(2)因为甲的平均每场得分大于乙的平均每场得分,且甲的得分更稳定,所以甲队员表现更好.(注:答案不唯一,合理即可)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分(3) 甲的综合得分为:26.5×1+8×1.5+2×(-1)=36.5.乙的综合得分为:26×1+10×1.5+3×(-1)= 38.因为38>36.5,所以乙队员表现更好.…………………………………………9分18.(1)∵ 反比例函数y=kx(x⟩0)的图象经过点A(3,2),∴2=k3.∴ k = 6.∴ 这个反比例函数的表达式为y=6x.………………3分数学试题参考答案第1页(共4页)(2) 如图.7分(3)92………………………………………………………9分19.(1) 如图.……………………… ……… 4分(2) 由(1),得∠ECF =∠A.∴ CF∥AB.∵ BE∥DC,∴四边形CDBF是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分∵ CD 是Rt△ABC斜边AB上的中线,∴ CD =BD.∴□CDBF是菱形.…………………………………………………………9分20.(1) 如图,连接BM.则∠AMB=∠APB.∵ ∠AMB>∠ADB,∴∠APB>∠ADB.…………………………3分(2) 在Rt△AHP 中,∠APH = 60°,PH = 6.,∵tan∠APH=AHPH∴ AH = PH·tan 60°=6×√₃ =6√₃. …… 6分∵ ∠APB = 30°,∴ ∠BPH =∠APH--∠APB =60°-30°=30°.数学试题参考答案第2页(共4页)在Rt△BHP 中, tan∠BPH =BHPH ,∴BH =PH ⋅tan30∘=6×√33=2√3. … …8分∴AB =AH −BH =6√3−2√3=4√3≈4×1.73≈6.9(m).答:塑像AB 的高约为6.9m.……………………………………………………9分21.(1) 设选用A 种食品x 包,B 种食品y 包,根据题意,得{700x +900y =4600,10x +15y =70.…3分解方程组,得 {x =4,y =2.答:选用A 种食品4包,B 种食品2包.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(2)设选用A 种食品a 包,则选用B 种食品(7-a)包,根据题意,得10a+15(7-a)≥90.∴a≤3.…………………………………………………………………………7分设总热量为wkJ ,则w=700a+900(7-a)=-200a+6300.∵ -200<0,∴ w 随a 的增大而减小. ∴ 当a=3时,w 最小.∴ 7-a=7-3 =4.答:选用A 种食品3包,B 种食品4包.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分22.(1)ⁿ₀…………………………………3分(2)根据题意,得当 t =v10时,h=20.∴−5×(v 010)2+v 0×v 010=20.∴v₀=20(m s ⁄). …………………………………………………6分 (3)小明的说法不正确.(注:若没写出结果,但后续说理正确,不扣分)⋯7分理由如下:由(2),得 ℎ=−5t²+20t.当h = 15时, 15=−5t²+20t.解方程,得 l₁=1,t₂=3.……………………………………………9分 ∵ 3-1=2(s),∴小明的说法不正确.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分数学试题参考答案 第3 页(共4页)23.(1)②④(注:全部填对的得2分,对但不全的得1分,有错的得0分)⋯⋯⋯2分(2)①∠ACD=∠ACB.(注:若没写出结果,但后续说理正确,不扣分)………4分理由如下:延长CB至点 E,使 BE = DC. 连接AE.∵ 四边形ABCD 是邻等对补四边形,∴∠ABC+∠D=180°.∵∠ABC+∠ABE=180°,∴ ∠ABE =∠D.∵AB=AD,∴△ABE≅△ADC.∴∠E=∠ACD,AE=AC.∴ ∠E =∠ACB.∴∠ACD=∠ACB.………………………………………………………6分②过点A作AF⊥EC,垂足为点 F.∵ AE=AC,∴CF=12CE=12(BC+BE)=12(BC+DC)=m+n2.∵ ∠BCD =2θ,∴ ∠ACB =∠ACD=θ.在Rt△AFC中,cosθ=CFAC,∴AC=CFcosθ=m+n2cosθ.…8分(3)12√25或12√27.…10分数学试题参考答案第4页(共4页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各类高中招生考试数学试题2
一、选择题(本题有15个小题,每小题3分,共45分)下面每小题给出的四个选项中,只
有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
1. 下列算式是一次式的是
(A )8 (B )t s 34+ (C )ah 21 (D )x
5 2. 如果两条平行直线被第三条直线所截得的8个角中有一个角的度数已知,则
(A )只能求出其余3个角的度数 (B )只能求出其余5个角的度数
(C )只能求出其余6个角的度数 (D )只能求出其余7个角的度数
3. 在右图所示的长方体中,和平面A
1C 1垂直的平面有
(A )4个 (B )3个 (C )2个 (D )1个
4. 蜗牛前进的速度每秒只有1.5毫米,恰好是某人步行速度的1000分
之一,那么此人步行的速度大约是每小时
(A )9公里 (B )5.4公里 (C )900米 (D )540米
5. 以下不能构成三角形三边长的数组是
(A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52)
6. 有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数
