2014年普通高等学校招生全国统一考试(天津卷)数学试题(文科)解析版
2014年高考真题——文科数学(天津卷)

绝密★启用前2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A,B互斥,那么•圆锥的体积公式13V Sh =.()()()P A B P A P B=+其中S表示圆锥的底面面积,•圆柱的体积公式V Sh=.h表示圆锥的高.其中S表示棱柱的底面面积,h表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)i是虚数单位,复数734ii()(A)1i(B)1i(C)17312525i(D)172577ixFE D CBA (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)已知命题p :0x,总有11xx e,则p 为( )(A )00x ,使得011x x e (B )00x ,使(C )0x ,总有11xx e (D )0x,总有11xx e(4)设2log a,12log b,2c,则( )(A )a b c (B )b a c (C )a c b (D )c b a(5)设n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a ( )(A )2 (B )-2 (C )12 (D )12-(6)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210y x ,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y (B )221205x y(C )2233125100x y (D )2233110025x y(7)如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FBFD FA ;③AE CE BE DE ;④AF BD AB BF . 则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④(8)已知函数3sin cos f xx x0,x R ,在曲线y f x 与直线1y 的交点中,若相邻交点距离的最小值为3,则f x 的最小正周期为( )(A )2(B )23(C ) (D )2 第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2014年全国高考天津市数学(文)试卷及答案【精校版】

绝密 ★ 启用前2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么 •圆锥的体积公式13V Sh =.()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ 解:()()()()73472525134343425i i ii i i i i +-+-===-++-,选A .xECBA (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5 解:作出可行域,如图结合图象可知,当目标函数通过点()1,1时,z 取得最小值3,选B .(3)已知命题p :0x ">,总有()11x x e +>,则p Ø为( (A )00x $£,使得()0011xx e £+ (B )00x $>,使得0011xx e £+(C )0x ">,总有()11x x e +£ (D )0x "£,总有()11xx e +£解:依题意知p Ø为:00x $>,使得()0011xx e £+,选B .(4)设2log a p =,12log b p =,2c p-=,则( )(A )a b c >> (B )b a c >> (C )a c b >> (D )c b a >> 解:因为1a >,0b <,01c <<,所以a c b >>,选C .(5)设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-,选D . (6)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= 解:依题意得22225b ac c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,选A . (7)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分C B F Ð;②2FB FD FA =?;③AE CEBE DE ??;④AF BD AB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④解:由弦切角定理得FBD EAC BAE ???,又BFD AFB ??, 所以BFD D ∽AFB D ,所以BF BDAF AB=,即AF BD AB BF ??,排除A 、C .又FBDEAC DBC ???,排除B ,选D .(8)已知函数()cos f x x x w w =+()0w >,x R Î,在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3p,则()f x 的最小正周期为( ) (A )2p(B )23p (C )p (D )2p解:因为()2sin 6f x x p w 骣÷ç=+÷ç÷ç桫,所以()1f x =得1sin 62x p w 骣÷ç+=÷ç÷ç桫, 所以266x k p p w p +=+或5266x k ppw p +=+,k Z Î. 因为相邻交点距离的最小值为3p,所以233p pw =,2w =,T p =,选C . 第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2014天津高考真题数学文(含解析)

③ AE CE BE DE ;④ AF BD AB BF . 则所有正确结论的序号是( A.①② B.③④ ) C.①②③ D. ①②④
1 / 14
8.已知函数 f ( x) 3 sin x cos x( 0), x R. 在曲线 y f ( x ) 与直线 y 1 的交点中,若相 邻交点距离的最小值为 A.
9 / 14
7.如图, ABC 是圆的内接三角形, BAC 的平分线交圆于点 D ,交 BC 于
E ,过点 B 的圆的切线与 AD 的延长线交于点 F ,在上述条件下,给出下列
四个结论: ① BD 平分 CBF ; ② FB FD FA ; ③ AE CE BE DE ;
π ,则 f ( x ) 的最小正周期为( 3
C. π D. 2 π
)
π 2
B.
2π 3
二.填空题:本大题共 6 小题,每小题 5 分,共 30 分. 9.某大学为了解在校本科生对参加某项社会实践活动的意向, 拟采用分层抽样的方法, 从该校四个年 级的本科生中抽取一个容量为 300 的样本进行调查.已知该校一年级、二年级、三年级、四年级 的本科生人数之比为 4 : 5 : 5 : 6 ,则应从一年级本科生中抽取 10.一个几何体的三视图如图所示(单位: m ) ,则该几何体的体积为 名学生.
