九年级数学总复习:常考考点②:解答题(二)

合集下载

数学九年级知识点例题讲解

数学九年级知识点例题讲解

数学九年级知识点例题讲解一、整数运算整数是由正整数、负整数和零组成的数集。

1. 加法:例题:计算 -15 + 27。

解析:将-15表示为负数27,然后按照正数加法规则进行运算。

答案为12。

2. 减法:例题:计算 35 - (-12)。

解析:将减法转换成加法,即35 + 12。

答案为47。

3. 乘法:例题:计算 (-4) × 9。

解析:将乘法转换成加法,即将-4加9个9。

答案为-36。

4. 除法:例题:计算 -45 ÷ 5。

解析:将除法转换成乘法,即将-45除以5。

答案为-9。

二、分数运算分数是具有分子和分母的有理数,分母不能为零。

1. 分数的加法:例题:计算 3/5 + 7/10。

解析:先找到两个分数的最小公倍数,然后按照公式 (分子1×分母2+分子2×分母1) / (分母1×分母2) 进行计算。

答案为13/10。

2. 分数的减法:例题:计算 5/6 - 2/3。

解析:先找到两个分数的最小公倍数,然后按照公式 (分子1×分母2-分子2×分母1) / (分母1×分母2) 进行计算。

答案为1/6。

3. 分数的乘法:例题:计算 2/3 × 4/5。

解析:将分数的分子相乘,分母相乘,得到结果。

答案为8/15。

4. 分数的除法:例题:计算 3/4 ÷ 2/5。

解析:将除法转换成乘法,即 3/4 × 5/2。

然后按照分数乘法的规则进行计算。

答案为15/8。

三、代数式化简化简代数式是将复杂的代数式简化成简单的形式,常用的方法有合并同类项和因式分解。

1. 合并同类项:例题:化简 3x + 5y - 2x + 4y。

解析:将含有相同变量的项合并在一起,得到 (3x - 2x) + (5y +4y)。

然后进行运算,答案为 x + 9y。

2. 因式分解:例题:将代数式 2x^2 + 6x 分解成最简形式。

解析:找到公因数,即 2x 为公因数,得到 2x(x + 3)。

人教版九年级上册数学解答题专题训练50题(含答案)

人教版九年级上册数学解答题专题训练50题(含答案)

