2018年最新高考数学一二轮复习热点题型精讲精练专题二十六 平面向量的基本定理及其坐标表示

合集下载

2018届高考数学一轮复习课标版理科配套课件:第5章-第

2018届高考数学一轮复习课标版理科配套课件:第5章-第

)
4 3 B.5,-5 4 3 D.-5,5
[解析]
→ = (4 - 1 , - 1 - 3) = (3 , - 4) , 则 | AB → |= AB
→ 1 AB → 2 2 3 +-4 =5.与AB同方向的单位向量为 =5(3,-4)= → |AB|
3 4 ,- . 5 5
A.e1=(0,0),e2=(1,2) C.e1=(3,5),e2=(6,10)
[解析]
解法一:若 e1=(0,0),e2=(1,2),则 e1∥e2,而
a 不能由 e1,e2 表示,排除 A;若 e1=(-1,2),e2=(5,-2), -1 2 因为 5 ≠ ,所以 e1,e2 不共线,根据平面向量基本定理, -2 可以把向量 a=(3,2)表示出来,故选 B.
[答案]
A
4.已知 a=(4,5),b=(8,y)且 a∥b,则 y 等于( A.5 32 C. 5
[解析] [答案]
)
B.10 D.15
∵a∥b,∴4y-40=0 得 y=10. B
5. (2016· 贵州调研)在下列向量组中, 可以把向量 a=(3,2) 表示出来的是( ) B.e1=(-1,2),e2=(5,-2) D.e1=(2,-3),e2=(-2,3)
的坐标为(4,3), → |= 5,|OB → |=5. |OA 又 tan∠AOB=tan(∠AOy+∠BOy) tan∠AOy+tan∠BOy = 1-tan∠AOy· tan∠BOy 4 2+3

4=-2, 1-2×3
2 所以 sin∠AOB= . 5 1 → → 1 2 所以 S△AOB=2|OA||OB|sin∠AOB=2×5 5× =5. 5
(3)若 a,b 不共线,且 λ1a+μ1b=λ2a+μ2b,则 λ1=λ2,μ1 =μ2.( )

北京市2018届高三数学理一轮复习 4.2 平面向量基本定

北京市2018届高三数学理一轮复习 4.2 平面向量基本定

高三一轮(理) 4.2平面向量基本定理及坐标运算【教学目标】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.【重点难点】1.教学重点:平面向量基本定理及向量的坐标运算和向量共线的条件;2.教学难点:学会对知识进行整理达到系统化,提高分析问题和解决问题的能力;【教学策略与方法】自主学习、小组讨论法、师生互动法【教学过程】量,那么对于该平面内任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e1+λ2e2.向量e1,e2叫做表示这一平面内的所有向量的一组基底.知识点2 平面向量的坐标运算1.向量加法、减法、数乘向量及向量的模 设a =(x1,y1),b =(x2,y2),则 a +b =(x1+x2,y1+y2),a -b =(x1-x2,y1-y2),λa =(λx1,λy1),|a|=x21+y21. 2.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.(2)设A(x1,y1),B(x2,y2),则AB →=(x2-x1,y2-y1),|AB→|=x2-x12y2-y12.知识点3 平面向量共线的坐标表示 设a =(x1,y1),b =(x2,y2),其中b ≠0.a ∥b ⇔x1y2-x2y1=0. 名师点睛: 1.必会结论(1)若a 与b 不共线,λa +μb =0,则λ=μ=0.(2)平面向量的基底中一定不含零向量. 2.必清误区若a =(x1,y1),b =(x2,y2),则a ∥b 的充要条件不能表示成x1x2=y1y2,而应该表示为x1y2-x2y1=0. 考点分项突破考点一:平面向量基本定理及其应用C 的任一点,M 为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.【解析】 由B ,H ,C 三点共线知,BH →=kBC →(k ≠0,1),则AH →=AB →+BH →=AB →+kBC →=AB →+k(AC →-AB →)=(1-k)AB →+kAC →,所以AM →=12AH →=12(1-k)AB →+k 2AC →,又AM →=λAB →+μAC →,所以⎩⎪⎨⎪⎧λ=121-k μ=k 2,从而λ+μ=12.【答案】 12归纳:应用平面向量基本定理的关键点 1.平面向量基本定理中的基底必须是两个不共线的向量.2.选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来.3.强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等.提醒:在基底未给出的情况下,合理地选取基底会给解题带来方便. 考点二:平面向量的坐标运算(1)(2016·北京模拟)向量a ,b ,c 在正方形网格中的位置如图4­2­2所示,若c =λa +μb(λ,μ∈R),则λμ=________.,B(6,2),C(5,-1),∴OB →=(6,2),c =BC →=(-1。

2018全国卷高考复习 平面向量(知识总结+题型)

2018全国卷高考复习  平面向量(知识总结+题型)

第一部分 平面向量的概念及线性运算1.向量的有关概念名称 定义备注向量 既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量 长度为零的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a|a |平行向量 方向相同或相反的非零向量 0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小 相反向量 长度相等且方向相反的向量0的相反向量为0 2.向量的线性运算 向量运算定 义 法则(或几何意义) 运算律加法求两个向量和的运算(1)交换律:a +b =b +a .(2)结合律: (a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的 运算叫做a 与b 的差a -b =a +(-b )数乘求实数λ与向量a的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=λμa ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .【基础练习】1.判断正误(在括号内打“√”或“×”) (1)零向量与任意向量平行.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( )(3)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (4)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) (5)在△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).( )2.给出下列命题:①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A.①B.③C.①③D.①②3.(2017·枣庄模拟)设D 为△ABC 所在平面内一点,AD →=-13AB →+43AC →,若BC →=λDC →(λ∈R ),则λ=( ) A.2B.3C.-2D.-34.(2015·全国Ⅱ卷)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.5.(必修4P92A12改编)已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________(用a ,b 表示).6.(2017·嘉兴七校联考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE→=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1=________,λ2=________. 考点一 平面向量的概念【例1】 下列命题中,不正确的是________(填序号). ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c .【训练1】 下列命题中,正确的是________(填序号). ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③两个向量不能比较大小,但它们的模能比较大小.解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量; ②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小. 答案 ③考点二 平面向量的线性运算【例2】 (2017·潍坊模拟)在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC .若AB →=a ,AC →=b ,则PQ →=( ) A.13a +13b B.-13a +13bC.13a -13bD.-13a -13b【训练2】 (1)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个靠近B 点的三等分点,那么EF →等于( ) A.12AB →-13AD → B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD → 考点三 共线向量定理及其应用 【例3】 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.【训练3】已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A.A ,B ,C 三点共线 B.A ,B ,D 三点共线 C.A ,C ,D 三点共线D.B ,C ,D 三点共线第二部分 平面向量基本定理与坐标表示1.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0. 【基础练习】1.(2017·东阳月考)已知向量a =(2,4),b =(-1,1),则2a +b 等于( ) A.(5,7)B.(5,9)C.(3,7)D.(3,9)2.(2015·全国Ⅰ卷)已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=( ) A.(-7,-4) B.(7,4) C.(-1,4)D.(1,4)3.(2016·全国Ⅱ卷)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =________.4.(必修4P101A3改编)已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.考点一 平面向量基本定理及其应用【例1】 (2014·全国Ⅰ卷)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A.AD →B.12AD → C.12BC → D.BC →【训练1】如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________. 考点二 平面向量的坐标运算【例2】 (1)已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A.(-23,-12) B.(23,12) C.(7,0)D.(-7,0)【训练2】 (1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为( ) A.(7,4) B.(7,14) C.(5,4)D.(5,14)(2)(2015·江苏卷)已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.考点三 平面向量共线的坐标表示【例3】 (1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________.(2)(必修4P101练习7改编)已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=32|BP |,则点P 的坐标为________. 【训练3】 (1)(2017·浙江三市十二校联考)已知点A (1,3),B (4,-1),则与AB →同方向的单位向量是( ) A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35(2)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________.第三部分 平面向量的数量积及其应用1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos__θ 叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ,规定零向量与任一向量的数量积为0,即0·a =0.(3)数量积几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质及其坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角. (1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2. (2)模:|a |=a ·a =x 21+y 21. (3)夹角:cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0.(5)|a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22. 3.平面向量数量积的运算律:(1)a ·b =b ·a (交换律).(2)λa ·b =λ(a ·b )=a ·(λb )(结合律).(3)(a +b )·c =a ·c +b ·c (分配律). 【基础练习】1.(2015·全国Ⅱ卷)向量a =(1,-1),b =(-1,2),则(2a +b )·a 等于( ) A.-1B.0C.1D.22.(2017·湖州模拟)已知向量a ,b ,其中|a |=3,|b |=2,且(a -b )⊥a ,则向量a 和b 的夹角是________.3.(2016·石家庄模拟)已知平面向量a ,b 的夹角为2π3,|a |=2,|b |=1,则|a +b |=________.5.(必修4P104例1改编)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则向量b 在向量a方向上的投影为________.6.(2017·瑞安一中检测)已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2),|b |=1,且a +b 与a -2b 垂直,则向量a ·b =________;a 与b 的夹角θ的余弦值为________. 【考点突破】考点一 平面向量的数量积及在平面几何中的应用(用已知表示未知)【例1】 (1)(2015·四川卷)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( ) A.20B. 15C.9D.6(2)(2016·天津卷)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A.-58B.18C.14D.118【训练1】 (1)(2017·义乌市调研)在Rt△ABC 中,∠A =90°,AB =AC =2,点D 为AC 的中点,点E 满足BE →=13BC →,则AE →·BD →=________.(2)(2017·宁波质检)已有正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________. 考点二 平面向量的夹角与垂直【例2】 (1)(2016·全国Ⅱ卷)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A.-8B.-6C.6D.8(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.【训练2】 (1)(2016·全国Ⅲ卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 考点三 平面向量的模及其应用【例3】 (2017·云南统一检测)已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( )。

