[正式]2017年1月广东省学业水平考试数学试题

合集下载

广东省普通2017年1月高中学业水平考试真题卷

广东省普通2017年1月高中学业水平考试真题卷

广东省普通2017年1月高中学业水平考试真题卷广东省普通2017年1月高中学业水平考试真题卷(时间:120分钟满分:100分)一、本大题11小题,共26分(1~10题每题2分,11题6分)阅读下面文字,完成1~3题。

(导学号56070049)要论近三十年来,最上进的物件,那非莫属。

二十世纪八十年代,是商务人士才拥有的大哥大,是身份的象征,谁能想到短短几十年,一成为人手一部或者多部的重要之物。

不离手,成为一种常态:走路看撞到电线杆上、坐车看坐过站,吃饭用拍照把掉菜里,躺着刷朋友圈砸脸上……我们不禁产生一种疑问:是拿在手上的,还是长在手上的( ) 1.下列填入文中处的文字,使用正确的一项是( )A.沃B.袄C.妖D.跃答案:D2.下列对文中加点字的字注音,正确的一项是( )A.zhun n B.zhun nC.chun n D.chun n答案:A3.下列填入文中( )处的标点,使用正确的一项是( )A.!B.?C.。

D.……答案:B4.在下列横线处依次填入的词语,最恰当的一项是( )作为世界级课题,________城市蔓延的问题一直是规划师挥之不去的痛点,无论何种设计,都不能阻止快速城市化的粗暴________,有人认为,城市对耕地的占用将使世界在20多年后不能供给全部人口粮食,而城市的无序化会使这一矛盾________。

A.规避扩张加剧B.回避扩张加速C.规避扩大加速D.回避扩大加剧答案:A5.下面语段中加点的成语,使用不恰当的一项是( )工匠精神是一个古朴的词汇,今年它首次出现在政府工作报告中,令人焕然一新。

所谓工匠精神,指的是工匠们对自己的产品精雕细琢、精益求精的精神,一个拥有工匠精神、推崇工匠精神的国家和民族,必然会少一些浮躁,多一些纯粹;少一些投机取巧,多一些脚踏实地;少一些急功近利,多一些专注持久;少一些粗制滥造,多一些优品精品。

A.焕然一新B.精益求精C.脚踏实地D.粗制滥造答案:A6.下列各句中,没有语病的一项是( )(导学号56070 050)A.为满足自己虚荣心,有的父母把孩子当成了他们人生观和价值观的工具。

2017年1月广东省普通高中学业水平考试真题卷

2017年1月广东省普通高中学业水平考试真题卷

2017年1月广东省普通高中学业水平考试真题卷(时间:90分钟满分:100分)可能用到的相对原子质量:H 1 C 12N 14O 16Na 23Cl35.5Fe 56一、单项选择题Ⅰ(本大题共30小题,每小题1分,共30分。

在每小题列出的四个选项中,只有一项最符合题意)1.中国酒文化历史悠久。

“陈年老酿,香气宜人”,这个香味的来源之一是()A.糖B.盐C.酯D.酸解析:四个选项中只有酯才有水果香味。

答案:C2.氘(21H)可用作核聚变的核燃料,与氚(31H)互为同位素。

下列关于21H与31H的说法正确的是()A.核电荷数不同B.质子数相同C.核外电子数不同D.中子数相同解析:二者核电荷数=质子数=核外电子数=1,中子数前者是2-1=1,后者是3-1=2。

答案:B3.H2O2与Na2O2中氧元素的化合价均为()A.-2 B.-1C.+1 D.+2解析:两种物质中氧元素化合价都是-1。

答案:B4.氨气遇HCl气体时,有白烟出现,其反应为NH3+HCl===NH4Cl,该反应的反应类型是()A.分解反应B.置换反应C.化合反应D.复分解反应解析:该反应是两种反应物变成一种生成物,属于化合反应。

答案:C5.下列元素中,金属性最强的是()A.Na B.MgC.Al D.Si解析:它们是同周期元素,原子序数最小的金属性最强。

答案:A6.能使鲜花褪色的是()A.NaCl溶液B.CaCl2溶液C.新制氯水D.蔗糖溶液解析:新制氯水有强氧化性,氧化鲜花使之褪色。

答案:C7.牛奶和豆腐中含有丰富的钙,这里的“钙”应理解为() A.单质B.元素C.原子D.分子答案:B8.下列过程包含有化学变化的是()A.空气液化B.滴水穿石C.钢铁冶炼D.活字印刷解析:冶炼金属一般是将其化合物变成金属单质,有新物质生成,属于化学变化。

答案:C9.分类是学习和研究化学的一种重要方法。

下列分类合理的是()A.K2CO3和K2O都属于盐B.KOH和Na2CO3都属于碱C.H2SO4和HNO3都属于酸D.Na2O和Na2SiO3都属于氧化物解析:A中前者是酸后者是氧化物;B中前者是碱后者是盐;C 中两者都是酸;D中前者是氧化物后者是盐。

2017年广东省初中毕业生学业考试数学科试卷和答案

2017年广东省初中毕业生学业考试数学科试卷和答案

2017年省初中毕业生学业考试说明:1•全卷共6页,满分为120分,考试用时为100分钟。

2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的号、、考场号、 座位号。

用2B 铅笔把对应该的标号涂黑。

3. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区 域相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使 用铅笔和涂改液。

不按以上要求作答的答案无效。

5•考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小題列出的四个选项中,只有 一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是() A. 1B. 5C.-iD.—5555•在学校举行“少年,励志青春”的演讲比赛中,五位评委绐选手小明的评分分别为:90, 85, 90, 80, 95,则这组的数据的众数是( ) 6. 下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.圆7. 如题7图,在同一平面直角坐标系中,直线y = 伙|工0)与双曲 线y = ®伙・工0)相交于A 、B 两点,已知点A 的坐标为(1, 2), 则点B 的坐标为() A. (一1, 一2)B. (一2, -1)C. (一 1, -1)D. (一2, -2)&下列运算正确的是()2•“一带一路”倡议提出三年以来,企业到“一带一路”国家投资越来越活跃•据商务部门 发布的数据显示。