B. x0 0 ,使得 ( x0 1)e x0 1 D. x 0 ,总有 ( x 1)e x 1
x 0,( x 1)e x 1p : x 0, ( x 1)e x 1 ,故选 C .
) D. c b a
2
4.设 a log 2 , b log 1 , c 2 , 则( A. a b c B. b a c
2014年普通高等学校招生全国统一考试数学文试题(天津卷, 解析版)

x2014年普通高等学校招生全国统一考试(某某卷)数学(文史类)解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的某某、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么•圆锥的体积公式13V Sh =. ()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =.h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数734i i( )(A )1i (B )1i (C )17312525i (D )172577i 解:73472525134343425i i i i i i i i,选(2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5 解:作出可行域,如图结合图象可知,当目标函数通过点1,1时,z 取得最小值3,选B. (3)已知命题p :0x,总有11xx e ,则p 为( )(A )00x ,使得011x x e (B )00x ,使得011x x e(C )0x ,总有11x x e (D )0x,总有11xx e解:依题意知p 为:00x ,使得0011x x e ,选B.(4)设2log a,12log b,2c,则( )(A )a b c (B )b a c (C )ac b (D )c b a解:因为1a,0b ,01c,所以acb ,选C.(5)设n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a ( )(A )2 (B )-2 (C )12 (D )12- 解:依题意得2214S S S ,所以21112146a a a ,解得112a ,选D. (6)已知双曲线22221x y a b 0,0a b 的一条渐近线平行于直线l :210yx,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y (B )221205x y (C )2233125100x y (D )2233110025x y解:依题意得22225ba cc a b ,所以25a,220b ,选A.(7)如图,ABC 是圆的内接三角形,BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBF ;②2FB FD FA ;③AE CE BE DE ;④AF BDAB BF .FED CBA 则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ 解:由弦切角定理得FBD EAC BAE ,又BFD AFB ,所以BFD ∽AFB ,所以BF BDAFAB, 即AF BD AB BF ,排除A 、C. 又FBDEACDBC ,排除B ,选D.(8)已知函数3sin cos f x x x0,x R ,在曲线y f x 与直线1y 的交点中,若相邻交点距离的最小值为3,则f x 的最小正周期为( )(A )2(B )23(C ) (D )2 解:因为2sin6f x x,所以1f x得1sin 62x, 所以266xk或5266xk ,k Z .因为相邻交点距离的最小值为3,所以233,2,T,选C.第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2014年天津市高考数学试卷(文科)答案与解析

2014年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2014•天津)i是虚数单位,复数=()+i +i 解:复数==2.(5分)(2014•天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()e≤e≤e≤4.(5分)(2014•天津)设a=log2π,b=logπ,c=π,则()logn1n124成等比数列,得:即,解得:6.(5分)(2014•天津)已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的﹣=1 B﹣=1﹣=1 D﹣=1先求出焦点坐标,利用双曲线﹣=1=2∵双曲线﹣=2∴双曲线的方程为﹣的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD•FA;③AE•CE=BE•DE;④AF•BD=AB•BF.由由若相邻交点距离的最小值为,则f(x)的最小正周期为()x+的交点中,相邻交点距离的最小值为,)的周期的=x+的交点中,若相邻交点距离的最小值为,正好等于)的周期的=正好等于倍,是解题的关键,9.(5分)(2014•天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,×10.(5分)(2014•天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3.4+ππ故答案为:.复合而成,再分别讨论内层函数和外层函数的单调性,根据方法二:原函数是由复合而成,DC=λDF,若•=1,则λ的值为2.=,,=++=,=++=,||=|••=1∴()+)•××)整理得14.(5分)(2014•天津)已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实(Ⅰ)用表中字母列举出所有可能的结果;.16.(13分)(2014•天津)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.sinB=b=bcosA==;cosA=sinA==﹣sin2A=2sinAcosA=,﹣=cos2Acos=×+×=.E,F分别是棱AD,PC的中点.