2018届高考数学 (高手必备+萃取高招):专题十八 平面向量的概念及线性运算、平面向量的基本定理

2018届高考数学  (高手必备+萃取高招):专题十八    平面向量的概念及线性运算、平面向量的基本定理
学霸有招
高手洞考
高手锻造
第五章 平面向量
学霸有招
高手洞考
高手锻造
向量方法是一种全新的证明方法和解题手段,平面向量的线性运算 和数量积运算具有鲜明的几何背景.平面向量不会在大题中独自命 题,但是可能会与平面几何、三角函数、数列、导数等结合在一起 考查.在小题中,常在平面图形中,已知部分几何量求解平面向量的 夹角、模与数量积等问题,而且往往这一部分的题目比较复杂难以 找到突破口,需要我们利用向量方法从几何、代
C. BC
1 2
D. BC
1 2
1 2
因为 D,E,F 分别是 BC,CA,AB 的中点, 所以EB +
FC=- (BA + BC)- (CA + CB)=- (BA + CA)= (AB + AC)= × 2AD = AD, 故选 A .
学霸有招 考点40 考点41
高手洞考
高手锻造
试做真题 高手必备 萃取高招 对点精练
学霸有招 考点40 考点41
高手洞考
高手锻造
试做真题 高手必备 萃取高招 对点精练
典例导引 1(1)(2016 湖北武汉调研)设 M 为平行四边形 ABCD 对角
线的交点,O 为平行四边形 ABCD 所在平面内的任意一点,则������������ + ������������ + ������������ + ������������等于( ) A.������������ B.2������������ C.3������������ D.4������������ (2)(2016 河北衡水中学质检)若点 M 是△ABC 所在平面内的一点, 且满足|3������������ − ������������ − ������������ |=0,则△ABM 与△ABC 的面积之比等于 ( ) 3 1 1 1 A. B. C. D.

最新-2018年高考数学一轮复习 52 平面向量基本定理及

最新-2018年高考数学一轮复习 52 平面向量基本定理及

2018年高考数学一轮复习精品教学案5.2 平面向量基本定理及坐标表示(新课标人教版,学生版)【考纲解读】1.了解平面向量的基本定理及其意义. 2.掌握平面向量的正交分解及其坐标表示. 3.会用坐标表示平面向量的加法、减法与数乘运算. 4.理解用坐标表示的平面向量共线的条件.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面向量是历年来高考重点内容之一,经常与三角函数、立体几何、解析几何、不等式等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,平面向量的基本定理及坐标表示的考查,经常以选择题与填空题的形式单独考查,有时也在解答题中与其他知识结合起来考查,在考查平面向量知识的同时,又考查转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2018年的高考将会继续保持稳定,坚持考查平面向量与其他知识的结合,或在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.平面向量基本定理:设1e 、2e是一平面内的两个不平行的向量,那么对平面内任意一向量a ,存在唯一的一对实数,x y ,使得a =1xe +y 2e.其中{}12,e e 叫做这一平面内所有向量的一组基底.2.向量的直角坐标运算:设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++; a -b =1212x x y y +;λa=11(,)x y λλ.3.两个结论:(1)两个向量a =11(,)x y ,b=22(,)x y 相等⇔12x x =且12y y =;(2)在平面向量基本定理中,由两个基底1e ,2e 决定的向量a =1λ1e +1μ2e与b =2λ1e +2μ2e相等的条件是12λλ=且12μμ=,若a =0 ,则1λ=1μ=0.【例题精析】考点一 平面向量基本定理的应用例 1. (2018年高考全国卷理科6)ABC ∆中,AB 边上的高为CD ,若,,0,||1,|C B a C A b a b a b ==⋅=== ,则AD = ( )A .1133a b -B .2233a b -C .3355a b -D .4455a b -【变式训练】1. (2018年高考全国卷Ⅱ文科10)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB= a ,CA = b , a = 1 ,b = 2, 则CD=( )(A )13a + 23b (B )23a +13b (C )35a +45b (D )45a +35b 考点二 向量的坐标运算例2.(2018年高考广东卷文科3)已知向量(1,2),(1,0),(3,4)a b c ===,若λ为实数,()//a b c λ+,则λ=( )A .14 B .12C .1D .2 【变式训练】2.(2018年高考重庆卷理科6)设,x y ∈R ,向量()()()4,2,,1,1,-===y x ,且//,⊥_______=+.(A (B (C )(D )10 【易错专区】问题:平面向理基本定理例.在平行四边形ABCD 中,M,N 分别为DC,BC 的中点,已知,AM c = ,AN d = 试用,c d 表示,AB AD .【课时作业】1.(2018年高考广东卷A 文科第3题)已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线 C.平行于y 轴 D.平行于第二、四象限的角平分线2. (2018年高考广东卷理科3) 若向量BA=(2,3),CA =(4,7),则BC =( )A (-2,-4)B (3,4)C (6,10D (-6,-10)3.(福建省福州市2018年3月高中毕业班质量检查理科)在ABC ∆中,点O 在线段BC 的延长线上,且与点C 不重合,若()x x -+=1,则实数x 的取值范围是( ) A. )0,(-∞ B. ),0(+∞ C. )0,1(- D.)1,0(4.(2018年高考江西卷理科第13题)已知向量(3,1)a = ,(1,3)b = ,(,7)c k = ,若()a c -∥b,则k = .【考题回放】1.(2018年高考广东卷文科3)若向量AB=(1,2),BC =(3,4),则AC =( )A (4,6)B (-4,-6)C (-2,-2)D (2,2)2.(2018年高考全国卷文科9)ABC ∆中,AB 边的高为CD ,若C B a = ,CA b = ,0a b ⋅= ,||1a = ,||2b =,则AD = ( )(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -3. (2018年高考山东卷理科12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R),1412A A A A μ=(μ∈R),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C(c ,o),D(d ,O)(c ,d ∈R)调和分割点A(0,0),B(1,0),则下面说法正确的是( )(A)C 可能是线段AB 的中点 (B)D 可能是线段AB 的中点 (C)C ,D 可能同时在线段AB 上(D) C ,D 不可能同时在线段AB 的延长线上4.(2018年高考山东卷文科12)定义平面向量之间的一种运算“ ”如下:对任意的(,)a m n =,(,)b p q =,令a b mq np =- ,下面说法错误的是( )(A)若a 与b 共线,则0a b = (B)a b b a =(C)对任意的R λ∈,有()()a b a b λλ= (D)2222()()||||a b a b a b +∙=5.(2018年高考湖南卷文科13)设向量,a b 满足||(2,1),a b ==且a b 与的方向相反,则a的坐标为 .。