人教版九年级上册数学解答题专题训练50题含答案一、解答题1.解方程:2630x x +-=.2.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).(1)把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C △;(2)把111A B C △绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的22A B C 1△.【答案】(1)见解析(2)见解析【分析】(1)利用平移的性质画图,即对应点都移动相同的距离;(2)利用旋转的性质画图,对应点都旋转相同的角度.【详解】(1)解:如图所示:111A B C △即为所求;(2)如图所示:22A B C 1△即为所求.【点睛】本题主要考查了平移变换、旋转变换作图,做这类题时,理解平移、旋转的性质是关键.3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?【答案】杠杆的旋转中心是点O ,旋转角是∵BOB ′(或∵AOA ′)【分析】根据旋转的定义即可得到杠杆绕支点转动撬起重物的旋转中心,旋转角.【详解】解:杠杆绕支点转动撬起重物,杠杆绕点O 旋转,所以杠杆的旋转中心是点 O ,旋转角是∵BOB ′(或∵AOA ′).【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角.4.已知,如图,直线AB 经过点()0,6B ,点()4,0A ,与抛物线22y ax =+在第一象限内相交于点P ,又知AOP 的面积为6.(1)求a 的值;(2)若将抛物线22y ax =+沿y 轴向下平移,则平移多少个单位才能使得平移后的抛物线经过点A .AOP∆的面积∴=,y3y=再把3P所以(2,3)P代入到把(2,3)5.某商店购进一批小玩具,每个成本价为20元,经调查发现售价为32元时,每天可售出20个,若售价每增加5元,每天销售量减少2个;售价每减少5元,每天销售量增加2个,商店同一天内售价保持不变.(1)若售价增加x元,则销售量是(______________)个(用含x的代数式表示);(2)某日商店销售该玩具的利润为384元,求当天的售价是多少元?(利润=售价-进价)6.2022年3月,举世瞩目的北京冬奥会、冬残奥会胜利闭幕.以下是2022年北京冬奥运会会徽—冬梦、冬残奥会会徽—飞跃、冬奥会吉祥物—冰墩墩及冬残奥会吉祥物—雪容融的卡片,四张卡片分别用编号A,B,C,D来表示,这4张卡片背面完全相同,现将这四张卡片背面朝上,洗匀放好.(1)从中任意抽取一个张卡片,恰好是“冬梦”的概率为;(2)将A冬梦和C冰墩墩的组合或B飞跃和D雪容融的组合称为“一套”,小明和小红依次从中随机抽取一张卡片(不放回),请你用列表或画树状图的方法求他们抽到的两张卡片恰好一套的概率.7.今年是中国共产党建党100周年,中华人民共和国成立72周年!在国庆前夕,社区便民超市调查了某种水果的销售情况获得如下信息:信息一:进价是每千克12元;信息二:当销售价为每千克27元时,每天可售出120千克;若每千克售价每降低2元,则每天的销售量将增加80千克.根据以上信息解答问题:该超市每天想要获得3080元的销售利润,又要尽可能让顾客得到实惠,求这种水果的销售单价应为多少元.【答案】这种水果的销售单价为19元【分析】设这种水果的销售单价为x 元,则有销售量为()120040x -千克,然后根据利润=销售量×单个利润即可求解.【详解】解:设这种水果的销售单价为x 元,由题意得:8.已知抛物线23y ax bx =++经过点()3,0A 和点()4,3B .(1)求这条抛物线所对应的二次函数的关系式;(2)直接写出它的开口方向、对称轴、顶点坐标和最大值(或最小值). 【答案】(1)243y x x =-+(2)开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-【分析】(1)由条件可知点A 和点B 的坐标,代入解析式可得到关于a 和b 的二元一次方程组,解得a 和b ,可写出二次函数解析式;(2)根据a 的值可确定开口方向,并将抛物线的解析式配方后可得对称轴、顶点坐标和二次函数的最值.【详解】(1)解:将点()3,0A 和点()4,3B 代入23y ax bx =++中,得933016433a b a b ++=⎧⎨++=⎩, 解得:14a b =⎧⎨=-⎩, ∵243y x x =-+(2)解:∵243y x x =-+()221x =--,1a =0>, ∵开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-. 【点睛】本题考查二次函数的性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用配方法确定二次函数的顶点坐标和对称轴.9.在一个不透明的盒子里装有黑、白两种颜色的球共30只,这些球除颜色外其余完全相同.搅匀后,小明做摸球实验,他从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据.(1)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(精确到0.1)(2)盒子里白色的球有只;(3)若将m个完全一样的白球放入这个盒子里并摇匀,随机摸出1个球是白球的概率是0.8,求m的值.10.(1)2(1)4x-=;(2)2430-+=;x xx x-=.(3)230x-+=;(4)(6)611.解方程:(用适当的方法解方程)(1)2430x x --=(2)2(1)(1)0x x x ---=(3)2542x x =-(4)2)(35)1x x --=(12.我国快递行业迅速发展,经调查,某快递公司今年2月份投递快递总件数为20万件,4月份投递快递总件数33.8万件,假设该公司每月投递快递总件数的增长率相同.(1)求该公司投递快递总件数的月增长率;(2)若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数是否达到45万件?答:若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数不能达到45万件.【点睛】本题主要考查了一元二次方程应用题中的平均增长率问题,如何正确根据题意列出一元二次方程是解题的关键.13.已知关于x的一元二次方程20ax bx c++=(a≠0)的一个根为,则244ac ba-=_____.14.列方程解应用题:口罩是一种卫生用品,正确佩戴口罩能阻挡有害气体、飞沫、病毒等物质,对进入肺部的空气有一定的过滤作用.据调查,2021年1月份某厂家口罩产量为80万只,2月份比1月份增加了25%,4月份口罩产量为196万只.(1)该厂家2月份的口罩产量为______万只;(2)该厂家2月份到4月份口罩产量的月平均增长率是多少?【答案】(1)100(2)40%【分析】(1)用1月份的产量乘以(1+25%)即可求解;(2)设月平均增长率为x,根据题意列出一元二次方程,解方程即可求解.(1)2月份的产量为:80×(1+25%)=100(万只),故答案为:100;(2)设月平均增长率为x,根据题意有:100×(1+x)2=196,解得:x=40%,(负值舍去),故2月份到4月份的平均增长率为40%.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解答本题的关键.15.“2019淮安清江浦国际半程马拉松赛”的赛事共有三项:A.“半程马拉松2019”、B.“纪念2019”、C.“爱跑2019”.小明和小丽参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“爱跑2019”项目组的概率为____________;(2)用树状图或列表法求小明和小丽被分配到不同项目组的概率.16.如图,∵ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将∵ABC 向右、向下分别平移1个单位长度和5个单位长度得到∵A 1B 1C 1,请画出∵A 1B 1C 1,并写出点A 1,C 1的坐标;(2)请画出∵ABC 关于原点O 成中心对称的∵A 2B 2C 2.【答案】(1)见解析,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)见解析.【分析】(1)利用点平移的坐标变换规律得出对应点的坐标,描点画出图形即可; (2)根据关于原点对称的点的坐标特征得出对应点的坐标,描点画出图形即可. 【详解】(1)如图,∵A 1B 1C 1为所作,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)如图,∵A 2B 2C 2为所作.【点睛】本题考查坐标与图形变换-平移、坐标与图形变换-旋转,熟练掌握坐标与图形变换的规律,正确得出对应点的坐标是解答的关键. 17.解方程 (1)2430x x -+= (2)()()2323x x -=- 【答案】(1)11x =,23x =. (2)13x =,25x =.【分析】(1)先把方程左边分解因式化为()()130x x --=,再化为两个一次方程,再解一次方程即可;(2)先移项,把方程左边分解因式化为()()350x x --=,再化为两个一次方程,再解一次方程即可.【详解】(1)解:2430x x -+=, ∵()()130x x --=, ∵10x -=或30x -=, 解得:11x =,23x =. (2)()()2323x x -=-, 移项得:()()23230x x ---=, ∵()()350x x --=, ∵30x -=,50x -=, 解得:13x =,25x =.【点睛】本题考查的是一元二次方程的解法,掌握“利用因式分解的方法解一元二次方程”是解本题的关键.18.某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小明被抽中的概率.由表可知,共有12种等可能结果,其中小明被抽中的有6种结果,所以小明被抽中的概率为:61 122.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.如图1所示,是一块边长为2的正方形瓷砖,其中瓷砖的阴影部分是半径为1 的扇形.请你用这种瓷砖拼出两种不同的图案,使拼成的图案即是轴对称图形又是中心对称图形,并把它们分别画在下面边长为4的正方形中(要求用圆规画图).图1图2图3【答案】通过对轴对称图形分析作图【详解】试题分析:图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形既轴对称图形又中心对称的图形如图所示考点:旋转作图点评:本题考查了运用旋转,轴对称方法设计图案的问题.关键是熟悉有关图形的对称性,利用中心对称性拼图20.如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形111A B C ∆,直接写出点1A 的坐标;(2)请画出△ABC 绕原点O 顺时针旋转90∘的图形222A B C ∆,直接写出点2A 的坐标; (3)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标.【答案】(1)1(3,1)A -,作图见解析,(2)2(1,1)A -,作图见解析,(3)(2,0)P ,作图见解析.【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2)找出点A 、B 、C 绕原点O 顺时针旋转90°的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A′,连接BA′,与x 轴交点即为P . 【详解】解:(1)如图所示:点1A 的坐标(-3,1); (2)如图所示:点2A 的坐标(1,-1);(3)找出A 的对称点A′(1,-1), 连接BA′,与x 轴交点即为P ;则',PA PA = ('2,A A 重合),'',PA PB PA PB BA ∴+=+=则P 即为所求作的点,如图所示:点P 坐标为(2,0).【点睛】本题考查了利用平移,旋转变换作图、轴对称-最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键.21.已知关于x 的方程2390x x k --+=的两个实根为1x ,2x .且满足122x x =-,试求这个方程的两个实根及k 的值.22.嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2﹣4ac >0的情况,她是这样做的:(下页) 解:由于a ≠0,方程ax 2+bx +c =0变形为: x 2+b ax =﹣ca ,…第一步x 2+b ax +(2b a )2=﹣c a +(2ba )2,…第二步(x +2b a )2=2244b ac a -,…第三步x +2b a =(b 2﹣4ac ≥0),…第四步x 1…第五步(1)嘉淇的解法从第 步开始出现错误;事实上,当b 2﹣4ac ≥0时,方程ax 2+bx +c =0(a ≠0)的求根公式是 . (2)用配方法解方程:2x 2﹣4x +1=0.23.如图,AB 是∵O 的直径,点D 在∵O 上,∵DAB=45°,BC∵AD ,CD∵AB .(1)判断直线CD 与∵O 的位置关系,并说明理由;(2)若∵O的半径为1,求图中阴影部分的面积(结果保留π).24.如图,∵O是△ABC的外接圆,AB是∵O的直径,延长AB到点E,连接EC,使得∵BCE=∵BAC(1)求证:EC是∵O的切线;(2)过点A作AD∵EC的延长线于点D,若AD=5,DE=12,求∵O的半径.25.如图O 是ABD △的外接圆,AB 为直径,点C 是AD 的中点,连结,OC BC 分别交AD 于点F ,E .(1)求证:2ABD C ∠=∠.(2)若10,8AB BC ==,求BD 的长. 【答案】(1)见解析;(2)2.8【分析】(1)由圆周角定理得出ABC CBD ∠=∠,由等腰三角形的性质得出ABC C ∠=∠,则可得出结论;(2)连接AC ,由勾股定理求出6AC =,得出222256(5)OF OF -=--,求出 1.4OF =,则可得出答案.【详解】解:(1)证明:C 是AD 的中点, ∴AC DC =,ABC CBD ∴∠=∠,OB OC =, ABC C ∴∠=∠,ABC CBD C ∴∠=∠=∠,2ABD ABC CBD C ∴∠=∠+=∠;(2)连接AC ,AB 为O 的直径,C 是AD OC ∴⊥2OA OF ∴-25OF ∴- 1.4OF ∴=又O 是AB 2BD OF ==【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系定理,勾股定理,以及三角形的外接圆与圆心,熟练掌握性质及定理是解决本题的关键.26.用公式法解方程:210x x --=.【答案】x =27.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化情况如图所示,当010x ≤≤时,y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为(10,500);当1012x <≤时,累计人数保持不变.