小学三年级数学 名师精编奥数讲解 乘法与除法
三年级奥数第13讲乘除巧算(教师版)

三年级奥数第13讲乘除(chéngchú)巧算(教师版)教学目标熟练运用运算(yùn suàn)律进行简便运算建立(jiànlì)简算意识,培养(péiyǎng)数感,提高心算和运算(yùn suàn)速度.知识梳理本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。
例如:,,(去8数,重点记忆)(三个常用质数的乘积,重点记忆)理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:,⑵在连除时,可以交换除数的位置,商不变.即:⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即②括号(kuòhào)前是“÷”时,去括号(kuòhào)后,括号(kuòhào)内的“×”变为“÷”,“÷”变为“×”.即添加括号(kuòhào)情形:加括号(kuòhào)时,括号前是“×”时,原符号不变;括即号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.⑸两个数之积除以两个数之积,可以分别相除后再相乘.即上面的三个性质都可以推广到多个数的情形.典例分析考点一:乘5、15、25、125例1、下面这些题你会算吗?(1)(2)【解析】(1)(2)例2、你知道下题怎样快速的计算吗?【解析】或例3、聪明的你也来试试吧!(1) (2) (3) (4)【解析】 (1)(2)(3)(4)例4、计算(jì suàn):=【解析(jiě xī)】()÷⨯450002590考点(kǎo diǎn)二:乘9、99、999例1、下面各题怎样(zěnyàng)算简便呢?(1)(2)(3)【解析(jiě xī)】(1)利用公式,可以得出结果:;(2),此题也可用小技巧:“去1添补”法,“补”就是“补数”,和为整十或整百或整千的两个数都可称为互补数.注意:只适用于“两位数乘”.(1),此题可用小技巧:“去1添补,中间隔9”法.注意:只适用于“两位数乘”.例2、小朋友,相信你一定能行噢.(1)(2)(3) (4)【解析】因为,分别比,小、,利用乘法分配律可得(1)原式(2)原式(3)原式(4)原式例3、计算:【解析(jiě xī)】原式考点(kǎo diǎn)三:乘11、111、101例1、你能快速(kuài sù)的写出结果吗?【解析(jiě xī)】(1)可以(kěyǐ)用公式得出:另外,还有一种小技巧——一个数乘以11,“两头一拉,中间相加”,(2)用公式11(101)10⨯=⨯+=+得:a a a a也可用小技巧得:(3)用公式11(101)10⨯=⨯+=+得出a a a a用小技巧得:这是因为:⑷用公式得:11(101)10⨯=⨯+=+得出:a a a a用小技巧得:,这是因为:所以(suǒyǐ)为结果(jiē guǒ).例2、请你根据(gēnjù)“乘法的凑整”思路,推算(tuī suàn)下列各题.【解析(jiě xī)】(1)原式(2)原式例3、计算:【解析】原式考点四:其它乘法例1、试着用一点技巧吧.(1)(1)【解析】(1)(1)例2、.【解析】原式例3、用简便方法计算下面的算式:(1)(2)(3)(4) .【解析(jiě xī)】直接套用(tàoyòng)速算法:(1) 原式;(2) 原式(注意(zhù yì):我们在实际计算中不会这样详细列出式子,学生容易将答案错写成569.互补(hù bǔ)数如果是n位数,则应占乘积(chéngjī)的后2n位,不足的位补“0”);(3) 原式;(4)原式.例4、计算:、、.【解析】考点五:除法例1、小朋友们,下面的计算方法可要听仔细啦.(1)(2)(3)(4)【解析】不同的算式有不同的特点,要学会挑选好办法去速算.我们刚刚学习了除法的运算定律,观察每个算式的特点,选择不同的定律进行计算.(1)我们一眼就可以看出, ,所以运用除法的分配律可以简便运算.(2)括号里三个数都很大,运用除法的分配律后可以使数变小,简便了我们(wǒ men)的运算.(3)和9都不是(bùshi)50的倍数,但是它们的和却是50的倍数,运用除法分配律的逆运算,(4)这是一个(yī ɡè)连除, 计算(jì suàn)起来会比较复杂,但是相比较就会简单一些,根据连除的性质: 交换除数(chúshù)的位置,商不变,得到比较简便的运算:.例2、计算的方法很重要,我们要仔细听啦。
【小学三年级奥数讲义】乘除巧算