高考数学一轮复习第2讲 平面向量的基本定理及坐标表示

高考数学一轮复习第2讲 平面向量的基本定理及坐标表示

第2讲 平面向量的基本定理及坐标表示1.平面向量的基本定理如果e 1,e 201不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a 02λ1e 1+λ2e 2.2.平面向量的坐标表示03x 轴、y 轴正方向相同的两个单位向量i ,j 作为基底,对任一向量a ,有唯一一对实数x ,y ,使得a =x i +y j 04(x ,y )叫做向量a 的直角坐标,记作a =(x ,y ),显然i 05(1,0),j 06(0,1),0=07(0,0).3.平面向量的坐标运算 (1)设a =(x 1,y 1),b =(x 2,y 2), 则a +b 08(x 1+x 2,y 1+y 2), a -b 09(x 1-x 2,y 1-y 2), λa 10(λx 1,λy 1). (2)设A (x 1,y 1),B (x 2,y 2), 则AB →11(x 2-x 1,y 2-y 1), |AB→|12 错误!. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔a =λb (λ∈R )⇔13x 1y 2-x 2y 1=0.1.平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组. 2.当且仅当x 2y 2≠0时,a ∥b 与x1x2=y1y2等价,即两个不平行于坐标轴的共线向量的对应坐标成比例.3.若a 与b 不共线,且λa +μb =0,则λ=μ=0.4.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝ ⎛⎭⎪⎪⎫x1+x22,y1+y22. 5.已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝ ⎛⎭⎪⎪⎫x1+x2+x33,y1+y2+y33. 6.A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点共线的充要条件为(x 2-x 1)(y 3-y 1)-(x 3-x 1)(y 2-y 1)=0,或(x 2-x 1)(y 3-y 2)=(x 3-x 2)(y 2-y 1),或(x 3-x 1)(y 3-y 2)=(x 3-x 2)(y 3-y 1).1.已知向量a =(2,4),b =(-1,1),则2a +b 等于( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)答案 D解析 2a +b =2(2,4)+(-1,1)=(3,9),故选D.2.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值是( ) A .0 B .±2 C .2D .-2答案 D解析 由题意可得a ∥b ,所以x 2=4,解得x =-2或2,又因为a ,b 方向相反,所以x =-2.故选D.3.下列各组向量中,可以作为基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎪⎫12,-34答案 B解析 两个不共线的非零向量构成一个基底,A 中向量e 1为零向量,C ,D 中两向量共线,B 中e 1≠0,e 2≠0,且e 1与e 2不共线.故选B.4.设向量a =(-1,2),向量b 是与a 方向相同的单位向量,则b =( ) A .(1,-2) B .⎝ ⎛⎭⎪⎪⎫-55,255 C.⎝ ⎛⎭⎪⎪⎫-15,25 D .⎝ ⎛⎭⎪⎪⎫55,-255 答案 B解析 因为向量b 是与a 方向相同的单位向量,所以b =a|a|=错误!(-1,2)=错误!(-1,2)=⎝⎛⎭⎪⎪⎫-55,255.故选B. 5.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.6.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案 -12解析 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12.考向一 平面向量基本定理的应用例1 (1)如图,点A ,B ,C ,P 均在正方形网格的格点上.若AP →=λAB →+μAC →(λ,μ∈R ),则λ+2μ=( )A .1B .32C .43D .2答案 B解析 设在正方形网格上方向为水平向右,长度为一格的向量为i ,方向为竖直向上,长度为一格的向量为j ,∴AB→=-2i +2j ,AC →=4i ,AP →=i +j ,∵AP →=λAB →+μAC →(λ,μ∈R ),即i +j =λ(-2i +2j )+μ×4i ,i +j =(4μ-2λ)i +2λj ,∴⎩⎪⎨⎪⎧4μ-2λ=1,2λ=1,解得⎩⎪⎨⎪⎧λ=12,μ=12,∴λ+2μ=32.故选B.(2) 如图,以向量OA →=a ,OB →=b 为邻边作平行四边形OADB ,BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.解 ∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=b +⎝ ⎛⎭⎪⎪⎫16a -16b =16a +56b .∵OD →=a +b ,∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23a +23b ,∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .综上,OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b .应用平面向量基本定理表示向量的方法应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止. (2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.1.(2020·北京市朝阳区一模)如图,在△ABC 中,点D ,E 满足BC→=2BD→,CA →=3CE →.若DE →=x AB →+y AC →(x ,y ∈R ),则x +y =( )A .-12B .-13C.12 D .13答案 B解析 △ABC 中,点D ,E 满足BC →=2BD →,CA →=3CE →.DE →=DC →+CE →=12BC →+13CA→=12(AC →-AB →)-13AC →=-12AB →+16AC →,又DE →=x AB →+y AC →(x ,y ∈R ),∴⎩⎪⎨⎪⎧x =-12,y =16,∴x +y =-12+16=-13.故选B.2.(2020·青岛市高三上学期期末)在△ABC 中,AB →+AC →=2AD →,AE →+2DE →=0,若EB→=x AB →+y AC →,则( ) A .y =2x B .y =-2x C .x =2y D .x =-2y答案 D解析 如图所示,∵AB→+AC →=2AD →,∴点D 为边BC 的中点.∵AE →+2DE →=0,∴AE →=-2DE →,∴DE →=-13AD →=-16(AB →+AC →).又DB →=12CB →=12(AB →-AC →),∴EB →=DB →-DE →=12(AB →-AC →)+16(AB →+AC →)=23AB →-13AC →.又EB →=x AB →+y AC →,∴x =23,y =-13,即x =-2y .故选D.考向二 平面向量的坐标运算例2 (1)若向量AB →=DC →=(2,0),AD →=(1,1),则AC →+BC →等于( ) A .(3,1) B .(4,2) C .(5,3)D .(4,3)答案 B解析 AC→=AD →+DC →=(3,1),又BD →=AD →-AB →=(-1,1),则BC →=BD →+DC →=(1,1),所以AC→+BC →=(4,2).(2)(2020·辽宁省辽南协作校二模)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =( )A.⎝ ⎛⎭⎪⎪⎫133,83 B .⎝ ⎛⎭⎪⎪⎫-133,-83C.⎝ ⎛⎭⎪⎪⎫133,43 D .⎝ ⎛⎭⎪⎪⎫-133,-43答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b )=-13(5+4×2,-2+2×3)=⎝⎛⎭⎪⎪⎫-133,-43.故选D. (3)(2020·天津和平区模拟) 如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B .85C .2D .83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD=2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA→=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得λ=65,μ=25,则λ+μ=85.故选B.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.3.若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎪⎪⎫0,52,则c 可用向量a ,b 表示为( )A .c =12a +bB .c =-12a -bC .c =32a +12bD .c =32a -12b答案 A解析设c =x a +y b ,易知⎩⎪⎨⎪⎧ 0=2x -y ,52=x +2y ,∴⎩⎪⎨⎪⎧x =12,y =1.∴c =12a +b .故选A.4.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC→=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫-23,-23B .⎝ ⎛⎭⎪⎪⎫-13,-13C.⎝ ⎛⎭⎪⎪⎫13,13 D .⎝ ⎛⎭⎪⎪⎫23,23答案 A解析 解法一:易知OC→=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC→=3(-1-x ,-1-y )=(-3-3x ,-3-3y ), 由OC →=3EC →,知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以点E 的坐标为⎝ ⎛⎭⎪⎪⎫-23,-23.解法二:易知OC→=OB →-OA →=(-1,-1),由OC →=3EC →得OC →=3(OC →-OE →),所以OE→=23OC→=⎝⎛⎭⎪⎪⎫-23,-23,所以点E的坐标为⎝⎛⎭⎪⎪⎫-23,-23.考向三平面向量共线的坐标表示例3(1)(2020·山东省菏泽市一模)已知向量a,b满足a=(1,2),a+b=(1+m,1),若a∥b,则m=()A.2 B.-2C.12D.-12答案 D解析b=(a+b)-a=(1+m,1)-(1,2)=(m,-1).因为a∥b,所以2m+1=0,解得m=-12.故选D.(2)(2021·海口市海南中学高三月考)已知向量a=(1,1),点A(3,0),点B为直线y=2x上的一个动点,若AB→∥a,则点B的坐标为________.