2016年省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A. 0.4X109B. 0.4X10'°3. 已知厶= 70。

2017年01月广东省普通高中学业水平考试模拟试题(三)

2017年01月广东省普通高中学业水平考试模拟试题(三)

2017年01月广东省普通高中学业水平考试模拟试题(三)数学试卷满分:100分考试时间:90分钟姓名:__________ 学号:__________ 考试用时:__________ 成绩:__________一.选择题(共15小题,满分60分,每小题4分)1.(4分)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3)C.[1,3)D.(1,4)2.(4分)已知i为虚数单位,则复数z=的虚部为()A.﹣1 B.﹣i C.1 D.i3.(4分)设x取实数,则f(x)与g(x)表示同一个函数的是()A.B.C.f(x)=1,g(x)=(x﹣1)0D.4.(4分)若x∈(e﹣1,1),a=lnx,b=()lnx,c=e lnx,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.a>b>c D.b>a>c5.(4分)函数y=的部分图象大致为()A. B. C. D.6.(4分)是“直线(a+1)x+3ay+1=0与直线(a﹣1)x+(a+1)y﹣3=0相互垂直”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件7.(4分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B.C.1 D.8.(4分)等比数列{a n}中,S n表示其前n项和,a3=2S2+1,a4=2S3+1,则公比q为()A.±2 B.±3 C.2 D.39.(4分)若sin(﹣α)=,则cos(+2α)等于()A.B.C.D.10.(4分)已知样本数据3,4,5,x,y的平均数是5,标准差是,则xy=()A.42 B.40 C.36 D.3011.(4分)函数的零点个数为()A.1个B.2个C.3个D.4个12.(4分)已知命题p:若x>y,则﹣x<﹣y;命题q:若x>y,则x2>y2,在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③B.①④C.②③D.②④13.(4分)已知,,,点C在AB上,∠AOC=30°.则向量等于()A.B.C.D.14.(4分)变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.515.(4分)使平面α∥平面β的一个条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a、b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a、b,a⊂α,b⊂β,a∥β,b∥α二.填空题(共4小题,满分16分,每小题4分)16.(4分)一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为.17.(4分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.18.(4分)甲箱子里有3个白球,2个黑球,乙箱子里有2个白球,3个黑球,从这两个箱子里分别摸出1个球,它们都是白球的概率为.19.(4分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD 的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.三.解答题(共4小题,满分48分,每小题12分)20.(12分)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.21.(12分)已知f(x)=sin(π+ωx)sin(﹣ωx)﹣cos2ωx(ω>0)的最小正周期为T=π.(1)求f()的值;(2)在△ABC中,角A、B、C所对应的边分别为a、b、c,若有(2a﹣c)cosB=bcosC,则求角B的大小以及f(A)的取值范围.22.(12分)如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(Ⅰ)求证:AE⊥平面BCE;(Ⅱ)求证;AE∥平面BFD;(Ⅲ)求三棱锥C﹣BGF的体积.23.(12分)已知椭圆C:+=1(a>b>0)的离心率为e=,其左右焦点分别为F1、F2,|F1F2|=2.设点M(x1,y1),N(x2,y2)是椭圆上不同两点,且这两点与坐标原点的连线斜率之积﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)求证:x12+x22为定值,并求该定值.2017年1月广东省小高考模拟试题(三)参考答案与试题解析一.选择题(共15小题,满分60分,每小题4分)1.(4分)(2014•山东)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3)C.[1,3)D.(1,4)【分析】求出集合A,B的元素,利用集合的基本运算即可得到结论.【解答】解:A={x丨丨x﹣1丨<2}={x丨﹣1<x<3},B={y丨y=2x,x∈[0,2]}={y丨1≤y≤4},则A∩B={x丨1≤y<3},故选:C【点评】本题主要考查集合的基本运算,利用条件求出集合A,B是解决本题的关键.2.(4分)(2016•重庆校级模拟)已知i为虚数单位,则复数z=的虚部为()A.﹣1 B.﹣i C.1 D.i【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数z===﹣1﹣i的虚部为﹣1.故选:A.【点评】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.3.(4分)(2016•台州模拟)设x取实数,则f(x)与g(x)表示同一个函数的是()A.B.C.f(x)=1,g(x)=(x﹣1)0D.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,f(x)=x2(x∈R),与g(x)==|x|(x∈R)的对应关系不同,所以不是同一函数;对于B,f(x)==1(x>0),与g(x)==1(x>0)的定义域相同,对应关系也相同,所以是同一函数;对于C,f(x)=1(x∈R),与g(x)=(x﹣1)0=1(x≠1)的定义域不同,所以不是同一函数;对于D,f(x)==x﹣3(x≠﹣3),与g(x)=x﹣3(x∈R)的定义域不同,所以不是同一函数.故选:B.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.4.(4分)(2016•大庆二模)若x∈(e﹣1,1),a=lnx,b=()lnx,c=e lnx,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.a>b>c D.b>a>c【分析】依题意,由对数函数与指数函数的性质可求得a<0,b>1,<c<1,从而可得答案.【解答】解:∵x∈(e﹣1,1),a=lnx∴a∈(﹣1,0),即a<0;又y=为减函数,∴b=>==1,即b>1;又c=e lnx=x∈(e﹣1,1),∴b>c>a.故选B.【点评】本题考查有理数指数幂的化简求值,考查对数值大小的比较,掌握对数函数与指数函数的性质是关键,属于中档题.5.