(1)求y 与x 之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测棚,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在8分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【答案】(1)25100(010),500(1012)y x x x y x =-+≤≤=<≤;(2)排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)2个【分析】(1)当010x ≤≤时,y 可看作是x 的二次函数,由于抛物线的顶点为(10,500),设y 与x 之间的函数解析式为:y =a (x -10)2+500,把O 点的坐标(0,0)代入即可求得a ;当1012x <≤时,累计人数保持不变,问题即可解决;(2)设第x 分钟时的排队人数为w 人,到校人数减去检测人生,即可得到w 与x 的函数解析式,根据二次函数解析式可求得其最大值=180;要全部学生都完成体温检测,根据题意得500400x -=,求解即可;(3)设从一开始就应该增加m 个检测点,由“在8分钟内让全部考生完成体温检测”,列出不等式,可求解.【详解】解:(1)当010x ≤≤时,设y 与x 之间的函数关系式为:2(10)500y a x =-+,把(0,0)代入上式得:20(010)500a =-+,解得:5a =-,故函数关系式为:25(10)500(010)y x x =--+≤≤当1012x <≤时,累计人数保持不变,即y =500.∵25100(010),500(1012)y x x x y x =-+≤≤=<≤(2)设第x 分钟时的排队等待人数为w 人,由题意可得:40w y x =-∵010x ≤≤时,2225100405605(6)180w x x x x x x =-+-=-+=--+,∵当6x =时,w 的最大值180=,∵当1012x <≤时,50040,w w x =-随x 的增大而减小,20100w ∴≤<,∵排队人数最多时是180人,要全部学生都完成体温检测,根据题意得:500400x -=解得:12.5x =答:排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)设从一开始就应该增加m 个检测点,28.已知:如图.∵ABC和∵DEC都是等边角形.D是BC延长线上一点,AD与BE 相交于点P.AC、BE相交于点M,AD、CE相交于点N.(1)在图∵中,求证:AD=BE;(2)当∵CDE绕点C沿逆时针方向旋转到图∵时,∵APB=.【答案】(1)见解析(2)60°【分析】(1)根据等边三角形性质得出AC=BC,CE=CD,∵ACB=∵ECD=60°,求出∵BCE=∵ACD,根据SAS推出两三角形全等即可;(2)证明∵ACD∵∵BCE(SAS),得到AD=BE,∵DAC=∵EBC,根据三角形的内角和定理,即可解答.【详解】(1)证明:∵∵ABC和∵CDE为等边三角形,∵AC=BC,CD=CE,∵BCA=∵DCE=60°,∵∵ACD=∵BCE,在∵ACD和∵BCE中,AC=BC,∵ACD=∵BCE,CD=CE,∵∵ACD∵∵BCE(SAS),∵AD=BE;(2)解:∵∵ABC和∵CDE都是等边三角形,∵AC=BC,CD=CE,∵ACB=∵DCE=60°,∵∵ACB +∵BCD =∵DCE +∵BCD ,即∵ACD =∵BCE ,在∵ACD 和∵BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ACD ∵∵BCE (SAS ),∵∵DAC =∵EBC , ∵∵AMP =∵BMC ,∵∵APB =∵ACB =60°.故答案为:60°.【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.29.图1,图2是小明家厨房的效果图和装修平面图(长方形),设计师将厨房按使用功能分为三个区域,区域∵摆放冰箱,区域∵为活动区,区域∵为台面区,其中区域∵、区域∵为长方形.现测得FG 与墙面BC 之间的距离等于HG 与墙面CD 之间的距离,比EF 与墙面AB 之间的距离少0.1m .设AE 为x (m ),回答下列问题:(1)用含x 的代数式表示FG ,则FG = m .(2)当AE 为何值时,区域∵的面积能达到2.34m 2?(3)测得JF =0.35m ,在(2)的条件下,在下列几款冰箱中选择安装,要求机身左右和背面与墙面之间的距离至少预留20mm 的散热空间,则选择购买 款冰箱更合适.【答案】(1)3.2-2x(2)0.7(3)B【分析】(1)用含x 的代数式表示出DH 的长,根据FG =AD -AE -DH ,代入化简,可表示出FG 的长.(2)用含x的代数式表示出GH的长,再根据长方形的面积=长×宽,可得到关于x的方程,解方程求出x的值.(3)将x的值代入计算求出EF,EJ的长,根据要求机身左右和背面与墙面之间的距离至少预留20mm的散热空间,利用A,B,C三款冰箱的尺寸,可得答案.【详解】(1)3100mm=3.1m,1900mm=1.9m∵AE=xm,DH=(x-0.1)m,∵FG=AD-AE-DH=3.1-x-(x-0.1)=3.2-2x故答案为:3.2-2x(2)解:GH=1.9-(x-0.1)=(2-x)m,∵(3.2-2x)(2-x)=2.34解之:x1=0.7,x2=2.9(舍去)∵x=0.7,∵当AE=0.7时,区域∵的面积能达到2.34m2.(3)由(2)得EF=GH=2-x=2-0.7=1.3mEJ=EF-JF=1.3-0.35=0.95m,EJ=950mm,AE=0.7=700mm,950-2×20=910mm,∵910>908且700-20>677,∵应该选择B冰箱更合适.故答案为:B.【点睛】一元二次方程的实际应用-几何问题,解题的关键是读懂题意,看清图形,根据题意设未知数,根据等量关系列一元二次方程.30.我们把能二等分多边形面积的直线称为多边形的“好线”.请用无刻度的直尺画出图(1)、图(2)的“好线”.其中图(1)是一个平行四边形,图(2)由一个平行四边形和一个矩形组成(保留画图痕迹,不写画法)【答案】见解析【分析】图(1)过平行四边形的中心O画直线MN即可,图(2)过平行四边形和矩形的中心O,O′画直线MN即可.【详解】解:如图(1),直线MN即为所求(答案不唯一).如图(2),直线MN即为所求.【点睛】本题考查了利用中心对称图形的性质进行作图及平行四边形和矩形的性质,掌握中心对称图形的性质是解题的关键.31.幻方是一种将数字排在正方形格子中,使每行、每列和每条对角线上的数字和都相等的模型.数学课上,老师在黑板上画出一个幻方如图所示,并设计游戏:一人将一颗能粘在黑板上的磁铁豆随机投入幻方内,另一人猜数,若所猜数字与投出的数字相符,则猜数的人获胜,否则投磁铁豆的人获胜.猜想的方法从以下两种中选一种:()1猜“是大于5的数”或“不是大于5的数”;()2猜“是3的倍数”或“不是3的倍数”;如果轮到你猜想,那么为了尽可能获胜,你将选择哪--种猜数方法?怎么猜?为什么?254>>399∵为了尽可能获胜,我会选猜法(【点睛】本题主要考查等可能事件的概率,掌握概率公式,是解题的关键.32.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为_____.33.在平面直角坐标系xOy中,已知抛物线22=-+-+-(m是常数).y x mx m m22(1)求该抛物线的顶点坐标(用含m 代数式表示);(2)如果该抛物线上有且只有两个点到直线1y =的距离为1,直接写出m 的取值范围;(3)如果点1(,)A a y ,2(2,)B a y +都在该抛物线上,当它的顶点在第四象限运动时,总有12y y >,求a 的取值范围. 【答案】(1)抛物线的顶点坐标(m ,m -2);(2)2<m <4;(3)a ≥1.【分析】(1)将二次函数解析式化为顶点式求解.(2)由抛物线上有且只有两个点到直线1y =的距离为1,及抛物线开口向下可得顶点在直线y =0和直线y =2之间,进而求解.(3)由顶点在第四象限可得m 的取值范围,由y 1<y 2可得点B 到对称轴距离大于点A 到对称轴距离,进而求解.(1)∵22222()2y x mx m m x m m =-+-+-=--+-,∵抛物线的顶点坐标(m ,m -2);(2)∵抛物线开口向下,顶点坐标为(m ,m -2),∵0<m -2<2,解得2<m <4;(3)∵抛物线顶点在第四象限,∵020m m ⎧⎨-⎩><,解得0<m <2,∵抛物线开口向下,对称轴为直线x =m 且y 1>y 2,∵2(2,)B a y +在对称轴右侧,∵a +2-m >|a -m |,即a +2-m >a -m 或a +2-m >m -a ,解得a >m -1,∵0<m <2,∵a ≥1.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.34.解方程.21122x x --=-35.如图,半圆O 的直径AB=18,将半圆O 绕点B 顺针旋转45°得到半圆O′,与AB 交于点P .(1)求AP 的长.(2)求图中阴影部分的面积(结果保留π)36.某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:根据图表解答下列问题:(1)在女生的频数分布表中,m= ,n= ;(2)此次调查共抽取了多少名学生?(3)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?12337.操作发现:(1)数学活动课上,小明将已知△ABO(如图1)绕点O旋转180°得到△CDO(如图2).小明发现线段AB与CD有特殊的关系,请你写出:线段AB与CD的关系是.(2)连结AD(如图3),观察图形,试说明AB+AD>2AO.(3)连结BC(如图4),观察图形,直接写出图中全等的三角形:(写出三对即可).【答案】(1)AB=CD,AB//CD;(2)证明见解析;(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB【详解】分析:(1)根据图形旋转的性质即可得出结论;(2)根据三角形三边不等关系得AD+CD>AC,再由旋转的性质得AC=2AO,从而得出结论;(3)根据三角形全等的判定条件可得出结论.详解:(1)根据旋转的性质可得:ΔABO≅ΔCDO,∵AB=CD,∵ABO=∵CDO,∵AB//CD,故线段AB与CD的关系是:AB=CD,AB//CD;(2)在ΔACD中,AD+CD>AC又因为AB=CD,AO=OC所以AB+AD>2AO(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB.点睛:本题考查了旋转的性质,全等三角形的判定和性质等知识点.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.38.某学校为了解学生的体能情况,组织了体育测试,测试项目有A “立定跳远”、B “掷实心球”、C “耐久跑”、D“快速跑”四个.规定:每名学生测试三项,其中A、B为必测项目,第三项C、D中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率;(2)据统计,九(1)班有8名女生抽到了C“耐久跑”项目,她们的成绩如下:7,6,8,9,10,5,8,7∵这组成绩的中位数是_________,平均数是________;∵该班女生丙因病错过了测试,补测抽到了C “耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比∵中的平均数大,则丙同学“耐久跑”的成绩为________;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩39.如图,AC是∵O的弦,过点O作OP∵OC交AC于点P,在OP的延长线上取点B,使得BA=BP.(1)求证:AB是∵O的切线;(2)若∵O的半径为4,PC=AB的长.AB=.对称的点为B.(1)求点B的坐标;∠度数.(2)求AOB41.如图,在平面直角坐标系中,Rt∵ABC的顶点分别是A(﹣3,2)B(0,4)C (0,2).(1)将∵ABC以点C为旋转中心旋转180°,画出旋转后对应的∵A1B1C1;(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.42.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)∵求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;∵求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?【答案】(1)∵y=﹣10x+1000;∵w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w (单位:元) 与售价x (单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题; (3)根据(1)中的关系式化为顶点式即可解答本题.【详解】解:(1)∵由题意可得:y =500﹣(x ﹣50)×10=﹣10x +1000; ∵w =(x ﹣40)[﹣10x +1000]=﹣10x 2+1400x ﹣40000; (2)设销售单价为a 元,210140040000800040(101000)10000a a x ⎧-+-=⎨-+≤⎩, 解得,a =80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)∵y =﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000, ∵当x =70时,y 取得最大值,此时y =9000,答:当售价定为70元时会获得最大利润,最大利润是9000元;【点睛】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键.43.如图所示,直角梯形ABCD 中,ABDC ,7cm AB =,4cm BC CD ==,以AB所在直线为轴旋转一周,得到一个几何体,求它的全面积.【答案】68π【分析】所得几何体为圆锥和圆柱的组合图形,表面积为底面半径为4,母线长的平方等于42+32的圆锥的侧面积和底面半径为4,高为4的圆柱的侧面积和下底面积之和.【详解】解:∵Rt∵AOD 中,AO =7-4=3cm ,OD =4cm , ∵AD 2=42+32=25 ∵AD =5cm ,∵所得到的几何体的表面积为π×4×5+π×4×2×4+π×4×4=68πcm2.故它的全面积为68πcm2.【点睛】本题考查圆锥的计算和圆柱的计算,得到几何体的形状是解决本题的突破点,需掌握圆锥、圆柱侧面积的计算公式.44.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.∵求从袋中摸出一个球是黄球的概率;∵现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于13,问至少取出了多少个黑球?。