【小学三年级奥数讲义】乘除巧算一、知识重点前方我们已给同学们介绍了加、减法中的巧算,大家学会了运用“凑整”的方法进行巧算,实质上这类凑整的方法也相同能够运用在乘除计算中。
为了更好地凑整,同学们要切记以下几个计算结果:2×5=10,4×25=100,8×125=1000。
提升计算能力,除了加、减、乘、除基本运算要娴熟以外,还要掌握必定的运算技巧。
巧算中,常常要用到一些运算定律,比如乘法互换律、乘法联合律、乘法分派律等等,擅长运用运算定律,是提升巧算能力的重点。
二、精讲精练【例题 1】你有好方法算出下边各题的结果吗?(1)25×17×4(2)8×18×125(3)8×25×4×125(4)125×2×8×5练习 1:1、计算:( 1)25×23×4( 2)125×27×82、计算:(1)5×25×2×4(2)125×4×8×25(3)2×125×8×5【例题 2】你有好方法计算下边各题吗?(1)25×8(2)16×125(3)16×25×25(4)125×32×25练习 2:(1)25×12(2)125×32(3)48×125(4)125×16×5(5)25×8×5【例题 3】你能很快算出它们的结果吗?(1)82×88(2)51×59练习 3:(1)72×78(2)45×45(3)81×89(4)91×99【例题 4】简易运算:(1)130÷5(2)4200÷25(3)34000÷125练习 4:1、你能快速算出结果吗?(1)170÷5(2)3270÷5(3)2340÷52、计算:(1)7200÷25(2)3600÷25(3)5600÷25【例题 5】计算:31×25练习 5:计算:(1)29×25(2)17×25(3)221×25三、课后作业1、想想,如何算比较简易?125×1625×322、( 1)125×64×25(2)32×25×253、你能很快算出它们的结果吗?(1)42×48(2)61×694、你有好方法计算下边各题吗?(1)32000÷125(2)78000÷125(3)43000÷125(4)322×25(5)2561×25(6)3753×25。
三年级奥数:第09讲 乘法速算

第9講乘法速算一、知識要點我們已經學會了整數乘法的計算方法,但計算多位數乘法要一位一位地乘,運算起來比較麻煩。
其實,多位數與一些特殊的數相乘,也可以用簡便的方法來計算。
計算乘法時,如果一個因數是25,另一個因數考慮可拆成4×幾,這樣可“先拆數再擴整”。
兩位數、三位數及更高位數乘以11,可採用“兩頭一拉,中間相加”的辦法,但要注意相鄰兩位相加作積的中間數時,哪一位上滿十要向前一位進一。
比如兩位數乘以11,我們有“兩位數與11相乘,首尾不變中間變,左右相加放中間,滿十進一頭就變。
”二、精講精練【例題1】試著計算下列各題,你發現了什麼規律?(1)26×11 (2)57×11 (3)253×11 (4)467×11練習1:很快算出下麵各題的結果。
(1)12×11 (2)34×11 (3)25×11 (4)11×44(5)48×11 (6)65×11 (7)11×75 (8)87×11【例題2】下麵的乘法計算有規律嗎?(1)25×24 (2)21×25 (3)25×427 (4)1998×25練習2:速算。
(1)12×25 (2)34×25(3)25×121 (4)25×46【例題3】很快算出下麵各題的結果。
(1)24×15 (2)248×15 (3)5678×15練習3:很快算出下麵各題的結果。
(1)34×15 (2)436×15 (3)8472×15 【例題4】很快算出下麵各題的結果。
(1)45×9 (2)32×99 (3)78×999 練習4:計算。
(1)32×9 (2)461×9 (3)1234×9 (4)45×99 (5)85×99 (6)728×99【例題5】下麵的乘法計算有規律嗎?(1)15×15 (2)25×25 (3)35×35 (4)45×45 (5)65×65 (6)95×95練習5:速算。
小学三年级数学重点知识解析乘法和除法的运算规则