(4分)(2015•吉林校级四模)函数y=的部分图象大致为()A. B. C. D.【分析】判断奇偶性排除B,C,再利用特殊函数值判断即可得出答案.【解答】解:∵y=f(x)=,∴f(﹣x)===f(x),∴f(x)是偶函数,图象关于y轴对称,所以排除B,C.∵f(2)=>0,∴(2,f(2))在x轴上方,所以排除A,故选:D.【点评】本题考查了对数,指数函数的性质,奇函数的偶函数的图象性质,考查了学生对于函数图象的整体把握,属于中档题.6.(4分)(2016•青浦区一模)是“直线(a+1)x+3ay+1=0与直线(a﹣1)x+(a+1)y﹣3=0相互垂直”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【分析】对a分类讨论,利用两条相互垂直的直线与斜率之间的关系即可得出.【解答】解:对于:直线(a+1)x+3ay+1=0与直线(a﹣1)x+(a+1)y﹣3=0,当a=0时,分别化为:x+1=0,﹣x+y﹣3=0,此时两条直线不垂直,舍去;当a=﹣1时,分别化为:﹣3y+1=0,﹣2x﹣3=0,此时两条直线相互垂直,因此a=﹣1满足条件;当a≠﹣1,0时,两条直线的斜率分别为:,,由于两条直线垂直,可得×=﹣1,解得a=或﹣1(舍去).综上可得:两条直线相互垂直的充要条件为:a=或﹣1.∴是“直线(a+1)x+3ay+1=0与直线(a﹣1)x+(a+1)y﹣3=0相互垂直”的充分而不必要条件.故选:A.【点评】本题考查了两条相互垂直的直线与斜率之间的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.7.(4分)(2014•广西)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B.C.1 D.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.8.(4分)(2016•九江一模)等比数列{a n}中,S n表示其前n项和,a3=2S2+1,a4=2S3+1,则公比q为()A.±2 B.±3 C.2 D.3【分析】由a3=2S2+1,a4=2S3+1,两式相减可得:a4﹣a3=2a3,即可得出.【解答】解:由a3=2S2+1,a4=2S3+1,两式相减可得:a4﹣a3=2a3,可得q==3,故选:D.【点评】本题考查了等比数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.9.(4分)(2015•河南模拟)若sin(﹣α)=,则cos(+2α)等于()A.B.C.D.【分析】将看作整体,将化作的三角函数.【解答】解:==﹣=﹣=2﹣1=2×﹣1=.故选A【点评】观察已知的角与所求角的练习,做到整体代换.10.(4分)(2015•株洲一模)已知样本数据3,4,5,x,y的平均数是5,标准差是,则xy=()A.42 B.40 C.36 D.30【分析】关键寻找关于x,y的方程组,题目中说的平均数和标准差就是要找的方程,解方程组,即可求出x,y的值,从而解出所求.【解答】解:依据平均数为5可知,x+y=13…①,又标准差s==…②,联立①②两式,可以解得或;所以xy=42.故选:A.【点评】本题考查的是平均数和标准差的概念,属于基础题.11.(4分)(2013秋•美兰区校级月考)函数的零点个数为()A.1个B.2个C.3个D.4个【分析】分别解出x≤0时,|x+1|=0的解和x>0时x2﹣x﹣2=0的解即可;也可作出f(x)的图象求解.【解答】解:x≤0时,f(x)=|x+1|=0,x=﹣1;x>0时,f(x)=x2﹣x﹣2=0,x=2或x=﹣1(舍去)所以f(x)的零点个数为2故选B【点评】本题考查函数的零点问题,属基本题.注意转化化归思想的运用:函数f(x)的零点⇔方程f (x)=0的根.12.(4分)(2014•湖南)已知命题p:若x>y,则﹣x<﹣y;命题q:若x>y,则x2>y2,在命题①p ∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③B.①④C.②③D.②④【分析】根据不等式的性质分别判定命题p,q的真假,利用复合命题之间的关系即可得到结论.【解答】解:根据不等式的性质可知,若若x>y,则﹣x<﹣y成立,即p为真命题,当x=1,y=﹣1时,满足x>y,但x2>y2不成立,即命题q为假命题,则①p∧q为假命题;②p∨q为真命题;③p∧(¬q)为真命题;④(¬p)∨q为假命题,故选:C.【点评】本题主要考查复合命题之间的关系,根据不等式的性质分别判定命题p,q的真假是解决本题的关键,比较基础.13.(4分)(2016•湖南模拟)已知,,,点C在AB上,∠AOC=30°.则向量等于()A.B.C.D.【分析】过点C做CE∥OA CF∥OB,得到两个三角形相似,根据三角形相似得到对应边成比例,把OE,OF都用OC来表示,代入比例式,求出OC的值,做出向量之间的关系.【解答】解:过点c做CE∥OA CF∥OB设OC长度为a有△CEB∽△AFC∴(1)∵∠AOC=30°则CF==OEOF=CE=∴BE=2﹣AF=2﹣代入(1)中化简整理可解:a=OF===OA OE==OB,∴故选B.【点评】本题考查平面向量基本定理及其意义,本题解题的关键是构造平行四边形,利用平行四边形法则来解题,本题是一个易错题.14.(4分)(2016•黔东南州模拟)变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.5【分析】作出不等式组对应的平面区域,设z=(x﹣2)2+y2,利用距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C(0,1),此时z=(x﹣2)2+y2=4+1=5,故选:D.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及两点间的距离公式,利用数形结合是解决此类问题的基本方法.15.(4分)(2015秋•秦皇岛校级月考)使平面α∥平面β的一个条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a、b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a、b,a⊂α,b⊂β,a∥β,b∥α【分析】依据面面平行的定义与定理依次判断排除错误的,筛选出正确的即可得解.【解答】解:对于A,一条直线与两个平面都平行,两个平面不一定平行.故A不对;对于B,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B不对;对于C,两个平面中的两条直线平行,不能保证两个平面平行,故C不对;对于D,两个平面中的两条互相异面的直线分别平行于另一个平面,可以保证两个平面平行,故D正确.故选:D.【点评】考查面面平行的判定定理,依据条件由定理直接判断,属于中档题.二.填空题(共4小题,满分16分,每小题4分)16.(4分)(2016•湖北模拟)一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为.【分析】几何体是一个组合体,是由两个完全相同的四棱锥底面重合组成,四棱锥的底面是边长是1的正方形,四棱锥的高是,根据求和几何体的对称性得到几何体的外接球的直径是,求出表面积及球的表面积即可得出比值.【解答】解:由三视图知,几何体是一个组合体,是由两个完全相同的四棱锥底面重合组成,四棱锥的底面是边长是1的正方形,四棱锥的高是,斜高为,这个几何体的表面积为8×1×=2∴根据几何体和球的对称性知,几何体的外接球的直径是四棱锥底面的对角线是,∴外接球的表面积是4×π()2=2π则这个几何体的表面积与其外接球面积之比为=故答案为:.