九年级数学中考解答题热点分析人教四年制版知识精讲

九年级数学中考解答题热点分析人教四年制版知识精讲

九年级数学中考解答题热点分析人教四年制版【本讲教育信息】一. 教学内容:中考解答题热点分析【典型例题】[例1]如图,抛物线c bx x y ++-=2与x 轴的两个交点分别为)0,(1x A ,)0,(2x B ;与y 轴交于点C ,且421=+x x ,3121=x x 。

求:(1)抛物线的解析式;(2)经过点B 、C 的直线解析式;(3)ABC ∆的面积。

解:(1)依题意,11=x ,32=x ,故4=b ,3-=c∴ 342-+-=x x y(2)由B (3,0),C (0,3-),知BC 解析式为3-=x y(3)321=⋅=∆OC AB S ABC[例2]已知,如图所示,Rt ∆OAB 的斜边OA 在x 轴正半轴上,直角顶点在第一象限,OA=5,5=OB 。

(1)求A 、B 两点的坐标;(2)求经过O 、B 、A 三点且对称轴平行于y 轴的抛物线的解析式,并确定抛物线顶点的坐标。

解:(1)易知A (5,0)由OA OH OB ⋅=2知OH=1,BH=2∴ B (1,2)(2)设c bx ax y ++=2,将A (5,0),B (1,2)和O (0,0)代入 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=02521c b a ∴ 抛物线解析式为x x y 25212+-= ∴ 顶点)825,25([例3]如图,⊙1O 与⊙2O 外切于A ,BC 为两圆的公切线,切点为B 和C ,连结BA 并延长交⊙1O 于D ,过D 点作CB 的平行线交⊙2O 于E 、F 。

(1)求证:CD 是⊙1O 的直径;(2)试判断线段BC 、BE 、BF 的长度大小关系,并证明你的结论。

证明:(1)作公切线MA 交BC 于M ,连AC则MA=MB=MC ,故∠BAC=90° ∴ CD 是直径(2)BE=BC=BF 由BC//FD 知FD 为切线,故∠BDE=∠DAN=∠BAM=∠BEA∴ BAE ∆~BED ∆ ∴ 22BC BD BA BE =⋅=又∵ ∠1=∠CBE=∠F ∴ BF=BE=BC[例4]如图,⊙1O 与⊙2O 相交于A 、B 两点,过B 的直线分别交两圆于C 、D 两点,M 为⋂BD 的中点,AM 交⊙1O 于E ,交CD 于F ,求证:(1)CEF ∆~AMD ∆;(2)MAMF CE EF =22。

(完整word版)初三数学九上一元二次方程所有知识点总结和常考题型测验题,文档

(完整word版)初三数学九上一元二次方程所有知识点总结和常考题型测验题,文档

一元二次方程知识点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:ax2bx c 0(a 0) ,它的特色是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中ax 2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数; c 叫做常数项。

二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如(x a2b的一元二次方程。

依照平方根的定义可知,x a 是b的平方根,当 b 0 时,)x a b , x a b ,当b<0时,方程没有实数根。

2、配方法 :配方法的理论依照是完满平方公式a22ab b 2( a b) 2,把公式中的a看做未知数x,并用 x 代替,那么有 x22bx b 2(x b) 2。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上 1次项的系数的一半的平方,最后配成完满平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程ax2bx c 0( a0)的求根公式:x b b24ac (b24ac0)2aa,一次项的系数为 b,常公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为数项的系数为 c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为 0,尔后看看可否能用提取公因式,公式法〔这里指的是分解因式中的公式法〕或十字相乘,若是可以,就可以化为乘积的形式5、韦达定理利用韦达定理去认识,韦达定理就是在一元二次方程中,二根之和x1 x2b,二根之积x1x2 c 。

a a利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用三、一元二次方程根的鉴识式根的鉴识式一元二次方程 ax2bx c0(a 0) 中, b24ac 叫做一元二次方程ax 2bx c 0(a0) 的根的鉴识式,平时用“〞来表示,即 b 24acI.当△ >0 时,一元二次方程有2个不相等的实数根;II.当△ =0 时,一元二次方程有2个相同的实数根;III.当△ <0 时,一元二次方程没有实数根四、一元二次方程根与系数的关系若是方程 ax 2bx c 0(a0) 的两个实数根是x1, x2,那么 x1 x2b,x1 x2c。

人教版九年级数学下册反比例函数知识点归纳及练习含答案

人教版九年级数学下册反比例函数知识点归纳及练习含答案

人教版九年级数学下册反比例函数知识点归纳及练习含答案在九年级数学下册教材中,反比例函数是一个重要的知识点。

它是函数的一种特殊形式,具有一些独特的性质和应用。

下面将对反比例函数的知识点进行归纳总结,并提供一些相关的练习题及答案。

一、反比例函数的定义反比例函数是指一个函数,它的函数关系是如下形式:y = k/x其中,k是常数,x和y分别是自变量和因变量。

二、反比例函数的性质1. 定义域和值域:对于反比例函数 y = k/x,其定义域是除数x不能为零的实数集,值域为除数k不能为零的实数集。

2. 反比例函数的图像:反比例函数的图像是一条经过原点(0,0)的曲线,其形状根据k的正负不同而有所变化。

当k>0时,反比例函数为一条开口向右上方的双曲线;当k<0时,反比例函数为一条开口向右下方的双曲线。

3. 反比例函数的性质:a) 反比例函数的图像关于y轴和x轴对称。

b) 当x>0时,y随着x的增大而减小;当x<0时,y随着x的减小而增大。

c) 当x等于1时,y等于k,这是反比例函数的特殊点。

d) 反比例函数可以通过求导得到,导数的值为-ky^2。

三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是几个常见的应用场景:1. 速度与时间的关系:当一个物体以恒定的速度运动时,它所用的时间与距离成反比。

2. 人均所得与人口数量的关系:当一个国家人口增加时,人均所得会相应减少。

3. 工人数量与完成一项任务所需时间的关系:当工人的数量增加时,完成一项任务所需的时间会相应减少。

四、练习题及答案1. 以下哪个函数是反比例函数?A. y = 2xB. y = x^2C. y = 3/xD. y = x + 1答案:C. y = 3/x2. 反比例函数 y = k/x 中,若k > 0,则函数的图像是一条__________的双曲线。

答案:开口向右上方3. 若反比例函数的定义域为(-∞, -4) ∪ (4, +∞),则函数的值域为__________。

九年级下册数学知识点归纳总结(附习题)

九年级下册数学知识点归纳总结(附习题)

第二十六章反比例函数26.1知识点1反比例函数的定义一般地,形如ky〔k为常数,k0〕的函数称为反比例函数,它可以从以下几个x方面来理解:⑴x是自变量,y是x的反比例函数;⑵自变量x的取值X围是x0的一切实数,函数值的取值X围是y0;⑶比例系数k0是反比例函数定义的一个重要组成局部;⑷反比例函数有三种表达式:①k y〔k0〕,x② 1ykx〔k0〕,③xyk〔定值〕〔k0〕;⑸函数ky〔k0〕与xkx〔k0〕是等价的,所以当y是x的反比例函数时,yx也是y的反比例函数。

〔k为常数,k0〕是反比例函数的一局部,当k=0时,ky,就不是反比例函数x了。

26.2知识点2用待定系数法求反比例函数的解析式由于反比例函数ky〔k0〕中,只有一个待定系数,因此,只要一组对应值,就x可以求出k的值,从而确定反比例函数的表达式。

26.3知识点3反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量x0,函数值y0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越准确;③连线时,必须根据自变量大小从左至右〔或从右至左〕用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。

26.4知识点4反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:1反比例函数k y〔k0〕xk的符号k0k0图像①x的取值X围是①x的取值X围是x0,y的取值X围是x0,y的取值X围是y0y0性质②当k0时,函数②当k0时,函数图像的两个分支分别在图像的两个分支分别在第一、第三象限,在每第二、第四象限,在每个象限内,y随x的增大个象限内,y随x的增大而减小。

人教版九年级数学中考总复习 第2课时 整式及因式分解 含解析及答案

人教版九年级数学中考总复习   第2课时 整式及因式分解  含解析及答案

第2课时整式及因式分解知能优化训练一、中考回顾1.(2021云南中考)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n2.(2021安徽中考)计算x2·(-x)3的结果是()A.x6B.-x6C.x5D.-x53.(2021四川成都中考)下列计算正确的是()A.3mn-2mn=1B.(m2n3)2=m4n6C.(-m)3·m=m4D.(m+n)2=m2+n24.(2021江苏连云港中考)下列运算正确的是()A.3a+2b=5abB.5a2-2b2=3C.7a+a=7a2D.(x-1)2=x2+1-2x5.(2021天津中考)计算4a+2a-a的结果等于.a6.(2021云南中考)分解因式:x3-4x=.(x+2)(x-2)二、模拟预测1.下列计算正确的是()A.3a2-a2=2B.2a3·a3=2a9C.a8÷a2=a6D.(-2a)3=-2a22.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.63.若关于x的二次三项式x2-kx-b可因式分解为(x-1)(x-3),则k+b的值为()A.-1B.1C.-7D.74.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底部为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.4m cmB.4n cmC.2(m+n)cmD.4(m-n)cm5.若3x m+5y2与x3y n的和是单项式,则n m=.6.按照下图所示的操作步骤,若输入x的值为2,则输出的值为.7.若(a+1)2+|b-2|=0,则a(x2y+xy2)-b(x2y-xy2)的化简结果为.3x2y+xy28.先化简,再求值:(2x+3)(2x-3)-4x(x-1)+(x-2)2,其中,x=-√3.=4x2-9-4x2+4x+x2-4x+4=x2-5,当x=-√3时,原式=(-√3)2-5=3-5=-2.。

人教版九年级上册期末专题复习:一元二次方程全章热门考点与重点题型解题技巧整理((含答案解析)

人教版九年级上册期末专题复习:一元二次方程全章热门考点与重点题型解题技巧整理((含答案解析)