(Ⅰ)证明EF∥平面PAB;(Ⅱ)若二面角P﹣AD﹣B为60°,(i)证明平面PBC⊥平面ABCD;BA=BD=PA=PD=PB=BA=BD=,﹣,,),=,﹣,),),的法向量为,∴,令=,,﹣),=,),===所成角的正弦值为18.(13分)(2014•天津)设椭圆+=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,已知|AB|=|F1F2|.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点解:(Ⅰ)依题意可知==.∴椭圆方程为=1点坐标(•或,坐标为(﹣,c cr=|OB|===+8=c∴椭圆的方程为+19.(14分)(2014•天津)已知函数f(x)=x2﹣ax3(a>0),x∈R.(Ⅰ)求f(x)的单调区间和极值;))时,(B={.)(,单调递增区间为)))时,(B={|x><)<时,有([A={x|x=x1+x2q+…+x n q n﹣1,x i∈M,i=1,2,…n}.(Ⅰ)当q=2,n=3时,用列举法表示集合A;(Ⅱ)设s,t∈A,s=a1+a2q+…+a n q n﹣1,t=b1+b2q+…+b n q n﹣1,其中a i,b i∈M,i=1,2,…,n.证明:若a n<b n,A={x|+≤A={x|,11。
2014年天津市高考数学试卷(文科)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5 分)i 是虚数单位,复数 =( )
A.1﹣i B.﹣1+i C. + i D.﹣ + i
2.(5 分)设变量 x,y 满足约束条件
,则目标函数 z=x+2y 的最小值
为( ) A.2 B.3 C.4 D.5 3.(5 分)已知命题 p:∀x>0,总有(x+1)ex>1,则¬p 为( ) A.∃x0≤0,使得(x0+1)e ≤1 B.∃x0>0,使得(x0+1)e ≤1 C.∀x>0,总有(x+1)ex≤1 D.∀x≤0,总有(x+1)ex≤1 4.(5 分)设 a=log2π,b=log π,c=π﹣2,则( )
A.①② B.③④ C.①②③ D.①②④ 【分析】本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相 似,得到边成比例,即可选出本题的选项.
第 9 页(共 24 页)
【解答】解:∵圆周角∠DBC 对应劣弧 CD,圆周角∠DAC 对应劣弧 CD,
∴∠DBC=∠DAC.
∵弦切角∠FBD 对应劣弧 BD,圆周角∠BAD 对应劣弧 BD,
第 2 页(共 24 页)
11.(5 分)阅读如图的框图,运行相应的程序,输出 S 的值为 .
12.(5 分)函数 f(x)=lgx2 的单调递减区间是 . 13.(5 分)已知菱形 ABCD 的边长为 2,∠BAD=120°,点 E,F 分别在边 BC, DC 上,BC=3BE,DC=λDF,若 • =1,则 λ 的值为 .
6.(5 分)已知双曲线 ﹣ =1(a>0,b>0)的一条渐近线平行于直线 l:
2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72.已知角α的终边经过点(4,3)-,则cos α=( ) A .45 B .35 C .35- D .45-3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .16 B .36 C .13D .335.函数3ln(1)(1)y x x =+>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)xy e x =->- C .3(1)()x y e x R =-∈ D .3(1)()xy e x R =-∈6.已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( ) A .31 B .32 C .63 D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为33,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A .814π B .16π C .9π D .274π11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为23,则C的焦距等于( )A .2B .22C .4D .4212.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答)14.函数cos 22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为.16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是111()(21)nnk k k k a a k +==-=-∑∑于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=13,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA, 所以3tanAcosC=2sinC.因为tanA=13,所以cosC=2sinC.tanC=1 2 .所以tanB=tan[180︒-(A+C)]=-tan(a+c)=tan tan1tan tanA CA C+--=-1,即B=135︒.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90︒,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1的距离为3,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D⊂平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC⊂平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A13,因为A1C为∠ACC1的平分线,故A1D=A13作DF⊥AB,F为垂足,连结A1F,由三垂线定理得A1F⊥AB,故∠A1FD为二面角A1-AB-C的平面角,由AD=1=,得D 为AC 的中点,DF=125AC BC AB ⨯⨯=,tan ∠A 1FD=1A DDF=,所以二面角A 1-AB-C 的大小为解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则AF =(-2,1,0),1(2,0,0),(2,0,)AC AA a c =-=-,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-,由12AA =2=,即2240a a c -+=,于是11AC BA ⋅=2240a a c -+=①,所以11AC BA ⊥.