答案(-3,-6)解析由题意,设B(x,2x),则AB→=(x-3,2x),∵AB→∥a,∴x-3-2x=0,解得x =-3,∴B(-3,-6).利用两向量共线解题的技巧(1)一般地,在求与一个已知向量a共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.(2)如果已知两向量共线,求某些参数的取值时,那么利用“若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2=x2y1”解题比较方便.5.已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为________.答案(3,3)解析 解法一:由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA→=(4λ-4,4λ). 又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).解法二:设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).6.(2020·长郡中学高三适应性考试)已知向量AC →=(1,sin α-1),BA →=(3,1),BD →=(2,cos α),若B ,C ,D 三点共线,则tan(2021π-α)=________.答案 -2解析 ∵B ,C ,D 三点共线, ∴BD→=x BC →=x (BA →+AC →), 即(2,cos α)=x (4,sin α),则⎩⎪⎨⎪⎧2=4x ,cosα=xsinα,得x =12,即cos α=12sin α,得tan α=2,则tan(2021π-α)=tan(-α)=-tan α=-2.一、单项选择题1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( ) A .(-3,4) B .(3,4) C .(3,-4) D .(-3,-4)答案 A解析 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),所以b =12(-6,8)=(-3,4).2.(2021·山东聊城月考)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO→的坐标为( ) A.⎝ ⎛⎭⎪⎪⎫-12,5 B .⎝ ⎛⎭⎪⎪⎫12,5C.⎝ ⎛⎭⎪⎪⎫12,-5 D .⎝ ⎛⎭⎪⎪⎫-12,-5答案 D解析 因为AC →=AB →+AD →=(-2,3)+(3,7)=(1,10),所以OC →=12AC →=⎝ ⎛⎭⎪⎪⎫12,5,所以CO →=⎝ ⎛⎭⎪⎪⎫-12,-5.3. 如图,在梯形ABCD 中,DC →=14AB →,BE →=2EC→,且AE →=r AB →+s AD →,则2r +3s =( )A.1 B.2 C.3 D.4 答案 C解析根据题图,由题意可得AE→=AB→+BE→=AB→+23BC→=AB→+23(BA→+AD→+DC→)=13AB→+23(AD→+DC→)=13AB→+23⎝⎛⎭⎪⎪⎫AD→+14AB→=12AB→+23AD→.因为AE→=r AB→+s AD→,所以r=12,s=23,则2r+3s=1+2=3.4.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 A解析由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m=-6”是“a∥(a+b)”的充要条件.5.已知向量a=(2,1),b=(3,4),c=(1,m),若实数λ满足a+b=λc,则λ+m等于()A.5 B.6C.7 D.8答案 B解析由平面向量的坐标运算法则可得a+b=(5,5),λc=(λ,λm),据此有⎩⎪⎨⎪⎧λ=5,λm=5,解得λ=5,m =1,所以λ+m =6.6.(2020·青岛模拟)已知向量a =(1+cos x,2),b =(sin x,1),x ∈⎝ ⎛⎭⎪⎪⎫0,π2,若a ∥b ,则sin x =( )A.45B .35C .25D .255答案 A解析 根据题意,向量a =(1+cos x,2),b =(sin x,1),若a ∥b ,则2sin x =1+cos x ,变形可得cos x =2sin x -1,又sin 2x +cos 2x =1,则有sin 2x +(2sin x -1)2=1,变形可得,5sin 2x -4sin x =0,解得sin x =0或sin x =45,又x ∈⎝⎛⎭⎪⎪⎫0,π2,则sin x =45.故选A.7. (2020·黑龙江省大庆一中三模)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD 中,△ABC 满足“勾3股4弦5”,且AB =3,E 为AD 上一点,BE ⊥AC .若BA→=λBE →+μAC →,则λ+μ的值为( )A .-925 B .725C .1625D .1答案 B解析 由题意建立如图所示平面直角坐标系,因为AB =3,BC =4,则B (0,0),A (0,3),C (4,0),BA→=(0,3),AC →=(4,-3),设BE →=(a,3),因为BE ⊥AC ,所以AC →·BE →=4a -9=0,解得a =94.由BA →=λBE →+μAC →,得(0,3)=λ⎝ ⎛⎭⎪⎪⎫94,3+μ(4,-3),所以⎩⎪⎨⎪⎧94λ+4μ=0,3λ-3μ=3,解得⎩⎪⎨⎪⎧λ=1625,μ=-925,所以λ+μ=725,故选B.8. 如图,扇形的半径为1,圆心角∠BAC =150°,点P 在弧BC 上运动,AP →=λAB →+μAC→,则3λ-μ的最小值是( )A .0B .3C .2D .-1答案 D解析 以A 为原点,AB 所在直线为x 轴,建立如图所示平面直角坐标系,则A (0,0),B (1,0),C (cos150°,sin150°)=⎝ ⎛⎭⎪⎪⎫-32,12,设P (cos θ,sin θ)(0°≤θ≤150°),因为AP →=λAB →+μAC →,所以(cos θ,sin θ)=λ(1,0)+μ⎝⎛⎭⎪⎪⎫-32,12,于是⎩⎪⎨⎪⎧λ-32μ=cosθ,12μ=sinθ,解得λ=cos θ+3sin θ,μ=2sin θ,那么3λ-μ=sin θ+3cos θ=2sin(θ+60°),因为0°≤θ≤150°,所以60°≤θ+60°≤210°,故sin(θ+60°)≥-12,因此3λ-μ的最小值为-1.故选D.二、多项选择题9.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则可作为这个平行四边形所在平面的一组基底的向量组是( )A.AD →与AB →B .DA →与BC → C.CA →与DC →D .OD→与OB → 答案 AC解析 平面内任意两个不共线的向量都可以作为基底,如图,对于A ,AD →与AB →不共线,可作为基底;对于B ,DA→与BC →为共线向量,不可作为基底;对于C ,CA →与DC→是两个不共线的向量,可作为基底;对于D ,OD →与OB →在同一直线上,是共线向量,不可作为基底.10.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2B .12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB →=OB →-OA→=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,则A ,B ,C 三点可构成三角形,故选ABD.11.(2021·广东湛江高三模拟)若点D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC→=a ,CA →=b ,则下列结论正确的是( ) A.AD →=-12a -bB .BE →=a +12bC.CF →=-12a +12bD .EF →=12a答案 ABC解析如图,在△ABC中,AD→=AC→+CD→=-CA→+12CB→=-b-12a,故A正确;BE→=BC→+CE→=a+12b,故B正确;AB→=AC→+CB→=-b-a,CF→=CA→+12AB→=b+12×(-b-a)=-12a+12b,故C正确;EF→=12CB→=-12a,故D不正确.故选ABC.12. (2020·山东潍坊高三模拟)如图所示,点A,B,C是圆O上的三点,线段OC 与线段AB交于圆内一点P,若AP→=λAB→,OC→=μOA→+3μOB→,则()A.P为线段OC的中点时,μ=1 2B.P为线段OC的中点时,μ=1 3C.无论μ取何值,恒有λ=3 4D.存在μ∈R,λ=1 2答案AC解析OP→=OA→+AP→=OA→+λAB→=OA→+λ(OB→-OA→)=(1-λ)OA→+λOB→,因为OP→与OC →共线,所以1-λμ=λ3μ,解得λ=34,故C 正确,D 错误;当P 为OC 的中点时,则OP →=12OC →,则1-λ=12μ,λ=12×3μ,解得μ=12,故A 正确,B 错误.故选AC.三、填空题13.(2020·哈尔滨六中二模)已知向量a =(log 2x,1),b =(log 23,-1),若a ∥b ,则x =________.答案13解析 因为a ∥b ,所以-log 2x =log 23,所以log 2x +log 23=0,所以log 2(3x )=0,所以3x =1,所以x =13.14.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ), AB→=(2,1)-(1,2)=(1,-1), 所以(4-x,2-y )=2(1,-1), 即(4-x,2-y )=(2,-2), 所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).15. 向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的平面直角坐标系,设每个小正方形的边长为1个单位,则A (1,-1),B (6,2),C (5,-1),所以a =AO→=(-1,1),b =OB→=(6,2),c =BC →=(-1,-3). 由c =λa +μb 可得⎩⎪⎨⎪⎧ -1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧ λ=-2,μ=-12,所以λμ=4.16.(2020·济南市高三上学期期末)平行四边形ABCD 中,M 为CD 的中点,点N 满足BN→=2NC →,若AB →=λAM →+μAN →,则λ+μ的值为________. 答案 12解析 因为M 为CD 的中点,点N 满足BN→=2NC →, 所以DM →=12DC →,BN →=23BC →. 又因为AB→=λAM →+μAN →, 所以AB→=λ(AD →+DM →)+μ(AB →+BN →) =λ⎝ ⎛⎭⎪⎪⎫AD →+12DC →+μ⎝⎛⎭⎪⎪⎫AB →+23BC → =λAD →+λ2DC →+μAB →+2μ3BC →.① 又因为在平行四边形ABCD 中,AB→=DC →,AD →=BC →, 所以①整理得,AB →=λAD →+λ2AB →+μAB →+2μ3AD →, 即⎝ ⎛⎭⎪⎪⎫1-λ2-μAB →=⎝ ⎛⎭⎪⎪⎫λ+2μ3AD →. 又因为AB→,AD →不共线,由平面向量基本定理得 ⎩⎪⎨⎪⎧ 1-λ2-μ=0,λ+2μ3=0,解得⎩⎪⎨⎪⎧ λ=-1,μ=32,所以λ+μ=12.。