没有立方根;④17-是17的平方根。
其中正确的有
(A )0个 (B )1个 (C )2个 (D )3个
7. 若数轴上表示数x 的点在原点的左边,则化简23x x +的结果是
(A )-4x (B )4x (C )-2x (D )2x
8. 右图为羽毛球单打场地按比例缩小的示意图(由图中粗实线表示),它的
宽度为5.18米,那么它的长大约在
(A )12米至13米之间 (B )13米至14米之间
(C )14米至15米之间 (D )15米至16米之间
9. 甲、乙两人分别从两地同时出发,若相向而行,则a 小时相遇;若
同向而行,则b 小时甲追上乙。
那么甲的速度是乙的速度的
(A )b b a +倍 (B )b a b +倍 (C )a b a b -+倍 (D )a
b a b +-倍 10. 如图,E ,F ,G ,H 分别是正方形ABCD 各边的中点,要使中间阴
影部分小正方形的面积是5,那么大正方形的边长应该是
(A )52 (B )53 (C )5 (D )5
11. 如图,三个半径为3的圆两两外切,且ΔABC 的每一边都与其
中的两个圆相切,那么ΔABC 的周长是
(A )12+63 (B )18+63 (C )18+123 (D )12+123
12. 方程x
x x 222=-的正根的个数为 (A )0个 (B )1个 (C )2个 (D )3个 13. 要使二次三项式p x x +-52在整数范围内能进行因式分解,那么整数p 的取值可以有
(A )2个 (B )4个 (C )6个 (D )无数个
14. 如图,在Rt ΔABC 中,AF 是斜边上的高线,且BD=DC=FC=1,
则AC 的长为
(A )32 (B )3 (C )2 (D )33
15. 甲、乙两人连续7年调查某县养鸡业的情况,提供了两方面的信息图(如图)。
甲调查表明:养鸡场的平均产鸡数从第1年的1万只上升到第7年的2.8万只; 乙调查表明:养鸡场的个数由第1年的46个减少到第7年的22个。
现给出下列四个判断:①该县第2年养鸡场产鸡的数量为1.3万只;②该县第2年养鸡场产鸡的数量低于第1年养鸡场产鸡的数量;③该县这7年养鸡场产鸡的数量逐年增长;④这7年中,第5年该县养鸡场出产鸡的数量最多。
根据甲、乙两人提供的信息,可知其中正确的判断有
(A )3个 (B )2个 (C )1个 (D )0个
二、填空题(本题有5个小题,每小题4分,共
16. 右图是一个被等分成12个扇形的转盘。
请在转盘上选出若干个扇形
涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自
由转动这个转盘,当它停止转动时,指针落在阴影区域的概率为4
1 。
17. 已知一次函数b x y +-=2,当x =3时,y =1,则直线b x y +-=2在y 轴上的截距为
__________
18. 如图,过点P 引圆的两条割线PAB 和PCD ,分别交圆于
点A ,B 和C ,D ,连结AC ,BD ,则在下列各比例式中,①PD PC PB PA =;②PB PC PD PA =;③BD
PD AC PA =,成立的有__________(把你认为成立的比例式的序号都填上)
19. 在关于x 1,x 2,x 3的方程组⎪⎩⎪⎨⎧=+=+=+313
232121a x x a x x a x x 中,已知321a a a >>,那么将x 1,x 2,x 3
从大到小排起来应该是____________
给出一个正方形,请你动手画一画,将它剖分为n 个小正方形。
那么,通过实验与思考,你
认为这样的自然数n 可以取的所有值应该是_________________
三、解答题(本题有6个小题,共55分)解答应写出文字说明,证明过程或推演步骤
21. (本小题满分7分)
在第六册课本的阅读材料中,介绍了一个第七届国际数学教
育大会的会徽。
它的主题图案是由一连串如图所示的直角三角形
演化而成的。
设其中的第一个直角三角形OA 1A 2是等腰三角形,
且OA 1=A 1A 2=A 2A 3=A 3A 4=……=A 8A 9=1,请你先把图中其它8条
线段的长计算出来,填在下面的表格中,然后再计算这8条线段
的长的乘积。
22. (本小题满分8分)
要在如图的一个机器零件(尺寸单位:mm )表面
涂上防锈漆,请你帮助计算一下这个零件的表面积(参
考公式:rh S π2=圆柱侧,rl S π=圆锥侧
,
2r S π=圆,
其中r 为底面半径,h 为高线,l 为母线取 3.14,结果
保留3个有效数字)。
23. (本小题满分8分)
直线AB 交圆于点A ,B ,点M 在圆上,点P 在圆外,且点
M ,P 在AB 的同侧,∠AMB=50º。
设∠APB=
x ,当点P 移动时,
求x 的变化范围,并说明理由。
24. (本小题满分10分)
某航运公司年初用1购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元。
(1)问:该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差
为正值)?
(2)若该船运输满要报废,报废时旧船卖出可收回,求这的年平均盈利额(精确到0.1
万元)。
25. (本小题满分10分)
二次函数c bx ax y ++=2的图象的一部分如右图,已知它的顶点M 在第二象限,
且经过点A (1,0)和点B (0,1)。
(1)请判断实数a 的取值范围,并说明理由;
(2)设此二次函数的图象与x 轴的另一个交点为C ,当ΔAMC 的
面积为ΔABC 面积的4
5倍时,求a 的值。
26. (本小题满分12分)
在ΔABC 中,AB=AC ,D 为BC 上一点,由D 分别作DE ⊥AB 于E ,DF ⊥AC 于F ;设DE=a ,DF=b ,且实数a ,b 满足01624922=+-b ab a ,并有625622=b a ;∠A 使得方程04
3sin 3sin 412=-+⋅-A A x x 有两个相等的实数根 (1)试求实数a ,b 的值; (2)试求线段BC 的长。