【点评】本题考查由三视图求几何体的体积,考查由三视图还原直观图,考查正多面体与外接球之间的关系,本题是一个考查的知识点比较全的题目.17.(4分)(2016秋•宁夏校级月考)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a 值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即=,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.18.(4分)(2016•上海模拟)甲箱子里有3个白球,2个黑球,乙箱子里有2个白球,3个黑球,从这两个箱子里分别摸出1个球,它们都是白球的概率为.【分析】甲箱子里有3个白球,2个黑球,从甲箱中摸出一个白球的概率为,乙箱子里有2个白球,3个黑球,从乙箱中摸出一个白球的概率为,由相互独立事件的乘法公式可得答案.【解答】解:甲箱子里有3个白球,2个黑球,从甲箱中摸出一个白球的概率为:,乙箱子里有2个白球,3个黑球,从乙箱中摸出一个白球的概率为:,∴P=故答案为:【点评】本题考查了独立事件同时发生的概率,为两事件的概率的乘积,属于基础题.19.(4分)(2016•山东)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2.【分析】可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值.【解答】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.【点评】本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A,B,C,D的坐标是解题的关键,考查运算能力,属于中档题.三.解答题(共4小题,满分48分,每小题12分)20.(12分)(2015•天津)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.【分析】(1)通过a n+2=qa n、a1、a2,可得a3、a5、a4,利用a2+a3,a3+a4,a4+a5成等差数列,计算即可;(2)通过(1)知b n=,n∈N*,写出数列{b n}的前n项和T n、2T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)∵a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,∴a3=q,a5=q2,a4=2q,又∵a2+a3,a3+a4,a4+a5成等差数列,∴2×3q=2+3q+q2,即q2﹣3q+2=0,解得q=2或q=1(舍),∴a n=;(2)由(1)知b n===,n∈N*,记数列{b n}的前n项和为T n,则T n=1+2•+3•+4•+…+(n﹣1)•+n•,∴2T n=2+2+3•+4•+5•+…+(n﹣1)•+n•,两式相减,得T n=3++++…+﹣n•=3+﹣n•=3+1﹣﹣n•=4﹣.【点评】本题考查求数列的通项与前n项和,考查分类讨论的思想,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.21.(12分)(2015•沈阳模拟)已知f(x)=sin(π+ωx)sin(﹣ωx)﹣cos2ωx(ω>0)的最小正周期为T=π.(1)求f()的值;(2)在△ABC中,角A、B、C所对应的边分别为a、b、c,若有(2a﹣c)cosB=bcosC,则求角B的大小以及f(A)的取值范围.【分析】(1)先逆用两角差的正弦公式化成正弦型函数的标准形式,然后利用周期公式T=π,求ω的值,进而写出函数f(x)的解析式;求出f()的值.(2)利用正弦定理,求出cosB的值,继而求出B的大小,再根据A为三角形的内角求出A的范围,继而求出f(A)的范围.【解答】解:(1)∵f(x)=sin(π+ωx)sin(﹣ωx)﹣cos2ωx,=sinωxcosωx﹣cos2ωx,=sin2ωx﹣cos2ωx﹣,=sin(2ωx﹣)﹣∴函数f(x)的最小正周期为T=π.即:=π,得ω=1,∴f(x)=sin(2x﹣)﹣,∴f()=sin(2×﹣)=sin﹣=﹣1,(2)∵(2a﹣c)cosB=bcosC,∴由正弦定理可得:(2sinA﹣sinC)cosB=sinBcosC,∴2sinAcosB=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA>0,∴cosB=,∵B∈(0,π),∴B=,∵A+C=π﹣B=,∴A∈(0,),∴2A﹣∈(﹣,),∴sin(2A﹣)∈(﹣,1],∴f(A)=sin(2A﹣)∈(﹣1,],【点评】本题考查了三角变换及解三角形,第(1)问解决的关键是化成正弦型函数的标准形式;第(2)的关键是把求角的范围转化成先求角的余弦值的范围.22.(12分)(2015•安徽三模)如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(Ⅰ)求证:AE⊥平面BCE;(Ⅱ)求证;AE∥平面BFD;(Ⅲ)求三棱锥C﹣BGF的体积.【分析】(1)先证明AE⊥BC,再证AE⊥BF,由线面垂直的判定定理证明结论.(2)利用F、G为边长的中点证明FG∥AE,由线面平行的判定定理证明结论.(3)运用等体积法,先证FG⊥平面BCF,把原来的三棱锥的底换成面BCF,则高就是FG,代入体积公式求三棱锥的体积.【解答】解:(Ⅰ)证明:∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF∴AE⊥平面BCE.(4分)(Ⅱ)证明:依题意可知:G是AC中点,∵BF⊥平面ACE,则CE⊥BF,而BC=BE,∴F是EC中点.(6分)在△AEC中,FG∥AE,∴AE∥平面BFD.(8分)(Ⅲ)解:∵AE∥平面BFD,∴AE∥FG,而AE⊥平面BCE,∴FG⊥平面BCE,∴FG⊥平面BCF,(10分)∵G是AC中点,∴F是CE中点,且,∵BF⊥平面ACE,∴BF⊥CE.∴Rt△BCE中,.∴,(12分)∴(14分)【点评】本题考查线面平行与垂直的证明方法,利用等体积法求三棱锥的体积.23.(12分)(2016•衡阳一模)已知椭圆C:+=1(a>b>0)的离心率为e=,其左右焦点分别为F1、F2,|F1F2|=2.设点M(x1,y1),N(x2,y2)是椭圆上不同两点,且这两点与坐标原点的连线斜率之积﹣.(Ⅰ)求椭圆C的方程;(Ⅱ)求证:x12+x22为定值,并求该定值.【分析】(Ⅰ)根据题意,可得c=,由离心率可得a的值,由椭圆的性质可得b的值,带入数据可得答案;(Ⅱ)根据题意,可得×=﹣,进而变形可得(x1x2)2=16(y1y2)2,又由题意可得+y12=1,+y22=1,变形可得(1﹣)(1﹣)=(y1y2)2,联合两个式子可得(4﹣x12)(4﹣x22)=(x1x2)2,展开可得x12+x22=4,即可得答案.【解答】解:(Ⅰ)根据题意,|F1F2|=2c=2,则c=,e==,则a=2,b2=a2﹣c2=1,故椭圆的方程为+y2=1;(Ⅱ)根据题意,点M(x1,y1),N(x2,y2)与坐标原点的连线斜率之积﹣,即×=﹣,﹣4y1y2=x1x2,即(x1x2)2=16(y1y2)2,又由+y12=1,+y22=1,则1﹣=y12,1﹣=y22,即可得(1﹣)(1﹣)=(y1y2)2,变形可得(4﹣x12)(4﹣x22)=(x1x2)2,展开可得x12+x22=4,即x12+x22为定值4.【点评】本题考查椭圆的标准方程与性质,解(2)时注意运用构造法,变形得到x12+x22的形式.。