一元二次方程全章热门考点与重点题型解题技巧整理(解析) 考点1:巧用一元二次方程的定义及相关概念求值考点分析:巧用一元二次方程的定义及相关概念求值主要体现在:利用定义或项的概念求字母的值,利用根的概念求字母或代数式的值,利用根的概念解决探究性问题等. 题型1 利用一元二次方程的定义确定字母的取值1.已知(m -3)x 2+m +2x =1是关于x 的一元二次方程,则m 的取值范围是( D )A .m ≠3B .m ≥3C .m ≥-2D .m ≥-2且m ≠3点拨:由题意,得⎩⎪⎨⎪⎧m -3≠0,m +2≥0,解得m ≥-2且m ≠3.2.已知关于x 的方程(m +1)xm 2+1+(m -2)x -1=0.(1)m 取何值时,它是一元二次方程?并写出这个方程;(2)m 取何值时,它是一元一次方程?解:(1)当⎩⎪⎨⎪⎧m 2+1=2,m +1≠0时,它是一元二次方程,解得m =1. 当m =1时,原方程可化为2x 2-x -1=0.(2)当⎩⎪⎨⎪⎧m -2≠0,m +1=0或者当m +1+(m -2)≠0且m 2+1=1时,它是一元一次方程.解得m =-1或m =0.故当m =-1或m =0时,它是一元一次方程.题型2 利用一元二次方程的项的概念求字母的取值1.若一元二次方程(2a -4)x 2+(3a +6)x +a -8=0没有常数项,则a 的值为___8___.点拨:由题意得⎩⎪⎨⎪⎧a -8=0,2a -4≠0.解得a =8. 2.已知关于x 的一元二次方程(m -1)x 2+5x +m 2-1=0的常数项为0,求m 的值.解:由题意,得⎩⎪⎨⎪⎧m 2-1=0,m -1≠0,解得m =-1.题型3 利用一元二次方程的根的概念求字母或代数式的值1.已知关于x的方程x2+bx+a=0的一个根是-a(a≠0),则a-b的值为(A) A.-1 B.0 C.1 D.2点拨:∵关于x的方程x2+bx+a=0的一个根是-a(a≠0),∴a2-ab+a=0. ∴a(a-b+1)=0. ∵a≠0,∴a-b=-1.2.已知关于x的一元二次方程(k+4)x2+3x+k2-16=0的一个根为0,求k的值.解:把x=0代入(k+4)x2+3x+k2-16=0,得k2-16=0,解得k1=4,k2=-4. ∵k+4≠0,∴k≠-4,∴k=4.3.已知实数a是一元二次方程x2-2 016x+1=0的根,求代数式a2-2 015a-a2+1 2 016的值.解:∵实数a是一元二次方程x2-2 016x+1=0的根,∴a2-2 016a+1=0.∴a2+1=2 016a,a2-2 016a=-1.∴a2-2 015a-a2+12 016=a2-2 015a-2 016a2 016=a2-2 015a-a=a2-2 016a=-1题型4 利用一元二次方程根的概念解决探究性问题1.已知m,n是方程x2-2x-1=0的两个根,是否存在实数a使(7m2-14m+a)(3n2-6n-7)的值等于8?若存在,求出a的值;若不存在,请说明理由.解:由题意可知m2-2m-1=0,n2-2n-1=0,∴(7m2-14m+a)(3n2-6n-7)=[7(m2-2m)+a][3(n2-2n)-7]=(7+a)(3-7)=-4(a +7),由-4(a+7)=8得a=-9,故存在满足要求的实数a,且a的值等于-9.考点2:一元二次方程的解法归类考点分析:解一元二次方程时,主要考虑降次,其解法有直接开平方法、因式分解法、配方法和公式法等.在具体的解题过程中,结合方程的特点选择合适的方法,往往会达到事半功倍的效果.类型1 限定方法解一元二次方程方法1 形如(x +m )2=n (n ≥0)的一元二次方程用直接开平方法求解1.方程4x 2-25=0的解为( C )A .x =25B .x =52C .x =±52D .x =±252.用直接开平方法解下列一元二次方程,其中无解的方程为( C )A .x 2-5=5B .-3x 2=0C .x 2+4=0D .(x +1)2=0方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解1.用配方法解方程x 2+3=4x ,配方后的方程变为( C )A .(x -2)2=7B .(x +2)2=1C .(x -2)2=1D .(x +2)2=22.解方程:x 2+4x -2=0.解:x 2+4x -2=0,x 2+4x =2,(x +2)2 =6,x +2 =±6,x 1=-2+6,x 2=-2- 6.3.已知x 2-10x +y 2-16y +89=0,求x y的值. 解:x 2-10x +y 2-16y +89=0,(x 2-10x +25)+(y 2-16y +64) =0,(x -5)2+(y -8)2 =0,∴x =5,y =8,∴x y =58.方法3 能化成形如(x +a )(x +b )=0的一元二次方程用因式分解法求解1.一元二次方程x (x -2)=2-x 的根是( D )A .-1B .0C .1和2D .-1和22.解下列一元二次方程:(1)x 2-2x =0;(2)16x 2-9=0;(3)4x 2=4x -1.解:(1)x 2-2x =0,x (x -2)=0,x 1=0,x 2=2.(2)16x 2-9=0,(4x +3)(4x -3)=0,x 1=-34,x 2=34. (3)4x 2=4x -1,4x 2-4x +1=0,(2x -1)2=0,x 1=x 2=12. 方法4 如果一个一元二次方程易于化为它的一般式,则用公式法求解1.用公式法解一元二次方程x 2-14=2x ,方程的解应是( B ) A .x =-2±52 B .x =2±52C .x =1±52D .x =1±322.用公式法解下列方程.(1)3(x 2+1)-7x =0;(2)4x 2-3x -5=x -2.解:(1)3(x 2+1)-7x =0,3x 2-7x +3=0,∴b 2-4ac =(-7)2-4×3×3=13,∴x =7±132×3=7±136.∴x 1=7+136,x 2=7-136. (2)4x 2-3x -5=x -2,4x 2-4x -3=0,∴b 2-4ac =(-4)2-4×4×(-3)=64,∴x =4±642×4, ∴x 1=32,x 2=-12.类型2 选择合适的方法解一元二次方程1.方程4x 2-49=0的解为( C )A .x =27B .x =72C .x 1=72,x 2=-72D .x 1=27,x 2=-272.一元二次方程x 2-9=3-x 的根是( C )A .3B .-4C .3和-4D .3和43.方程(x +1)(x -3)=5的解是( B )A .x 1=1,x 2=-3B .x 1=4,x 2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=24.解下列方程.(1)3y 2-3y -6=0;(2)2x 2-3x +1=0.解:(1)3y 2-3y -6=0,y 2-y -2=0,y 2-y +14-94=0,⎝⎛⎭⎫y -122=94,y -12=±32, ∴y 1=2,y 2=-1.(2)2x 2-3x +1=0,b 2-4ac =(-3)2-4×2×1=1,∴x =3±12×2,即x 1=1,x 2=12. 类型3 用特殊方法解一元二次方程方法1 构造法1.解方程:6x 2+19x +10=0.解:将原方程两边同乘6,得(6x )2+19×(6x )+60=0.解得6x =-15或6x =-4.∴x 1=-52,x 2=-23. 2.若m ,n ,p 满足m -n =8,mn +p 2+16=0,求m +n +p 的值.解:因为m -n =8,所以m =n +8.将m =n +8代入mn +p 2+16=0中,得n (n +8)+p 2+16=0,所以n 2+8n +16+p 2=0,即(n +4)2+p 2=0.又因为(n +4)2≥0,p 2≥0,所以⎩⎪⎨⎪⎧n +4=0,p =0,解得⎩⎪⎨⎪⎧n =-4,p =0.所以m =n +8=4, 所以m +n +p =4+(-4)+0=0.方法2 换元法a .整体换元1.若(a +b )(a +b +2)-8=0,则a +b 的值为( A )A .-4或2B .3或-32C .-2或4D .3或-22.已知x 2-2xy +y 2+x -y -6=0,则x -y 的值是( B )A .-2或3B .2或-3C .-1或6D .1或-63.解方程:(x -2)2-3(x -2)+2=0.解:(x -2)2-3(x -2)+2=0.设x -2=y ,原方程化为y 2-3y +2=0,解得y 1=1,y 2=2.当y =1时,x -2=1,x =3,当y =2时,x -2=2,x =4.∴原方程的解为x 1=3,x 2=4.4.解方程:(x -1)(x -2)(x -3)(x -4)=48.解:原方程即[(x -1)(x -4)][(x -2)(x -3)]=48,即(x 2-5x +4)(x 2-5x +6)=48.设y =x 2-5x +5,则原方程变为(y -1)(y +1)=48.解得y 1=7,y 2=-7.当x 2-5x +5=7时,解得x 1=5+332,x 2=5-332; 当x 2-5x +5=-7时,Δ=(-5)2-4×1×12=-23<0,方程无实数根.∴原方程的根为x 1=5+332,x 2=5-332.b .降次换元1.解方程:6x 4-35x 3+62x 2-35x +6=0.解:经验证x =0不是方程的根,原方程两边同除以x 2,得6x 2-35x +62-35x +6x 2=0, 即6⎝⎛⎭⎫x 2+1x 2-35⎝⎛⎭⎫x +1x +62=0. 设y =x +1x ,则x 2+1x 2=y 2-2, 原方程可变为6(y 2-2)-35y +62=0.解得y 1=52,y 2=103. 当x +1x =52时,解得x 1=2,x 2=12; 当x +1x =103时,解得x 3=3,x 4=13. 经检验,均符合题意.∴原方程的解为x 1=2,x 2=12,x 3=3,x 4=13.c .倒数换元1.解方程:x -2x -3x x -2=2.解:设x -2x =y ,则原方程化为y -3y=2, 整理得y 2-2y -3=0,∴y 1=3,y 2=-1.当y =3时,x -2x=3,∴x =-1. 当y =-1时,x -2x=-1,∴x =1. 经检验,x =±1都是原方程的根,∴原方程的根为x 1=1,x 2=-1.方法3 特殊值法1.解方程:(x -2 013)(x -2 014)=2 015×2 016.解:方程组⎩⎪⎨⎪⎧x -2 013=2 016,x -2 014=2 015的解一定是原方程的解,解得x =4 029. 方程组⎩⎪⎨⎪⎧x -2 013=-2 015,x -2 014=-2 016的解也一定是原方程的解,解得x =-2.∵原方程最多有两个实数解,∴原方程的解为x1=4 029,x2=-2.点拨:解本题也可采用换元法.设x-2 014=t,则x-2 013=t+1,原方程可化为t(t +1)=2 015×2 016,先求出t,进而求出x.