最新-2018年高考数学一轮复习 第4章平面向量平面向量基本定理及坐标表示课件 精品

最新-2018年高考数学一轮复习 第4章平面向量平面向量基本定理及坐标表示课件 精品

∴存在实数λ,μ使AP=λAM=-λe1-3λe2,
BP=μBN=2μe1+μe2,
故BA=BP-AP=(λ+2μ)e1+(3λ+μ)e2.
而BA=BC+CA=2e1+3e2,
{ λ+2μ=2
由基本定理,得 3λ+μ=3,
4 故AP= 5AM,即AP:PM=4:1.
{4
λ=
解得 μ=
5 .3
5
返回目录
返回目录
(2)向量坐标的求法
已知A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1),即一个 向量的坐标等于该向量的 终点 坐标减去 始点 的
坐标.
(3)平面向量共线的坐标表示
设a=(x1,y1),b=(x2,y2),其中b≠0,则a与b
a= λb
⇔x1y2-x2y1=0 .

返回目录
证明:∵P点在AB上,∴AP与AB共线. ∴AP=tAB(t∈R). ∴OP=OA+AP=OA+tAB=OA+t(OB-OA)=(1-t)OA+tOB. 令λ=1-t,μ=t,则有OP=λOA+μOB,λ+μ=1 (λ,μ∈R).
返回目录
考点二 平面向量的坐标运算
已知A(-2,4),B(3,-1),C(-3,-4).设AB=a,BC=b,CA=c,且 CM=3c,CN=-2b. (1)求3a+b-3c; (2)求满足a=mb+nc的实数m,n; (3)求M,N的坐标及向量MN的坐标.
考点一 平面向量基本定理的应用
如右图,在△ABC中,点M是 边BC的中点,点N在边AC上, 且AN=2NC.AM与BN相交于 点P,求AP:PM的值.