2017年1月广东省普通高中学业水平考试数学试卷真题及答案详细解析

2017年1月广东省普通高中学业水平考试数学试卷真题及答案详细解析

2017年1月广东省普通高中学业水平考试数学试卷真题及答案详细解析2017年1月广东省普通高中学业水平考试数学试卷一、选择题(本题共有15小题,每小题4分,满分60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={0,2,4}。

N={1,2,3}。

P={0,3},则(M∪N)∩P=()A.{0,1,2,3,4}B.{0,3}C.{0,4}D.{0}2.函数y=XXX(x+1)的定义域是()A.(−∞,+∞)B.(0,+∞)C.(−1,+∞)D.[−1,+∞)3.设i为虚数单位,则复数i−1=()A.1+iB.1−iC.−1+iD.−1−i4.命题甲:球的半径为1cm;命题乙:球的体积为πcm³,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知直线l过点A(1,2),且与直线y=4/3x+1垂直,则直线l的方程是()A.y=2xB.y=−2x+4C.y=x+1D.y=x−16.顶点在原点,准线为x=−2的抛物线的标准方程是()A.y²=8xB.y²=−8xC.x²=8yD.x²=−8y7.已知三点A(−3,3),B(0,1),C(1,0),则AB+BC=()A.5B.4C.13+2D.13−28.已知角α的顶点为坐标原点,始边为x轴的正半轴,终边过点P(5,−2),下列等式不正确的是()A.sinα=−1/5B.sin(α+π)=C.cosα=D.tanα=−3/39.下列等式恒成立的是()A.(x≠0)log3(x²+1)+log3(2)=log3(x²+3)B.3x(3x²+1)=(3x)²+1C.x/(x²+1)+x/(x²+4)=2x/(x²+2)D.x²/(x²+1)+4x²/(4x²+1)=5(x²+1)/(x²+1)(4x²+1)10.已知数列{an}满足a1=−x/x³=1,且an+1−an=2,其中x≤3,则{an}的前n项之和Sn=()A.n+1B.n²C.2−1D.211.已知实数x,y,z满足y≤x,则z=2x+y的最大值为()A.3B.5C.9D.1012.已知点A(−1,8)和B(5,2),则以线段AB为直径的圆的标准方程是()A.(x+2)²+(y+5)²=32B.(x+2)+(y+5)=181.(x-2)^2 + (y-5)^2 = 322.(x-2) + (y-5) = 183.A。