考点3:根的判别式的四种常见应用考点分析:对于一元二次方程ax2+bx+c=0(a≠0),式子b2-4ac的值决定了一元二次方程的根的情况,利用根的判别式可以不解方程直接判断方程根的情况,反过来,利用方程根的情况可以确定方程中待定系数的值或取值范围.题型1 利用根的判别式判断一元二次方程根的情况1.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是(C)A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解点拨:当k=0时,方程为一元一次方程,解为x=1;当k≠0时,因为Δ=(1-k)2-4k·(-1)=k2+2k+1=(k+1)2≥0,所以当k=1时,Δ=4,方程有两个不相等的实数解;当k=-1时,Δ=0,方程有两个相等的实数解;当k≠0时,Δ≥0,方程总有两个实数解.故选C.2.已知方程x2-2x-m=0没有实数根,其中m是实数,试判断方程x2+2mx+m(m+1)=0有无实数根.解:∵x2-2x-m=0没有实数根,∴Δ1=(-2)2-4·(-m)=4+4m<0,即m<-1.对于方程x2+2mx+m(m+1)=0,Δ2=(2m)2-4·m(m+1)=-4m>4,∴方程x2+2mx+m(m+1)=0有两个不相等的实数根.题型2 利用根的判别式求字母的值或取值范围1已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.解:(1)根据题意得b2-4ac =4-4(2k -4)=20-8k>0,解得k<52. (2)由k 为正整数,可得k =1或k =2.利用求根公式可求出方程的根为x =-1±5-2k ,∵方程的根为整数,∴5-2k 为完全平方数,∴k 的值为2.2.已知关于x 的一元二次方程mx 2-(m +2) x +2=0,(1)证明:不论m 为何值,方程总有实数根;(2)m 为何整数时,方程有两个不相等的正整数根.(1)证明:Δ=[-(m +2)]2-8m =m 2-4m +4=(m -2)2.∵不论m 为何值,(m -2)2≥0,即Δ≥0.∴不论m 为何值,方程总有实数根.(2)解:解关于x 的一元二次方程mx 2-(m +2)x +2=0,得x =m +2±Δ2m =m +2±(m -2)2m .∴x 1=2m ,x 2=1. ∵方程的两个根都是正整数,∴2m是正整数,∴m =1或m =2. 又∵方程的两个根不相等,∴m ≠2,∴m =1.题型3 利用根的判别式求代数式的值1.已知关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,求m -1(2m -1)2+2m的值.解:∵关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,∴Δ=(2m -1)2-4×1×4=0,即2m -1=±4.∴m =52或m =-32. 当m =52时,m -1(2m -1)2+2m =52-116+5=114;当m =-32时,m -1(2m -1)2+2m =-32-116-3=-526.2.已知关于x 的一元二次方程mx 2+nx -2=0(m ≠0)有两个相等的实数根,求mn 2(m +4)2+n 2-16的值. 解:由题意可知,b 2-4ac =n 2+8m =0,∴8m =-n 2,∴mn 2(m +4)2+n 2-16=mn 2m 2+8m +16+n 2-16=mn 2m 2+8m +n 2=mn 2m 2-n 2+n 2=mn 2m 2. ∵m ≠0,∴mn 2m 2=n 2m=-8.题型4 利用根的判别式确定三角形的形状1.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程(b -c )x 2+2(a -b )x +b -a =0有两个相等的实数根,试判断此三角形的形状解:∵一元二次方程(b -c )x 2+2(a -b )x +b -a =0有两个相等的实数根, ∴[2(a -b )]2-4(b -c )·(b -a )=0,∴4(a -b )(a -c )=0,∴a =b 或a =c ,∴此三角形是等腰三角形2.已知a ,b ,c 是三角形的三边长,且关于x 的一元二次方程(a +c )x 2+bx +a -c 4=0有两个相等的实数根,试判断此三角形的形状.解:∵方程(a +c)x2+bx +a -c 4=0有两个相等的实数根, ∴Δ=b2-4(a +c)·a -c 4=b2-(a2-c2)=0, 即b2+c2=a2,∴此三角形是直角三角形.考点4:一元二次方程与三角形的综合考点分析:一元二次方程是初中数学重点内容之一,常常与其他知识结合,其中一元二次方程与三角形的综合应用就是非常重要的一种,主要考查一元二次方程的根的概念、根的判别式的应用、一元二次方程的解法及与等腰三角形、直角三角形的性质等知识的综合运用.题型1 一元二次方程与三角形三边关系的综合1.三角形的两边长分别为4和6,第三边长是方程x2-7x+12=0的解,则第三边的长为(C)A.3B.4C.3或4D.无法确定2.根据一元二次方程根的定义,解答下列问题.一个三角形两边长分别为3 cm和7 cm,第三边长为a cm,且整数a满足a2-10a+21=0,求三角形的周长.解:由已知可得4<a<10,则a可取5,6,7,8,9.(第一步)当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.同理可知a=6,a=8,a=9都不是方程的根,a=7是方程的根.(第二步)∴△ABC的周长是3+7+7=17(cm).上述过程中,第一步是根据三角形任意两边之和大于第三边,任意两边之差小于第三边,第二步应用的数学思想是__分类讨论_,确定a值的大小是根据_方程根的定义__.题型2 一元二次方程与直角三角形的结合1.已知一个直角三角形的两条直角边的长恰好是方程x2-17x+60=0的两个根,则这个直角三角形的斜边长为____13____.2.已知a,b,c分别是△ABC的三边,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,试判断△ABC的形状,并说明理由.解:△ABC 是直角三角形.理由如下: 原方程可化为(b +c )x 2-2m ax +cm -bm =0, Δ=4ma 2-4m (c -b )(c +b )=4m (a 2+b 2-c 2). ∵m >0,且原方程有两个相等的实数根,∴a 2+b 2-c 2=0,即a 2+b 2=c 2. ∴△ABC 是直角三角形.3.已知△ABC 的三边a ,b ,c 中,a =b -1,c =b +1,又已知关于x 的方程4x 2-20x +b +12=0的根恰为b 的值,求△ABC 的面积.解:将x =b 代入原方程,整理得4b 2-19b +12=0,解得b 1=4,b 2=34.当b 1=4时,a=3,c =5,∵32+42=52,即a 2+b 2=c 2,∴△ABC 为直角三角形,且∠C =90°.∴S △ABC =12ab =12×3×4=6;当b 2=34时,a =34-1<0,不合题意,舍去.因此,△ABC 的面积为6.题型3 一元二次方程与等腰三角形的综合1.等腰三角形一条边的长为3,另两条边的长是关于x 的一元二次方程x 2-12x +k =0的两个根,则k 的值是( B )A .27B .36C .27或36D .182.已知关于x 的一元二次方程(a +c )x 2+2bx +(a -c )=0,其中a ,b ,c 分别为△ABC 的三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (3)如果△ABC 是等边三角形,试求这个一元二次方程的根. 解:(1)△ABC 是等腰三角形.理由如下:把x =-1代入原方程,得a +c -2b +a -c =0,所以a =b ,故△ABC 是等腰三角形. (2)△ABC 是直角三角形.理由如下:方程有两个相等的实数根,则Δ=(2b )2-4(a +c )(a -c )=0,所以b 2-a 2+c 2=0,所以a 2=b 2+c 2,故△ABC 是直角三角形.(3)如果△ABC 是等边三角形,则a =b =c ,所以方程可化为2ax 2+2ax =0,所以2ax (x +1)=0,所以方程的解为x 1=0,x 2=-1.考点5:根与系数的关系的四种应用类型考点分析:利用一元二次方程的根与系数的关系可以不解方程,仅通过系数就反映出方程两根的特征.在实数范围内运用一元二次方程的根与系数的关系时,必须注意Δ≥0这个前提,而应用判别式Δ的前提是二次项系数不为0.因此,解题时要注意分析题目中有没有隐含条件Δ≥0和a ≠0.题型1 利用根与系数的关系求代数式的值1.设方程4x 2-7x -3=0的两根为x 1,x 2,不解方程求下列各式的值. (1)(x 1-3)(x 2-3);(2)x 2x 1+1+x 1x 2+1;(3)x 1-x 2.1.解:根据一元二次方程根与系数的关系,有 x 1+x 2=74,x 1x 2=-34.(1)(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9=-34-3×74+9=3.(2)x 2x 1+1+x 1x 2+1=x 2(x 2+1)+x 1(x 1+1)(x 2+1)(x 1+1)= x 12+x 22+x 1+x 2x 1x 2+x 1+x 2+1=(x 1+x 2)2-2x 1x 2+(x 1+x 2)x 1x 2+(x 1+x 2)+1=⎝⎛⎭⎫742-2×⎝⎛⎭⎫-34+74-34+74+1=10132.(3)∵ (x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫742-4×⎝⎛⎭⎫-34=9716, ∴x 1-x 2=±9716=±1497.题型2 利用根与系数的关系构造一元二次方程1.构造一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数. 解:设方程5x 2+2x -3=0的两根为x 1,x 2,则x 1+x 2=-25,x 1x 2=-35.设所求方程为y 2+py +q =0,其两根为y 1,y 2, 令y 1=-1x 1,y 2=-1x 2.∴p =-(y 1+y 2)=-⎝⎛⎭⎫-1x 1-1x 2=1x 1+1x 2=x 1+x 2x 1x 2=23,q =y 1y 2=⎝⎛⎭⎫-1x 1⎝⎛⎭⎫-1x 2=1x 1x 2=-53. ∴所求的方程为y 2+23y -53=0,即3y 2+2y -5=0.题型3 利用根与系数的关系求字母的值或取值范围1.已知关于x 的一元二次方程2x 2-mx -2m +1=0的两根的平方和是294,求m 的值..解:设方程两根为x 1,x 2,由已知得⎩⎨⎧x 1+x 2=m2,x 1x 2=-2m +12.