(2)设平面BCC 1B 1的法向量(,,)m x y z =,则m CB ⊥,1,m CB m BB ⊥⊥,即10,0m CB m BB ⋅=⋅=,因11(0,1,0),(2,0,)CB BB AA a c ==-,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,(,0,2)m c a =-,点A到平面BCC 1B 1的距离为cos ,CA m CA m CA c mc ⋅⋅<>===,又依题设,点A 到平面BCC 1B 1的距c= .代入①得a=3(舍去)或a=1.于是1(1AA =-,设平面ABA 1的法向量(,,)n p q r =,则1,n AA n AB⊥⊥,即10,0n AA n AB ⋅=⋅=.0p-=且-2p +q =0,令p =,则q =2,r=1,(3,2n =,又(0,0,1)p =为平面ABC 的法向量,故cos 1,4n p n p n p⋅<>==,所以二面角A 1-AB-C 的大小为arccos 1420. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2·B ·CP(B)=0.6,P(C)=0.4,P(A i )=220.5,0,1,2i C i ⨯=.所以P(D)=P(A 1·B ·C+A 2·B+A 2·B ·C )= P(A 1·B ·C)+P(A 2·B)+P(A 2·B ·C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p (B )·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ). (i )若a ≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.(ii )由于a ≠0,故当a<1时,()0f x '=有两个根:1211x x a a---==, 若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数.若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞. 22. (本小题满分12分)已知抛物线C:22(0)y px p =>的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线l '与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由22(0)y px p =>中得x 0=8p, 所以088,22p p PQ QF x p p ==+=+,由题设得85824p p p+=⨯,解得p =-2(舍去)或p =2.所以C 的方程为24y x =.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为1x my =+,(m ≠0)代入24y x =中得2440y my --=,设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4,故AB 的中点为D (2m 2+1,2m ),2124(1)AB y m =-=+,有直线l '的斜率为-m ,所以直线l '的方程为2123x y m m=-++,将上式代入24y x =中,并整理得2244(23)0y y m m+-+=. 设M(x 3,y 3),N(x 4,y 4),则234344,4(23)y y y y m m+=-=-+. 故MN的中点为E(223422224(23,),m m MN y m m m+++-=-=). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即222222224224(1)(21)4(1)(2)(2)m m m m m m m +++++++=,化简得m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=0.。
全国高考天津市数学文试卷及答案精校版

绝密 ★ 启用前2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么 •圆锥的体积公式13V Sh =.()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)i 是虚数单位,复数734ii+=+( )(A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ 解:()()()()73472525134343425i i ii i i i i +-+-===-++-,选A .xFED CBA (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5 解:作出可行域,如图结合图象可知,当目标函数通过点()1,1时,z 取得最小值3,选B .(3)已知命题p :0x ">,总有()11x x e +>,则p Ø为( (A )00x $£,使得()0011xx e £+ (B )00x $>,使得0011xx e £+(C )0x ">,总有()11xx e +£ (D )0x "£,总有()11xx e +£解:依题意知p Ø为:00x $>,使得()0011xx e £+,选B .(4)设2log a p =,12log b p =,2c p -=,则( )(A )a b c >> (B )b a c >> (C )a c b >> (D )c b a >> 解:因为1a >,0b <,01c <<,所以a c b >>,选C .