[正式]2017年1月广东省学业水平考试数学试题

[正式]2017年1月广东省学业水平考试数学试题

[正式]2017年1月广东省学业水平考试数学试题234522(3)3x x =C.22333log (1)log 2log (3)xx ++=+ D.31log 3x x =-10.已知数列{}na 满足11a =,且12n n a a +-=,则{}n a 的前n 项之和n S =( ) A. 21n + B.2n C. 21n -D.12n -11.已知实数x, y, z 满足32x y x x y ≤⎧⎪≤⎨⎪+≥⎩,则z =2x +y 的最大值为( )A. 3B. 5C. 9D. 1012.已知点A(-1, 8)和B(5, 2),则以线段AB 为直径的圆的标准方程是( )A.22(2)(5)32x y +++= B. 22(2)(5)18x y +++= C.22(2)(5)32x y -+-= D.22(2)(5)18x y -+-= 13.下列不等式一定成立的是( )A.12x x +≥ (0x ≠)B. 22111x x +≥+ (x R ∈)C. 212x x+≤ (x R ∈) D.2560x x ++≥(x R ∈)614.已知f (x )是定义在R 上的偶函数,且当(,0]x ∈-∞时,2()sin f x x x=-,则当[0,)x ∈+∞时,()f x =( )A.2sin x x+ B. 2sin x x-- C. 2sin x x- D.2sin x x-+15.已知样本12345,,,,x x x x x 的平均数为4, 方差为3, 则123456,6,6,6,6x x x x x +++++的平均数和方差分别为( )A. 4和3B. 4和9C. 10和3D. 10和9二、填空题(本大题共4小题,每小题4分,满分16分.)16.已知x >0, 且5,,153x 成等比数列,则x= 17. 函数()sin cos(1)sin(1)cos f x x x x x =+++的最小正周期是18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是19.中心在坐标原点的椭圆,其离心率为12,两个焦点F 1 和F 2在x 轴上,P 为该椭圆上的任意一点,若| PF 1 |+|PF 2|=4,则椭圆的标准方程是7三、解答题(本大题共2小题,每小题12分,满分24分.)20.ABC ∆的内角A, B, C 的对边分别为a, b, c, 已知cos cos a bA B=(1)证明: ABC∆为等腰三角形;(2)若a =2, c=3,求sin C 的值.821.如图,在四棱锥P -ABCD 中,PA AB⊥,PA AD ⊥,AC CD ⊥,60oABC ∠=, PA=AB=BC =2. E 是PC 的中点. (1)证明:PA CD⊥;(2)求三棱锥P -ABC 的体积; (3) 证明:AE PCD⊥平面PBCDAE2017年广东省普通高中学业水平考试数学试卷参考答案一、选择题1.B【解析】M∪N={0,1,2,3,4},(M∪N)∩P={0,3}.2.C【解析】对数函数要求真数大于0, ∴x+1>0即x>-1.3.D【解析】===-i-1=-1-i,其中i2=-1.4.C【解析】充分性:若r=1cm,由V=πr3可得体积为πcm3,同样利用此公式可证必要性.5.B【解析】垂直:斜率互为倒数的相反数(k1k2=-1),所以直线l的斜率为k=-2,根据点斜式方程y-y0=k(x-x0)可得y-2=-2(x-1),整理得y=-2x+4.96.A【解析】准线方程为x=-2可知焦点在x 轴上,且-=-2,∴p=4.由y2=2px得y2=8x.7.A【解析】=(3,-2),=(1,-1),+=(4,-3),∴|+|==5.8.D【解析】r===3,sin α=,cos α=,tan α=∴A,B,C正确,D错误,tan α===-.9.D【解析】 A.=(x≠0)B.(3x)2=32xC.log3(x2+1)+log32=log32(x2+1).10.B【解析】{a n}为公差为2的等差数列,10由S n=na1+d=n+·2=n2.11.C【解析】如图,画出可行域当y=-2x+z移动到A点时与y轴的截距z取得最大值,∵A(3,3),所以z=2x+y的最大值为9.12.D【解析】圆的标准方程(x-a)2+(y-b)2=r2圆心:C(,)=(2,5)半径r===3所以圆的标准方程为(x-2)2+(y-5)2=18.13.B【解析】A选项:错在x可以小于0; B选项:x2+≥2=2=2≥1,其中≤1;C选项:x2-2x+1≥0,∴x2+1≥2x;D选项:设y=x2+5x+6可知二次函数与x轴有两个交点,其值可以小于0.14.A【解析】x∈[0,+∞)时,-x∈(-∞,0],由偶函数性质f(x)=f(-x)=(-x)2-sin(-x)=x2+sin x.15.C【解析】平均数加6,方差不变.二、填空题16.5【解析】,x,15成等比数列,∴x2=×15=25,又∵x>0,∴x=5.17.π【解析】f(x)=sin x cos(x+1)+cos x sin(x+1)=sin[x+(x+1)]=sin(2 x+1)最小正周期T===π.18.【解析】建议文科生通过画树形图的办法解此题.选取十位数: 1 2 3 4选取个位数:2 3 4 1 3 4 1 2 4 1 2 3结果:12 13 14 21 23 24 31 32 34 41 42 43总共:3×4=12种,满足条件的有3种,所以概率为=.19.+=1【解析】根据焦点在x轴上可以设椭圆标准方程为+=1(a>b>0)离心率:e==长轴长:2a=|PF1|+|PF2|=4∴a=2,c=1,b===∴椭圆标准方程为+=1.三、解答题20.(1)证明:∵=,=∴=,即tan A=tan B,又∵A,B∈(0,π),∴A=B∴△ABC为等腰三角形.(2)解:由(1)知A=B,所以a=b=2根据余弦定理:c2=a2+b2-2ab cos C9=4+4-8cos C,∴cos C=∵C∈(0,π),∴sin C>0∴sin C==.21.(1)证明:∵PA⊥AB,PA⊥AD,AB⊂平面ABCD,AD⊂平面ABCD,AB∩AD=A∴PA⊥平面ABCD,又∵CD⊂平面ABCD∴AP⊥CD.(2)解:由(1)AP⊥平面ABC∴V=S△ABC·APP-ABC=×AB·BC·sin∠ABC·AP=××2×2×sin60°×2=.(3)证明:∵CD⊥AP,CD⊥AC,AP⊂平面APC,AC⊂平面APC,AP∩AC=A∴CD⊥平面APC,又∵AE⊂平面APC∴CD⊥AE由AB=BC=2且∠ABC=60°得△ABC为等边三角形,且AC=2又∵AP=2且E为PC的中点,∴AE⊥PC又∵AE⊥CD,PC⊂平面PCD,CD⊂平面PCD,PC∩CD=C∴AE⊥平面PCD.。

2017年广东省初中毕业生学业考试数学科试卷和答案

2017年广东省初中毕业生学业考试数学科试卷和答案

2017年省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的号、、考场号、座位号。

用2B 铅笔把对应该的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.正五边形 D.圆 7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲 线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△;④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡题7图相应的位置上.11.分解因式:a a +2 .12.一个n 边形的角和是720︒,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中错误!未找到引用源。