∵x 12+x 22=(x 1+x 2)2-2x 1x 2=294, 即⎝⎛⎭⎫m 22-2×-2m +12=294, ∴m 2+8m -33=0. 解得m 1=-11,m 2=3.当m =-11时,方程为2x 2+11x +23=0, Δ=112-4×2×23<0,方程无实数根, ∴m =-11不合题意,舍去;当m =3时,方程为2x 2-3x -5=0,Δ=(-3)2-4×2×(-5)>0,方程有两个不相等的实数根,符合题意.∴m 的值为3.2.已知关于x 的方程x2+2x +a -2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)若该方程的一个根为1,求a 的值及该方程的另一根. 解:(1)∵22-4×1×(a -2)=12-4a>0,解得a<3. ∴a 的取值范围是a<3.(2)设方程的另一根为x1,由根与系数的关系得⎩⎪⎨⎪⎧1+x1=-2,1·x1=a -2,解得⎩⎪⎨⎪⎧a =-1,x1=-3.题型4 巧用根与系数的关系确定字母系数的存在性4.已知x 1,x 2是一元二次方程4kx 2-4kx +k +1=0的两个实数根,是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 的值;若不存在,请说明理由.解:不存在.理由如下:∵一元二次方程4kx 2-4kx +k +1=0有两个实数根, ∴k ≠0,且Δ=(-4k )2-4×4k (k +1)=-16k ≥0, ∴k <0.∵x 1,x 2是方程4kx 2-4kx +k +1=0的两个实数根, ∴x 1+x 2=1,x 1x 2=k +14k. ∴(2x 1-x 2)(x 1-2x 2)=2(x 1+x 2)2-9x 1x 2=-k +94k .又∵(2x 1-x 2)(x 1-2x 2)=-32,∴-k +94k =-32,∴k =95.又∵k <0,∴不存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立.方法总结:对于存在性问题,先根据方程根的情况,利用根的判别式确定出未知字母的取值范围,再利用根与系数的关系求出已知式子中字母的值,验证字母的值是否在其取值范围内.考点6:可化为一元二次方程的分式方程的应用考点分析:可化为一元二次方程的分式方程的实际应用较广泛,一般应用于营销、行程、工程等问题中,解分式方程的基本思路就是化归,去掉分母后转化为一元二次方程,但最后一定要验根,有时可能会产生增根或不符合题意的根.题型1 营销问题1.某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完,第二次去采购时发现批发价每件上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件,两批玩具的售价均为2.8元,问:第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)1.解:方法一:设第二次采购玩具x 件,则第一次采购玩具(x -10)件,由题意得100x -10+0.5=150x.整理得x 2-110x +3 000=0, 解得x 1=50,x 2=60,经检验x 1=50,x 2=60都是原方程的解.当x =50时,第二次采购时每件玩具的批发价为150÷50=3(元),高于玩具的售价,不合题意,舍去;当x =60时,第二次采购时每件玩具的批发价为150÷60=2.5(元),低于玩具的售价,符合题意, 因此第二次采购玩具60件.方法二:设第一次采购玩具x 件,则第二次采购玩具(x +10)件,由题意得100x +0.5=150x +10, 整理得x 2-90x +2 000=0, 解得x 1=40,x 2=50,经检验,x 1=40,x 2=50都是原方程的解.第一次采购40件时,第二次采购40+10=50(件),批发价为150÷50=3(元),不合题意,舍去;第一次采购50件时,第二次采购50+10=60(件),批发价为150÷60=2.5(元),符合题意. 因此第二次采购玩具60件.2.小明的爸爸下岗后,做起了经营水果的生意,一天,他先去水果批发市场,用100元购甲种水果,用150元购乙种水果,乙种水果比甲种水果多购进10千克,乙种水果的批发价比甲种水果的批发价每千克高0.50元,然后到零售市场,都按每千克2.8元零售,结果乙种水果很快售完,甲种水果售出45时,出现滞销,他便按原售价的5折售完剩下的水果,请你帮小明的爸爸算一算,这天卖水果是赔钱了还是赚钱了(不考虑其他因素)?若赔钱,赔多少?若赚钱,赚多少?2.解:设小明的爸爸购乙种水果x 千克,则购甲种水果(x -10)千克,所以甲种水果的批发价为每千克100x -10元,乙种水果的批发价为每千克150x 元.根据题意得150x -100x -10=0.5.方程两边同乘以x (x -10),整理得x 2-110x +3 000=0, 解之得x 1=50,x 2=60.经检验,x 1=50,x 2=60都是方程的根.当x =50时,乙种水果的批发价为每千克15050=3(元),高于水果零售价,不合题意,舍去.当x =60时,乙种水果的批发价为每千克15060=2.5(元),符合题意;甲种水果的批发价为每千克10060-10=2(元),也符合题意.因此,小明的爸爸购进乙种水果60千克,购进甲种水果60-10=50(千克),小明的爸爸这一天卖水果盈利:⎝⎛⎭⎫50×45×2.8+50×15×2.8×12+60×2.8-(100+150)=44(元).∴小明的爸爸这一天卖水果赚钱了,赚了44元.题型2 行程问题3.从甲站到乙站有150千米,一列快车和一列慢车同时从甲站开出,1小时后快车在慢车前12千米,快车到达乙站比慢车早25分钟,快车和慢车每小时各行驶多少千米?3.解:设慢车每小时行驶x 千米,则快车每小时行驶(x +12)千米,依题意得150x -150x +12=2560. 解得x 1=-72(不合题意,舍去),x 2=60. 所以x +12=72. ∴快车每小时行驶72千米,慢车每小时行驶60千米.应用3 工程问题4.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天;(2)若甲工程队单独施工a 天后,再由甲、乙两工程队合作________天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需收取施工费1万元,乙工程队施工每天需收取施工费2.5万元,那么甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?解:(1)设乙工程队单独施工x 天完成此项工程,则甲工程队单独施工(x +30)天完成此项工程,由题意得20⎝⎛⎭⎫1x +1x +30=1,整理,得x 2-10x -600=0, 解得x 1=30,x 2=-20.经检验x 1=30,x 2=-20都是分式方程的解,但x 2=-20不符合题意,应舍去,故x =30,x +30=60. 故甲、乙两工程队单独完成此项工程分别需要60天,30天.(2)⎝⎛⎭⎫20-a 3 (3)由题意得1×a +(1+2.5)⎝⎛⎭⎫20-a3≤64,解得a ≥36. 故甲工程队至少要单独施工36天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元.考点7:几种常见的热门考点考点分析:一元二次方程题的类型非常丰富,常见的有一元二次方程的根、一元二次方程的解法、一元二次方程根的情况、一元二次方程根与系数的关系、一元二次方程的应用等,只要我们掌握了不同类型题的解法特点,就可以使问题变得简单,明了.题型1 一元二次方程的根1.若一元二次方程ax 2-bx -2 015=0有一根为x =-1,则a +b =________. 2.若关于x 的一元二次方程ax 2+bx +c =0有一根为-1,且a =4-c +c -4-2,求(a +b )2 0162 015c的值.1.2 015 点拨:把x =-1代入方程中得到a +b -2 015=0,即a +b =2 015. 2.解:∵a =4-c +c -4-2,∴c -4≥0且4-c ≥0,即c =4,则a =-2.又∵-1是一元二次方程ax 2+bx +c =0的根,∴a -b +c =0,∴b =a +c =-2+4=2.∴原式=(-2+2)2 0162 015×4=0.题型2 一元二次方程的解法1.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( D ) A .(x +1)2=0 B .(x -1)2=0 C .(x +1)2=2 D .(x -1)2=22.一元二次方程x 2-2x -3=0的解是( A ) A .x 1=-1,x 2=3 B .x 1=1,x 2=-3 C .x 1=-1,x 2=-3 D .x 1=1,x 2=3 3.选择适当的方法解下列方程: (1)(x -1)2+2x (x -1)=0; (2)x 2-6x -6=0;(3)6 000(1-x )2=4 860; (4)(10+x )(50-x )=800; (5)(2x -1)2=x (3x +2)-7. 3.解:(1)(x -1)2+2x (x -1)=0, (x -1)(x -1+2x ) =0, (x -1)(3x -1) =0, x 1=1,x 2=13.(2)x 2-6x -6=0, ∵a =1,b =-6,c =-6, ∴b 2-4ac =(-6)2-4×1×(-6)=60. ∴x =6±602=3±15, ∴x 1=3+15,x 2=3-15. (3)6 000(1-x )2=4 860, (1-x )2= 0.81, 1-x = ±0.9, x 1=1.9,x 2=0. 1. (4)(10+x )(50-x )=800, x 2-40x +300= 0, x 1=10,x 2=30. (5)(2x -1)2=x (3x +2)-7, 4x 2-4x +1 =3x 2+2x -7, x 2-6x +8 =0, x 1=2,x 2=4.题型3 一元二次方程根的判别式1.若关于x 的方程x 2+2x +a =0不存在实数根,则a 的取值范围是( B ) A .a <1 B .a >1 C .a ≤1 D .a ≥12.已知关于x 的一元二次方程(x +1)2-m =0有两个实数根,则m 的取值范围是( B ) A .m ≥-34 B .m ≥0C .m ≥1D .m ≥23.在等腰三角形ABC 中,三边长分别为a ,b ,c .其中a =5,若关于x 的方程x 2+(b +2)x +(6-b )=0有两个相等的实数根,求△ABC 的周长.解:∵关于x 的方程x 2+(b +2)x +(6-b )=0有两个相等的实数根,∴Δ=(b +2)2-4(6-b )=0,∴b 1=2,b 2=-10(舍去).当a 为腰时,△ABC 周长为5+5+2=12.当b 为腰时,2+2<5,不能构成三角形.∴△ABC 的周长为12.