2018届高考数学(全国通用)二轮复习基础小题精品讲义 第4讲 平面向量

2018届高考数学(全国通用)二轮复习基础小题精品讲义 第4讲 平面向量

第4讲 平面向量[明考情]向量是高考的必考考点,难度不大,一般以选择、填空题的形式考查,也会与三角函数、解析几何知识交汇命题. [知考向]1.平面向量的线性运算.2.平面向量的数量积.3.平面向量的综合应用.考点一 平面向量的线性运算要点重组 (1)平面向量的线性运算:加法、减法、数乘. (2)共线向量定理. (3)平面向量基本定理.方法技巧 (1)向量加法的平行四边形法则:共起点;三角形法则:首尾相连;向量减法的三角形法则:共起点连终点.(2)已知O 为平面上任意一点,则A ,B ,C 三点共线的充要条件是存在s ,t ,使得OC →=sOA →+tOB →,且s +t =1,s ,t ∈R .(3)证明三点共线问题,可转化为向量共线解决. 1.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →, ∴AD →=-13AB →+43AC →.2.如图,在△ABC 中,N 是AC 边上一点,且AN →=12NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A.19B.13C.1D.3 答案 B解析 ∵AN →=12NC →,∴AN →=13AC →,∴AP →=mAB →+29AC →=mAB →+23AN →.又B ,N ,P 三点共线, ∴m =13.3.在平面直角坐标系中,已知向量a =(1,2),a -12b =(3,1),c =(x ,3),若(2a +b )∥c ,则x 等于( )A.-2B.-4C.-3D.-1 答案 D解析 ∵a -12b =(3,1),∴a -(3,1)=12b ,则b =(-4,2),∴2a +b =(-2,6). 又(2a +b )∥c ,∴-6=6x ,解得x =-1.4.已知AB ,DC 为梯形ABCD 的两腰,若AD →=(-1,3),BC →=(1-x ,2x ),则x =______. 答案 3解析 由梯形的性质知,AD →∥BC →,且同向, 则-1·2x -3(1-x )=0,解得x =3.5.在△ABC 中,点M 是线段BC 延长线上一点,且满足|BM |=3|CM |,若AM →=xAB →+yAC →,则x -y =________. 答案 -2解析 因为AM →=AC →+CM →=AC →+12BC →,BC →=AC →-AB →,所以AM →=AC →+12(AC →-AB →)=32AC →-12AB →,所以x =-12,y =32,则x -y =-2.考点二 平面向量的数量积 要点重组 (1)a ·b =|a ||b |cos θ. (2)|a |2=a ·a ;cos θ=a ·b|a ||b |. 方法技巧 (1)向量数量积的求法:定义法,几何法(利用数量积的几何意义),坐标法. (2)向量运算的两种基本方法:基向量法,坐标法.6.已知三点A (-1,-1),B (3,1),C (1,4),则向量BC →在向量BA →方向上的投影为( ) A.55B.-55C.21313D.-21313答案 A解析 BC →=(-2,3),BA →=(-4,-2),向量BC →在向量BA →方向上的投影为BC →·BA →|BA →|=-2×(-4)+3×(-2)(-4)2+(-2)2=55,故选A. 7.(2017·全国Ⅱ)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A.a ⊥b B.|a |=|b | C.a ∥b D.|a |>|b |答案 A解析 方法一 ∵|a +b |=|a -b |, ∴|a +b |2=|a -b |2.∴a 2+b 2+2a·b =a 2+b 2-2a·b . ∴a·b =0.∴a ⊥b . 故选A.方法二 利用向量加法的平行四边形法则. 在▱ABCD 中,设AB →=a ,AD →=b , 由|a +b |=|a -b |知,|AC →|=|DB →|,从而四边形ABCD 为矩形,即AB ⊥AD ,故a ⊥b . 故选A.8.(2016·全国Ⅲ)已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC 等于( )A.30°B.45°C.60°D.120° 答案 A解析 |BA →|=1,|BC →|=1, cos ∠ABC =BA →·BC →|BA →||BC →|=32.又∵0°≤∠ABC ≤180°, ∴∠ABC =30°.9.已知在△ABC 中,|AB →+AC →|=|BC →|=2且|AC →|=1,则函数f (t )=|tAB →+(1-t )AC →|的最小值为( )A.12B.32C.233D. 3 答案 B解析 由|AB →+AC →|=|BC →|=|BA →+AC →|=2及|AC →|=1知,在△ABC 中,∠A =90°,|AB →|=3,则f 2(t )=t 2AB →2+2t (1-t )AB →·AC →+(1-t )2AC →2=4⎝⎛⎭⎫t -142+34, 故当t =14时,f (t )min =32.10.(2017·北京)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________. 答案 6解析 方法一 根据题意作出图象,如图所示,A (-2,0),P (x ,y ).由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x ,0). AO →·AP →=|AO →||AP →|cos θ, |AO →|=2,|AP →|=(x +2)2+y 2, cos θ=AQAP =x +2(x +2)2+y 2,所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1]. 所以AO →·AP →的最大值为2+4=6.方法二 如图所示,因为点P 在圆x 2+y 2=1上, 所以可设P (cos α,sin α)(0≤α<2π), 所以AO →=(2,0),AP →=(cos α+2,sin α), AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立. 考点三 平面向量的综合应用方法技巧 (1)以向量为载体的综合问题,要准确使用平面向量知识进行转化,最后归结为不含向量的问题.(2)平面向量常与三角函数、平面几何、解析几何等相结合,利用向量共线或数量积的知识解题.11.向量a =⎝⎛⎭⎫13,tan α,b =(cos α,1),且a ∥b ,则cos ⎝⎛⎭⎫π2+α等于( ) A.13B.-13C.-23D.-223 答案 B 解析 ∵a ∥b , ∴tan α·cos α=13.∴sin α=13.又cos ⎝⎛⎭⎫π2+α=-sin α, ∴cos ⎝⎛⎭⎫π2+α=-13. 12.函数y =tan ⎝⎛⎭⎫π4x -π2的部分图象如图所示,则(OA →+OB →)·AB →等于( )A.6B.4C.-4D.-6 答案 A解析 由y =tan ⎝⎛⎭⎫π4x -π2=0,得π4x -π2=k π, 解得x =4k +2,由题图得A (2,0). 由y =tan ⎝⎛⎭⎫π4x -π2=1,得π4x -π2=k π+π4,解得x =4k +3.由题图得B (3,1). 所以OA →+OB →=(5,1),AB →=(1,1). 所以(OA →+OB →)·AB →=5×1+1×1=6.13.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎝⎛⎭⎫12,4,n =⎝⎛⎭⎫π6,0,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎣⎡⎦⎤π6,π3上的最大值是( ) A.2 2 B.23 C.2 D.4答案 D解析 设点P (x 0,cos x 0),点Q (x ,y ),则OQ →=m ⊗OP →+n =⎝⎛⎭⎫12,4⊗(x 0,cos x 0)+⎝⎛⎭⎫π6,0 =⎝⎛⎭⎫12x 0,4cos x 0+⎝⎛⎭⎫π6,0=⎝⎛⎭⎫12x 0+π6,4cos x 0, 所以点Q 的坐标为⎝⎛⎭⎫12x 0+π6,4cos x 0. 由向量的坐标运算,可得⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,解得y =4cos ⎝⎛⎭⎫2x -π3,所以f (x )=4cos ⎝⎛⎭⎫2x -π3. 又因为x ∈⎣⎡⎦⎤π6,π3,所以⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤0,π3, 由余弦函数的单调性知,当2x -π3=0即x =π6时,函数f (x )取得最大值4.14.(2017·天津)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________. 答案311解析 由题意知,|AB →|=3,|AC →|=2, AB →·AC →=3×2×cos60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,∴AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →) =λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22 =113λ-5=-4,解得λ=311. 15.(2016·上海)在平面直角坐标系中,已知A (1,0),B (0,-1),P 是曲线y =1-x 2上一个动点,则BP →·BA →的取值范围是__________. 答案 [0,1+2]解析 由题意知y =1-x 2表示以原点为圆心,1为半径的上半圆. 