广东省普通高中学业水平考试数学试题

广东省普通高中学业水平考试数学试题

机密★启用前 试卷类型:A2017年1月广东省普通高中学业水平考试数学试卷一、选择题:本大题共15小题,每小题4分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}4,2,0{=M ,}3,2,1{=N ,}3,0{=P ,则=P N M )(A .}4,3,2,1,0{B .}3,0{C .}4,0{D .}0{2.函数)1lg(+=x y 的定义域是A .},{+∞-∞B .),0(+∞C .),1(+∞-D .),1[+∞- 3.设i 为虚数单位,则复数=-i i 1 A .i +1 B .i -1 C .i +-1 D .i --14.命题甲:球体的半径是1cm ,命题乙:球体的体积是π34cm 2,则甲是乙的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知直线l 过点A(1,2),且与直线y =21x +1垂直,则直线l 的方程是(??)? A .y =2x ?? B .y =-2x +4??C .y =2321+x ??D .y =2521+x ? 6.顶点在坐标原点,准线为x =-2的抛物线的标准方程是(??)?A .y 2=8x ??B .y 2=-8x ??C .x 2=8y ??D .x 2=-8y7.已知三点A(-3,3),?B(0,?1),C(1,0),则|BC AB +|等于(??)?A .5??B .4?? C.213+?? D.213-8.已知角?的顶点为坐标原点,始边为x 轴的正半轴,终边过点P )2,5(-,则下列等式不正确的是A .32sin -=αB .32)sin(=+παC .35cos =αD .23tan -=α 9.下列等式恒成立的是A .3231-=X XB .23)3(2X X =C .)3(log 2log )1(log 23323+=++x xD .x x -=31log 2 10.已知数列}{n a 满足11=a ,且21=-+n n a a ,则的前n 项和n S =A .12+nB .2nC .12-nD .12-n11.已知实数z y x ,,满足⎪⎩⎪⎨⎧≥+≤≤23y x x y x ,则y x z +=2的最大值为A .3B .5C .9D .1012.已知点A (-1,8)和B 点(5,2),则以线段AB 为直径的圆的标准方程是A .23)5()2(22=+++y xB .18)5()2(22=+++y xC .23)5()2(22=-+-y xD .18)5()2(22=-+-y x 13.下列不等式一定成立的是A .)0(21≠≥+x x xB .)(11122R x x x ∈≥++C .)(212R x x x ∈≤+D .)(0652R x x x ∈≥++14.已知)(x f 是定义在R 上的偶函数,且当]0,(-∞∈x 时,x x x f sin )(2-=,则当),0[+∞∈x 时,)(x f =A .x x sin 2+B .x x sin 2--C .x x sin 2-D .x x sin 2+-15.已知样本54321,,,,x x x x x 的平均数为4,方差为3,则6,6,6,6,654321+++++x x x x x 的平均数和方差分别为A .4和3B .4和9C .10和3D .10和9二.填空题(本大题共4小题,每小题 4分,共16分.将正确答案填在题中横线上)16.已知0>x ,且15,,35x 成等比数列,则x =________ 17.函数x x x x x f cos )1sin()1cos(sin )(+++=的最小正周期是_______18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是_______19.中心在坐标原点的椭圆,其离心率为21,两个焦点F 1和F 2在x 轴上,P 为该椭圆上的任意一点,若4||||11=+PF PF ,则此椭圆的标准方程是_______三、解答题(本大题共2小题,共24分.解答时应写出必要的文字说明、证明过程及演算步骤)20.△ABC 的内角A ,B ,C 的对边分别为c b a ,,,已知B b A a cos cos = (1)证明:△ABC 为等腰三角形;(2)若2=a ,3=c ,求sin C 的值.21.如图,在四棱锥P -ABCD 中,PA ⊥AB ,PA ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC =2,E 为PC 的中点.(1)证明:AP ⊥CD ;(2)求三棱锥P -ABC 的体积;(3)证明:AE ⊥平面PCD .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年1月广东省学业水平考试数学试题满分100分一、选择题(本大题共15小题,每小题4分,满分60分) 1.已知集合M={0,2,4}, N={1,2,3}, P={0,3}, 则()MN P =( )A.{0,1,2,3,4}B.{0,3}C.{0,4}D.{0} 2.函数lg(1)y x =+的定义域是( )A.(,)-∞+∞B. (0,)+∞C. (1,)-+∞D. [1,)-+∞ 3.设i 为虚数单位,则复数1ii-= ( ) A. 1+i B.1-i C. -1+i D. -1-i4.命题甲:球的半径为1cm ,命题乙:球的体积为43πcm 3,则甲是乙的( ) A.充分不必要条件 B. 必要不充分条件C.充要条件D. 既不充分也不必要条件5.已知直线l 过点A(1,2),且与直线112y x =+垂直,则直线l 的方程是( ) A. y =2x B. y =-2x +4 C. 1322y x =+ D. 1522y x =+6.顶点在原点,准线为x =-2的抛物线的标准方程是( )A.28y x = B. 28y x =- C. 28x y = D. 28x y =- 7.已知三点A(-3, 3), B(0, 1), C(1,0),则|+|=( )A. 5B. 4C.D.8.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P)2-,下列等式不正确的是A. 2sin 3α=-B. 2sin()3απ+= C. cos α= D. tan α=9.下列等式恒成立的是( )A. 23x -= (0x ≠) B.22(3)3x x =C.22333log (1)log 2log (3)x x ++=+ D. 31log 3xx =-10.