(5)设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 解:依题意得2214S S S =,所以()()21112146a a a -=-,解得112a =-,选D . (6)已知双曲线22221x y a b-=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= 解:依题意得22225b ac c a bìï=ïïï=íïïï=+ïî,所以25a =,220b =,选A . (7)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分C B F Ð;②2FB FD FA =?;③AE CE BE DE ??;④AF BD AB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④解:由弦切角定理得FBD EAC BAE ???,又BFD AFB ??, 所以BFD D ∽AFB D ,所以BF BDAF AB=,即AF BD AB BF ??,排除A 、C .又FBDEAC DBC ???,排除B ,选D .(8)已知函数()cos f x x x w w =+()0w >,x R Î,在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3p,则()f x 的最小正周期为( ) (A )2p(B )23p (C )p (D )2p解:因为()2sin 6f x x p w 骣÷ç=+÷ç÷ç桫,所以()1f x =得1sin 62x p w 骣÷ç+=÷ç÷ç桫, 所以266x k p p w p +=+或5266x k ppw p +=+,k Z Î. 因为相邻交点距离的最小值为3p,所以233p pw =,2w =,T p =,选C . 第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密 ★ 启用前2014年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么 •圆锥的体积公式13V Sh =.()()()P A B P A P B =+其中S 表示圆锥的底面面积,•圆柱的体积公式V Sh =. h 表示圆锥的高. 其中S 表示棱柱的底面面积,h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1. [2014•天津文卷]i 是虚数单位,复数=++ii437( ) A. i -1 B. i +-1 C. i 25312517+ D. i 725717+- 【答案】A 【解析】()()()()()()i i i i i i i i-=+⨯+⨯-+⨯+⨯=-+-+=++14313474137434343743722.2. [2014•天津文卷]设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤--≥-+.1,02,02y y x y x 则目标函数y x z 2+=的最小值为( )A.2B. 3C. 4D. 5【答案】B【解析】可行域如图x当目标函数线过可行域内A 点时,目标函数有最小值31211=⨯+⨯=z .3. [2014•天津文卷]已知命题为则总有p e x x p x⌝>+>∀,1)1(,0:( ) A.1)1(,0000≤+≤∃x e x x 使得 B. 1)1(,0000≤+>∃x e x x 使得C.1)1(,0000≤+>∃x ex x 总有 D.1)1(,0000≤+≤∃x e x x 总有【答案】B【解析】含量词的命题的否定先改变量词的形式再对命题的结论进行否定.4. [2014•天津文卷] 设,,log ,log 2212-===πππc b a 则( )A .c b a >> B.c a b >> C.b c a >> D.a b c >> 【答案】C【解析】∵1log 2>=πa ,0log 21<=πb ,112<=πc ,∴a c b <<.5. [2014•天津文卷]设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .-21【答案】D【解析】∵()6412344114-=-⨯⨯+=a a S ,又∵,,,421S S S 成等比数列, ∴()()64121121-=-a a a ,解之得211-=a .6. [2014•天津文卷]已知双曲线)0,0(12222>>=-b a by a x 的一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.120522=-y xB.152022=-y xC.1100325322=-y xD.1253100322=-y x 【答案】A 【解析】∵1020,2+-==c ab,∴5=c ,52=a ,202=b , ∴120522=-y x .7. [2014•天津文卷]如图,ABC ∆是圆的内接三角行,BAC ∠的平分线交圆于点D ,交BC 于E ,过点B 的圆的切线与AD 的延长线交于点F ,在上述条件下,给出下列四个结论:①BD 平分CBF ∠;②FA FD FB ⋅=2;③DE BE CE AE ⋅=⋅;④BF AB BD AF ⋅=⋅.则所有正确结论的序号是( )A.①②B.③④C.①②③D. ①②④ 【答案】D 【解析】∵31∠=∠,42∠=∠,∴21∠=∠,34∠=∠, ∴BD 平分CBF ∠,∴ABF ∆∽BDF ∆,∴BF BDAF AB =,∴BD AF BF AB ⋅=⋅, ∴DFBF BF AF =, DF AF BF ⋅=2.8. [2014•天津文卷]已知函数()cos (0),.f x x x x R ωωω=+>∈在曲线()y f x =与直线1y =的交点中,若相邻交点距离的最小值为3π,则()f x 的最小正周期为( )A.2πB.23πC.πD.2π 【答案】C【解析】∵()16sin 2=⎪⎭⎫⎝⎛+=πωx x f ,∴216sin =⎪⎭⎫ ⎝⎛+πωx ,∴Zk k x ∈+=+111,266πππω或Z k k x ∈+=+222,2656πππω,则()()ππω1212232k k x x -+=-,又∵相邻交点距离的最小值为3π,∴2=ω,π=T .