设P (cos α,sin α),α∈[0,π],BA →=(1,1),BP →=(cos α,sin α+1), 所以BP →·BA →=cos α+sin α+1=2sin ⎝⎛⎭⎫α+π4+1∈[0,1+2], 所以BP →·BA →的取值范围是[0,1+2].1.对任意向量a ,b ,下列关系式中不恒成立的是( ) A.|a ·b |≤|a ||b | B.|a -b |≤||a |-|b || C.(a +b )2=|a +b |2 D.(a +b )(a -b )=a 2-b 2答案 B解析 选项B 中,当向量a ,b 反向及不共线时, 有|a -b |>|||a |-|b |,故B 中关系式不恒成立.2.已知向量OA →=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点不能构成三角形,则实数k 应满足的条件是( ) A.k =-2 B.k =12C.k =1D.k =-1 答案 C解析 若点A ,B ,C 不能构成三角形,则向量AB →,AC →共线, ∴AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1). ∴1×(k +1)-2k =0,解得k =1.3.已知向量a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ的取值范围是__________.答案 ⎝⎛⎭⎫-53,0∪()0,+∞ 解析 a +λb =(1+λ,2+λ), 由a ·(a +λb )>0,可得λ>-53.又a 与a +λb 不共线,∴λ≠0. 故λ>-53且λ≠0.4.在△ABC 中,有如下命题,其中正确的是____________.(填序号) ①AB →-AC →=BC →; ②AB →+BC →+CA →=0;③若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形; ④若AB →·BC →>0,则△ABC 为锐角三角形. 答案 ②③解析 在△ABC 中,AB →-AC →=CB →,①错误;若AB →·BC →>0,则B 是钝角,△ABC 是钝角三角形,④错误.解题秘籍 (1)熟练掌握向量数量积的概念,并且要从几何意义理解数量积的性质. (2)注意向量夹角的定义和范围.在△ABC 中,AB →和BC →的夹角为π-B ;向量a ,b 的夹角为锐角要和a ·b >0区别开来(不要忽视向量共线情况,两向量夹角为钝角类似处理).1.已知向量a 和b 满足a =(2,5),|b |=1,且a +λb =0,则λ的值为( ) A.2B.±2C.±3D.3 答案 C解析 由已知得a +λb =0, 得a =-λb ,故|λ|=|a||b |=3,故λ的值是±3,故选C.2.设向量a =(-2,1),a +b =(m ,-3),c =(3,1),若(a +b )⊥c ,则cos 〈a ,b 〉等于( ) A.-35B.35C.55D.-255答案 D解析 由(a +b )⊥c ,可得m ×3+(-3)×1=0, 解得m =1,所以a +b =(1,-3), 故b =(a +b )-a =(3,-4).所以cos 〈a ,b 〉=a·b|a||b |=-2×3+1×(-4)(-2)2+12×32+(-4)2=-255,故选D.3.设点O 是面积为4的△ABC 内部一点,且有OA →+OB →+2OC →=0,则△AOC 的面积为( ) A.2B.1C.12D.13答案 B解析 设AB 的中点为D ,∵OA →+OB →+2OC →=0,∴O 为中线CD 的中点, ∴△AOC ,△AOD ,△BOD 的面积相等, ∴△AOC 与△AOB 的面积之比为1∶2, 同理△BOC 与△AOB 的面积之比为1∶2, ∴△AOC 是△ABC 面积的14,∴△AOC 的面积为1.4.在平面直角坐标系内,OA →=(1,4),OB →=(-3,1),且OA →与OB →在直线l 的方向向量上的投影长度相等,则直线l 的斜率为( ) A.-14B.25C.25或-43D.52答案 C解析 直线l 的一个方向向量可设为l =(1,k ), 由题意得⎪⎪⎪⎪⎪⎪OA →·l |l |=⎪⎪⎪⎪⎪⎪OB →·l |l |⇒|1+4k |=|-3+k |, 解得k =25或k =-43.5.已知AB →·BC →=0,|AB →|=1,|BC →|=2,AD →·DC →=0,则|BD →|的最大值为( ) A.255B.2C.5D.2 5 答案 C解析 由题意得AB →⊥BC →,AD →⊥DC →,故点B ,D 都在以AC 为直径的圆上.又|AC →|=5, ∴|BD →|的最大值为 5.6.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题: p 1:|a +b |>1⇔θ∈⎣⎡⎭⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝⎛⎦⎤2π3,π; p 3:|a -b |>1⇔θ∈⎣⎡⎭⎫0,π3; p 4:|a -b |>1⇔θ∈⎝⎛⎦⎤π3,π, 其中的真命题是( )A.p 1,p 4B.p 1,p 3C.p 2,p 3D.p 2,p 4 答案 A解析 由||a +b >1,可得cos θ>-12,∴θ∈⎣⎡⎭⎫0,2π3. 由|a -b |>1,可得cos θ<12,∴θ∈⎝⎛⎦⎤π3,π. 故p 1,p 4正确.7.已知向量a =(sin θ,-2),b =(1,cos θ),且a ⊥b ,则2sin2θ+cos 2θ的值为( ) A.1B.2C.95D.3答案 C解析 由已知可得a ·b =sin θ-2cos θ=0,则tan θ=2,所以2sin2θ+cos 2θ=4sin θcos θ+cos 2θ=4sin θcos θ+cos 2θsin 2θ+cos 2θ=4tan θ+1tan 2θ+1=8+14+1=95.8.已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于( ) A.13B.15C.19D.21 答案 A解析 以点A 为原点,AB →,AC →所在直线分别为x 轴,y 轴,建立如图所示的平面直角坐标系,则A (0,0),B ⎝⎛⎭⎫1t ,0,C (0,t ),AB →=⎝⎛⎭⎫1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →|AC →|=t ⎝⎛⎭⎫1t ,0+4t (0,t )=(1,4), ∴P (1,4),PB →·PC →=⎝⎛⎭⎫1t -1,-4·(-1,t -4)=17-⎝⎛⎭⎫1t +4t ≤17-21t ·4t =13,当且仅当1t=4t ,即t =12时取“=”, ∴PB →·PC →的最大值为13.故选A.9.在矩形ABCD 中,O 是对角线的交点,若BC →=5e 1,DC →=3e 2,则OC →=________.(用e 1,e 2表示)答案 12(5e 1+3e 2) 解析 在矩形ABCD 中,因为点O 是对角线的交点,所以OC →=12AC →=12(AB →+AD →)=12(DC →+BC →)=12(5e 1+3e 2). 10.已知平面向量α,β(α≠0,α≠β)满足|β|=1,且α与β-α的夹角为120°,则|α|的取值范围是________.答案 ⎝⎛⎦⎤0,233 解析 如图,由正弦定理,得|β|sin60°=|α|sin θ(0°<θ<120°), ∴|α|=233sin θ, ∴0<|α|≤233. 11.(2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA→=4,BF →·CF →=-1,则BE →·CE →的值是________.答案 78解析 设BD →=a ,DF →=b ,则由⎩⎪⎨⎪⎧(a +3b )·(-a +3b )=4,(a +b )·(-a +b )=-1, 得b 2=58,a 2=138. ∴BE →·CE →=(a +2b )·(-a +2b )=-a 2+4b 2=-138+4×58=78. 12.如图,给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,点C 在以O 为圆心的劣弧 AB 上运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则xy 的取值范围是________.答案 ⎣⎡⎦⎤0,12 解析 若以OA →为x 轴正方向,OB →为y 轴正方向建立平面直角坐标系,则有A (1,0),B (0,1).因为OC →=xOA →+yOB →,所以C (x ,y ),且x 2+y 2=1(x ,y ≥0).又x 2+y 2=1≥2xy ,所以0≤xy ≤12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二十六 平面向量的基本定理及其坐标表示【高频考点解读】1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件. 【热点题型】题型一 平面向量基本定理例1、(年高考江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.【提分秘籍】1.平面内任意两个不共线的向量都可以作为这个平面的基底.单位正交基底是进行向量运算最简单的一组基底;2.平面内任一向量都可以表示为给定基底的线性组合,并且表示方法是唯一的.但不同的基底表示形式是不同的.3.用基底表示向量的实质是向量的线性运算.4. 应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止; (2)将待求向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.【举一反三】如图所示,在△ABC 中,BD →=12DC →,AE →=3ED →,若AB →=a ,AC →=b ,则BE →等于( )A.13a +13b B .-12a +14b C.12a +14b D .