已知数列{}n a 满足11a =,且12n n a a +-=,则{}n a 的前n 项之和n S =( )A. 21n + B. 2n C. 21n - D. 12n -11.已知实数x, y, z 满足32x y x x y ≤⎧⎪≤⎨⎪+≥⎩,则z =2x +y 的最大值为( )A. 3B. 5C. 9D. 1012.已知点A(-1, 8)和B(5, 2),则以线段AB 为直径的圆的标准方程是( )A.22(2)(5)x y +++=B. 22(2)(5)18x y +++=C. 22(2)(5)x y -+-=D. 22(2)(5)18x y -+-=13.下列不等式一定成立的是( )A.12x x +≥ (0x ≠) B. 22111x x +≥+ (x R ∈) C. 212x x +≤ (x R ∈) D. 2560x x ++≥ (x R ∈)14.已知f (x )是定义在R 上的偶函数,且当(,0]x ∈-∞时, 2()sin f x x x =-,则当[0,)x ∈+∞时,()f x =( )A. 2sin x x + B. 2sin x x -- C. 2sin x x - D. 2sin x x -+15.已知样本12345,,,,x x x x x 的平均数为4, 方差为3, 则123456,6,6,6,6x x x x x +++++的平均数和方差分别为( )A. 4和3B. 4和9C. 10和3D. 10和9 二、填空题(本大题共4小题,每小题4分,满分16分.) 16.已知x >0, 且5,,153x 成等比数列,则x= 17. 函数()sin cos(1)sin(1)cos f x x x x x =+++的最小正周期是18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是 19.中心在坐标原点的椭圆,其离心率为12,两个焦点F 1 和F 2在x 轴上,P 为该椭圆上的任意一点,若| PF 1 |+|PF 2|=4,则椭圆的标准方程是三、解答题(本大题共2小题,每小题12分,满分24分.) 20.ABC ∆的内角A, B, C 的对边分别为a, b, c, 已知cos cos a bA B=(1)证明: ABC ∆为等腰三角形; (2)若a =2, c=3,求sin C 的值.21.如图,在四棱锥P -ABCD 中,PA AB ⊥, PA AD ⊥,AC CD ⊥,60oABC ∠=, P A=AB=BC =2. E 是PC 的中点. (1)证明: PA CD ⊥;(2)求三棱锥P -ABC 的体积; (3) 证明: AE PCD ⊥平面PBCD AE2017年广东省普通高中学业水平考试数学试卷参考答案一、选择题1.B【解析】M∪N={0,1,2,3,4},(M∪N)∩P={0,3}.2.C【解析】对数函数要求真数大于0,∴x+1>0即x>-1.3.D【解析】===-i-1=-1-i,其中i2=-1.4.C【解析】充分性:若r=1cm,由V=πr3可得体积为πcm3,同样利用此公式可证必要性.5.B【解析】垂直:斜率互为倒数的相反数(k1k2=-1),所以直线l的斜率为k=-2,根据点斜式方程y-y0=k(x-x0)可得y-2=-2(x-1),整理得y=-2x+4.6.A【解析】准线方程为x=-2可知焦点在x轴上,且-=-2,∴p=4.由y2=2px得y2=8x.7.A【解析】=(3,-2),=(1,-1),+=(4,-3),∴|+|==5.8.D【解析】r===3,sinα=,cosα=,tanα=∴A,B,C正确,D错误,tanα===-.9.D【解析】 A.=(x≠0)B.(3x)2=32xC.log3(x2+1)+log32=log32(x2+1).10.B【解析】{a n}为公差为2的等差数列,由S n=na1+d=n+·2=n2.11.C【解析】如图,画出可行域当y=-2x+z移动到A点时与y轴的截距z取得最大值, ∵A(3,3),所以z=2x+y的最大值为9.12.D【解析】圆的标准方程(x-a)2+(y-b)2=r2圆心:C(,)=(2,5)半径r===3所以圆的标准方程为(x-2)2+(y-5)2=18.13.B【解析】A选项:错在x可以小于0;B选项:x2+≥2=2=2≥1,其中≤1;C选项:x2-2x+1≥0,∴x2+1≥2x;D选项:设y=x2+5x+6可知二次函数与x轴有两个交点,其值可以小于0.14.A【解析】x∈[0,+∞)时,-x∈(-∞,0],由偶函数性质f(x)=f(-x)=(-x)2-sin(-x)=x2+sin x.15.C【解析】平均数加6,方差不变.二、填空题16.5【解析】,x,15成等比数列,∴x2=×15=25,又∵x>0,∴x=5.17.π【解析】f(x)=sin x cos(x+1)+cos x sin(x+1)=sin[x+(x+1)]=sin(2x+1) 最小正周期T===π.18.【解析】建议文科生通过画树形图的办法解此题.选取十位数: 123 4选取个位数:2 341 3 4 12 4 12 3结果:1213 14 21 23 24 31 32 34 41 42 43总共:3×4=12种,满足条件的有3种,所以概率为=.19.+=1【解析】根据焦点在x轴上可以设椭圆标准方程为+=1(a>b>0)离心率:e==长轴长:2a=|PF1|+|PF2|=4∴a=2,c=1,b===∴椭圆标准方程为+=1.三、解答题20.(1)证明:∵=,=∴=,即tan A=tan B,又∵A,B∈(0,π),∴A=B∴△ABC为等腰三角形.(2)解:由(1)知A=B,所以a=b=2根据余弦定理:c2=a2+b2-2ab cos C9=4+4-8cos C,∴cos C=∵C∈(0,π),∴sin C>0∴sin C==.21.(1)证明:∵P A⊥AB,P A⊥AD,AB⊂平面ABCD,AD⊂平面ABCD,AB∩AD=A ∴P A⊥平面ABCD,又∵CD⊂平面ABCD∴AP⊥CD.(2)解:由(1)AP⊥平面ABC∴V=S△ABC·APP-ABC=×AB·BC·sin∠ABC·AP=××2×2×sin60°×2=.(3)证明:∵CD⊥AP,CD⊥AC,AP⊂平面APC,AC⊂平面APC,AP∩AC=A ∴CD⊥平面APC,又∵AE⊂平面APC∴CD⊥AE由AB=BC=2且∠ABC=60°得△ABC为等边三角形,且AC=2又∵AP=2且E为PC的中点,∴AE⊥PC又∵AE⊥CD,PC⊂平面PCD,CD⊂平面PCD,PC∩CD=C∴AE⊥平面PCD.。

相关文档
最新文档