题型4 一元二次方程根与系数的关系1.已知方程x 2-32x +1=0,构造个一元二次方程使它的根分别是原方程两根的倒数,则这个一元二次方程是( )A .x 2+32x +1=0B .x 2+32x -1=0C .x 2-32x +1=0D .x 2-32x -1=02.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m 的值是( A ) A .3 B .1C .3或-1D .-3或13.已知关于x 的一元二次方程(x -1)(x -4)=p 2,p 为实数.(1)求证:方程有两个不相等的实数根.(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由).(1)证明:化简方程,得x 2-5x +4-p 2=0.Δ=(-5)2-4(4-p 2)=9+4p 2.∵p 为实数,则p 2≥0,∴9+4p 2>0.即Δ>0,∴方程有两个不相等的实数根.(2)解:当p 为0,2,-2时,方程有整数解.(答案不唯一)点拨:(1)先将一元二次方程化为一般形式,由题意得,一元二次方程根的判别式b 2-4ac =(-5)2-4×1×(4-p 2)=9+4p 2,易得,9+4p 2>0,从而得证.(2)一元二次方程的解为x =5±9+4p 22,若方程有整数解,则9+4p 2必须是完全平方数,故当p =0、2、-2时,9+4p 2分别对应9、25、25,此时方程的解分别为整数.4.关于x 的方程ax 2-(3a +1)x +2(a +1)=0有两个不相等的实数根x 1,x 2,且有x 1+x 2-x 1x 2=1-a ,求a 的值.解:由题意,得x 1+x 2=3a +1a ,x 1x 2=2(a +1)a ,∴3a +1a -2(a +1)a=1-a ,∴a 2-1=0,即a =±1.又∵方程有两个不相等的实数根,∴Δ=[-(3a +1)]2-4a ·2(a +1)>0,即(a -1)2>0,∴a ≠1,∴a =-1.5.设x 1,x 2是关于x 的一元二次方程x 2+2ax +a 2+4a -2=0的两个实数根,当a 为何值时,x 12+x 22有最小值?最小值是多少?解:∵方程有两个实数根,∴Δ=(2a )2-4(a 2+4a -2)≥0,∴a ≤12. 又∵x 1+x 2=-2a ,x 1x 2=a 2+4a -2,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=2(a -2)2-4.∵a ≤12,且2(a -2)2≥0,∴当a =12时,x 12+x 22的值最小. 此时x 12+x 22=2⎝⎛⎭⎫12-22-4=12,即最小值为12. 点拨:本题中考虑Δ≥0从而确定a 的取值范围这一过程易被忽略.题型5 一元二次方程的应用1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?解:设每件商品降价x 元,则售价为每件(60-x )元,每星期的销量为(300+20x )件. 根据题意,得(60-x -40)(300+20x )=6 080.解得x 1=1,x 2=4.又要顾客得实惠,故取x =4,即销售单价为56元.答:应将销售单价定为56元.2.小林准备进行如下操作实验:把一根长为4 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2.”他的说法对吗?请说明理由.解:(1)设剪成的较短的一段为x cm ,则较长的一段为(40-x ) cm ,由题意,得⎝⎛⎭⎫x 42+⎝⎛⎭⎫40-x 42=58,解得x 1=12,x 2=28.当x =12时,较长的一段为40-12=28(cm ),当x =28时,较长的一段为40-28=12<28(舍去).∴较短的一段为12 cm ,较长的一段为28 cm .(2)小峰的说法正确.理由如下:设剪成的较短的一段为m cm ,则较长的一段就为(40-m ) cm ,由题意得⎝⎛⎭⎫m 42+⎝⎛⎭⎫40-m 42=48,变形为m 2-40m +416=0.∵Δ=(-40)2-4×416=-64<0,∴原方程无实数解,∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.3.某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个图形,如图所示,甲、乙两点分别从直径的两端点A ,B 出发,以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l (cm )与时间t (s )满足关系:l =12t 2+32t (t ≥0),乙以4 cm /s 的速度匀速运动,半圆的长度为21 cm .(1)甲运动4 s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多长时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多长时间?解:(1)当t =4时,l =12t 2+32t =12×42+32×4=14. 答:甲运动4 s 后的路程是14 cm .(2)设它们运动了m s ,根据题意,得12m 2+32m +4m =21. 解得:m 1=3,m 2=-14(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3 s .(3)设它们运动了n s 后第二次相遇,根据题意,得⎝⎛⎭⎪⎫12n 2+32n +4n =21×3. 解得n 1=7,n 2=-18(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7 s .4.如图,某海关缉私艇在C 处发现正北方向30海里的A 处有一艘可疑船只,测得它正以60海里/时的速度向正东方向航行.缉私艇随即调整方向,以75海里/时的速度航行,这样可同时到达B 处进行拦截.缉私艇从C 处到达B 处航行了多少小时?解:设缉私艇航行了x 小时到达B 处.根据题意,得302+(60x )2=(75x )2,解得x 1=23,x 2=-23(不符合题意,舍去). 答:缉私艇从C 处到达B 处航行了23小时. 点拨:本题是根据速度、时间、路程之间的关系和勾股定理等有关知识列方程解答,把几何知识、代数知识有机结合来进行解答.题型6 新定义问题1.若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且|x 1|+|x 2|=2|k |(k 是整数),则称方程x 2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0,x 2+4x +4=0都是“偶系二次方程”. 判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由.解:不是.理由如下:解方程x 2+x -12=0,得x 1=-4,x 2=3.|x 1|+|x 2|=4+3=2×|3.5|.∵3.5不是整数,∴方程x 2+x -12=0不是“偶系二次方程”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学题常考考点②:解答题(二)
七、三角形全等、特殊四边形的性质判定(证明、计算)
1、如图, 正方形ABCD 中, E 是CD 上一点, F 在CB 的延长线上,且BF DE = . (1)求证: ADE ∆≌ABF ∆;
(2)问:将ADE ∆顺时针旋转多少度后与ABF ∆重合,旋转中心是什么?
3、如图,在□ABCD 中,AE 是BC 边上的高,将ABE △沿BC 方向平移,使点E 与点C 重合,得GFC △. (1)求证:BE DG =;
(2)若60B ∠=°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.
八、解直角三角形(三角函数、勾股定理)
1、某厂家新开发一种摩托车如图所示,它的大灯A 射出的光线AB 、AC 与地面MN 的夹角分别为8°和10°,大灯A 与地面距离1 m . (1)该车大灯照亮地面的宽度BC 约是多少?
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s ,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60km /h 的速度驾驶该车,突然遇到危险情况,立即刹车直到摩托车停止,在这过程中刹车距离是3
14
m ,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由. 参考数据:
2548sin ≈
,7
18tan ≈
,50910sin ≈ ,28510tan ≈
2、某校“我爱学数学”课题学习小组的活动
主题是“测量学校旗杆的高度”.以下是该课题小组研究报告的部分记录内容:
请你根据表格中记录的信息,计算旗杆AG 的高度.(3取1.7,结果保留两个有效数字)
M
B
C
A
九、一次函数、反比例函数(会从函数图象中获取信息、用待定系数法求解析式) 1、已知:如图,一次函数3+=kx y 的图象与反比例函数x
m
y =
(0>x )的图象交于点P .x PA ⊥轴于点A ,y PB ⊥轴于点B .一次函数的图象分别
交x 轴、y 轴于点C 、点D ,
21
=CA OC ,且tan ∠
(1)求点D 的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当x 取何值时,
2、周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。

接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米) 与x (小时)之间的函致图象如图所示,
(1)小明去基地乘车的平均速度是________千米/小时,爸爸开车的平均速度应是________千米/小时; (2)求线段CD 所表示的函敛关系式;
(3)问小明能否在12:0 0前回到家?若能,请说明理由:若不能,请算出12:00时他离家的路程,
(第23题图)
x (小时)
4、小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡底跑到坡顶再原路返回坡底.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min 后距出发点的距离为y m .图中折线表示小亮在整个训练中y 与x 的函数关系,其中A 点在x 轴上,M 点坐标为(2,0). (1)小亮下坡的速度是 m/min ;MA
OM
= ; (2)求出AB 所在直线的函数关系式;
(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?。

相关文档
最新文档