-13a +13b【热点题型】题型二 平面向量的坐标运算例2、若向量a =(1,1),b =(-1,1),c =(4,2),则c =( ) A .3a +bB .3a -bC .-a +3bD .a +3b【提分秘籍】1.相等的向量坐标相同.2.向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关.【举一反三】若平面向量a ,b 满足|a +b |=1,a +b 平行于y 轴,a =(2,-1),则b =________.解析:设b =(x ,y ),则a +b =(x +2,y -1). ∵|a +b |=1,∴(x +2)2+(y -1)2=1.又∵a +b 平行于y 轴,∴x =-2,代入上式,得y =0或2. ∴b =(-2,0)或b =(-2,2). 答案:(-2,0)或(-2,2) 【热点题型】题型三 平面向量共线的坐标表示例3、已知向量a =(2,1),b =(x ,-2),若a ∥b ,则a +b 等于( ) A .(-2,-1) B .(2,1) C .(3,-1) D .(-3,1)解析:由a ∥b 可得2×(-2)-1×x =0,故x =-4,所以a +b =(-2,-1),故选A. 答案:A 【提分秘籍】1.勿将x 1y 2-x 2y 1=0错记成x 1y 2+x 2y 1=0.2.向量共线的坐标表示中,在使用比例关系x 1x 2=y 1y 2时要注意x 2y 2≠0,如果不能确保这点就要使用x 1y 2-x 2y 1=0来解决,不能盲目使用比例关系.【解题技巧】利用两向量共线解题的技巧(1)一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(2)如果已知两向量共线,求某些参数的取值时,则利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.【举一反三】已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.【热点题型】题型四 向量问题坐标化例4、设G 为△ABC 的重心,若△ABC 所在平面内一点P 满足P A →+2BP →+2CP →=0,则|AP →||AG →|的值等于________.【答案】2 【提分秘籍】向量具有代数和几何的双重特征,比如向量运算的平行四边形法则、三角形法则、平面向量基本定理等都可以认为是从几何的角度来研究向量的特征;而引入坐标后,就可以通过代数运算来研究向量,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.在处理很多与向量有关的问题时,坐标化是一种常见的思路,利用坐标可以使许多问题变得更加简捷.【举一反三】给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆孤AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.【解析】以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B ⎝⎛⎭⎫-12,32,【高考风向标】1.(·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92 B .0C .3 D.1522.(·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3)3.(·山东卷) 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.4.(·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tanθ=________.【答案】12 【解析】因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sin θ=cos θ,故tan θ=12.5.(·陕西卷) 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.6.(·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 37.(·湖南卷)已知a,b是单位向量,a·b=0,若向量c满足|c-a-b|=1,则|c|的取值范围是()A.[2-1,2+1] B.[2-1,2+2]C.[1,2+1] D.1,2+28.(·北京卷)向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λμ=________.图1-39.(·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 【答案】A 【解析】∵AB →=(3,-4),∴与AB →方向相同的单位向量为AB →|AB →|=⎝⎛⎭⎫35,-45,故选A.10.(·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.11.(·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.12.(·重庆卷)如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ ⊥P′Q ,求圆Q 的标准方程.图1-913.(·重庆卷) 在平面上,AB 1→⊥AB 2→,|OB 1|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA→|的取值范围是( )A.⎝⎛⎦⎤0,52 B.⎝⎛⎦⎤52,72C.⎝⎛⎦⎤52,2 D.⎝⎛⎦⎤72,2【随堂巩固】1.已知向量a =(m 2,4),b =(1,1),则“m =-2”是“a ∥b ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=( )A .b -12aB .b +12aC .a +12bD .a -12b解析:BE →=BA →+AD →+DE →=-a +b +12a =b -12a .答案:A3.已知向量a =(1,2),b =(-2,m ),若a ∥b ,则|2a +3b |=( ) A.70 B .4 5 C .3 5 D .2 54.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,设向量p =(b -c ,a -c ),q =(c +a ,b ),若p ∥q ,则角A 的大小是( )A .30°B .45°C .60°D .90°解析:∵p ∥q ,∴b ·(b -c )=(a -c )·(a +c ),整理得b 2+c 2-a 2=bc ,故cos A =b 2+c 2-a 22bc=12,故A =60°. 答案:C5.已知向量a =(2,3),b =(-1,2),若ma +nb 与a -2b 共线,则mn =( )A .-2B .2C .-12D.126.已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则m 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)解析:由题意知向量a ,b 不共线,故m ≠3m -22,解得m ≠2.答案:D7.设O 在△ABC 的内部,且有OA →+2OB →+3OC →=0,则△ABC 的面积和△AOC 的面积之比为( )A .3 B.53 C .2 D.32解析:设AC 、BC 的中点分别为M ,N ,则已知条件可化为(OA →+OC →)+2(OB →+OC →)=0,即OM →+2ON →=0,所以OM →=-2ON →,说明M 、O 、N 共线,即O 为中位线MN 上的三等分点,S △AOC =23S △ANC =23·12S △ABC =13S △ABC ,所以S △ABC S △AOC=3.答案:A8.在矩形ABCD 中,AB =1,AD =3,P 为矩形内一点,且AP =32,若AP →=λAB →+μAD→(λ,μ∈R),则λ+3μ的最大值为( )A.32B.62 C.3+34 D.6+3249.对向量a =(a 1,a 2),b =(b 1,b 2)定义一种运算“⊗”:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知动点P ,Q 分别在曲线y =sin x 和y =f (x )上运动,且OQ →=m ⊗OP →+n (其中O 为坐标原点),若向量m =⎝⎛⎭⎫12,3,n =⎝⎛⎭⎫π6,0,则y =f (x )的最大值为( ) A.12B .2C .3 D. 310.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.11.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若P A →=(4,3),PQ →=(1,5),则BC →=________.12.已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.13.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =mb +nc 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c ,14.已知a =(1,0),b =(2,1). (1)求|a +3b |;(2)当k 为何实数时,ka -b 与a +3b 平行,平行时它们是同向还是反向?15.在△ABC 中,点P 是AB 上一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP 的交点为M ,又CM →=tCP →,试求t 的值.∵A ,M ,Q 三点共线,。

相关文档
最新文档