二、填空题9. [2014•天津文卷]某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生. 【答案】60【解析】由分层抽样方法可得一年级抽取人数为6065544300=+++⨯.10. [2014•天津文卷]一个几何体的三视图如图所示(单位:m ),一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m.俯视图侧视图正视图【答案】320π【解析】由三视图可得该几何体为圆柱与圆锥的组合体,其体积32022314122πππ=⨯⨯+⨯⨯=V .11.[2014•天津文卷]阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】-4【解析】()()42223-=-+-=S .12. [2014•天津文卷]函数()2lg x x f =的单调递减区间是________.【答案】()0,∞-【解析】()2lg x x f =的单调递减区间需满足02>x 且2x y =递减.13. [2014•天津文卷]已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1=⋅AF AE ,则λ的值为________.【答案】2【解析】建立如图所示坐标系,且()0,1-A 、()3,0-B 、()0,1C 、()3,0D ,设()11,y x E ,()22,y x F ,由3BC BE =得()()3,33,111+=y x ,解之得⎪⎪⎭⎫⎝⎛-332,31E ,由DC DF λ=得()()3,3,122-=-yx λ,解之得⎪⎪⎭⎫⎝⎛-λλ33,1F , 又∵13231033,11332,34=-=⎪⎪⎭⎫ ⎝⎛-+⋅⎪⎪⎭⎫ ⎝⎛-=⋅λλλAF AE , ∴2=λ.14. [2014•天津文卷]已知函数()⎪⎩⎪⎨⎧>-≤++=0,220,452x x x x x x f 若函数x a x f y -=)(恰有4个零点,则实数a 的取值范围为_______.分别作出函数()y f x =与||y a x =的图像,由图知,0a <时,函数()y f x =与||y a x =无交点,0a =时,函数()y f x =与||y a x =有三个交点,故0.a >当0x >,2a ≥时,函数()y f x =与||y a x =有一个交点,当0x >,02a <<时,函数()y f x =与||y a x =有两个交点,当0x <时,若y ax =-与254,(41)y x x x =----<<-相切,则由0∆=得:1a =或9a =(舍),因此当0x <,1a >时,函数()y f x =与||y a x =有两个交点,当0x <,1a =时,函数()y f x =与||y a x =有三个交点,当0x <,01a <<时,函数()y f x =与||y a x =有四个交点,所以学科网当且仅当12a <<时,函数()y f x =与||y a x =恰有4个交点.考点:函数图像ABCD15. [2014•天津文卷]某校夏令营有3名男同学,,A B C 和3名女同学,,X Y Z ,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选中的可能性相同).(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发表的概率.{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M 发生的概率62().155P M == 考点:古典概型概率16.C7、C8[2012•天津文卷]在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,已知b c a 66=-,C B sin 6sin = (1)求A cos 的值; (2)求)62cos(π-A 的值.PFEDCBA17.G4、G11[2014•天津文卷]如图,四棱锥P ABCD -的底面是平行四边形,BA BD ==,2AD =,PA PD ==,E F 分别是棱AD ,PC 的中点.(Ⅰ)证明 //EF 平面PAB ; (Ⅱ)若二面角P AD B --为60 ,(ⅰ)证明 平面PBC ^平面ABCD ; (ⅱ)求直线EF 与平面PBC 所成角的正弦值.18.H5、H8[2014•天津文卷]设椭圆22221x y a b+=(0a b >>)的左、右焦点为12,F F ,右顶点为A ,上顶点为B .已知AB =(Ⅰ)求椭圆的离心率;(Ⅱ)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点1F ,经过点2F 的直线l 与该圆相切于点M ,2MF =,求椭圆的方程.【答案】(1) e = (2) 22163x y += 【解析】试题分析:(1)求椭圆离心率,就是列出关于a,b,c 的一个等量关系. 由12|||AB F F =,可得2223a b c +=,又222b ac =-,则221.2c a =所以椭圆离心率为e =(2) 由(1)知22222,,a cbc ==所以求椭圆方程只需再确定一个独立条件即可.由切线长=可列出所需的等量关系.先确定圆心:设(,)P x y ,由1(,0),(0,).F c B c -,有11(,),(,).F P x c y F B c c =+=由已知,有110F P F B ⋅=即()0x c c cy ++= ,故有19.(本19. B11、B12 [2014•天津文卷] 已知函数232()(0),3f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在2(1,)x ∈+∞,使得12()()1f x f x ⋅=,求a 的取值范围20.A1、D3、E7[2014•天津文卷] 已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-, (1)当3,2==n q 时,用列举法表示集合A ;(2)设,,,,121121--++=+++=∈n n n n q b q b b t q a q a a s A t s 其中 ,,2,1,,n i M b a i i =∈证明:若,n n b a <则t s <.。