小学三年级数学重点知识解析乘法和除法的运算规则乘法和除法是小学三年级数学中重要的基础知识,对于学生的数学发展起着重要的作用。
本文将详细解析乘法和除法的运算规则,帮助学生逐步掌握这两种运算。
一、乘法运算规则乘法是将两个或多个数相乘得到一个积的运算。
在小学三年级,学生需要学会简单的一位数和两位数的乘法。
下面是具体的乘法运算规则:1. 一位数乘一位数的乘法一位数乘一位数的计算较为简单。
以8乘3为例,计算方法如下:8 × 3 = 242. 一位数乘两位数的乘法一位数乘两位数的计算稍微复杂一些。
以4乘25为例,计算方法如下:4 × 25 = 4 × 20 + 4 × 5= 80 + 20= 1003. 两位数乘两位数的乘法两位数乘两位数的计算较为复杂。
以34乘56为例,计算方法如下:34 × 56 = 34 × (50 + 6)= (34 × 50) + (34 × 6)= 1700 + 204= 1904以上是乘法的一些基本运算规则。
学生可以通过多做乘法算式的练习来提高计算水平,并逐步掌握更复杂的乘法运算。
二、除法运算规则除法是将一个数分为若干个相等的部分的运算。
在小学三年级,学生需要学会简单的一位数除以一位数的除法。
下面是具体的除法运算规则:1. 一位数除以一位数的除法一位数除以一位数的计算较为简单。
以24除以3为例,计算方法如下:24 ÷ 3 = 82. 两位数除以一位数的除法两位数除以一位数的计算稍微复杂一些。
以96除以8为例,计算方法如下:96 ÷ 8 = 123. 两位数除以两位数的除法两位数除以两位数的计算较为复杂。
以245除以7为例,计算方法如下:245 ÷ 7 = 35以上是除法的一些基本运算规则。
学生可以通过多做除法算式的练习来提高计算水平,并逐步掌握更复杂的除法运算。
三、乘法和除法之间的关系乘法和除法之间有着密切的关系。
三年级下册数学奥数经典培训讲义 —计算整数乘除计算技巧(二) 全国通用 无答案

三年级数学思维训练整数乘除法运算技巧(二)姓名教学要求:1、要求学生熟练掌握商不变性质,利用这一性质进行简便运算。
2、要求学生熟练掌握除法性质,a÷(b×c)=a÷b÷c,运用这一性质进行简便运算。
3、通过以上训练,理解在除法中去括号、加括号的原理。
教学方法:牢记加括号、去括号方法。
教学过程:一.复习① 473×5 ②23×25 ③127×125二.利用商不变性质简便运算例:430÷5 5600÷25 38000÷125练习:① 170÷5 ②6500÷25 ③ 7400÷125 ④ 8100÷25三.改变运算顺序,进行简算例:练习:75÷30×8 ① 1500÷125÷15 ② 72×7÷8 ③126×8÷9 ④ 75÷50×2四.把除数拆成几个因数的积,进行简算例:练习:900÷36 ①210÷42 ② 420÷28 ③ 2870÷35 ④ 810÷54五.利用去括号,加括号进行简便运算例:(91×48×75)÷(25×13×16) 1000000÷25÷8÷4÷125练习① 2800÷(28×4)② 4800÷(24÷5)③400÷(8×2)④1200÷125÷8 ⑤128÷28×7 ⑥140×16÷4 ⑦(702—213—402)÷3 ⑧ 25÷4+75÷4 ⑨ 720÷(72÷5)⑩(13×8×5×6)÷(4×5×6)六.你有好办法计算下面各题吗?① 28÷3×26×15÷26÷14 ②9÷13+11÷13+6÷13 ③60000÷2÷125÷5÷8 ④64×25×87×125×5 ⑤(1000—100—10)÷10⑥ 1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)七.回家作业。
三年级奥数:第15讲 乘除巧算

第15講乘除巧算一、知識要點前面我們已給同學們介紹了加、減法中的巧算,大家學會了運用“湊整”的方法進行巧算,實際上這種湊整的方法也同樣可以運用在乘除計算中。
為了更好地湊整,同學們要牢記以下幾個計算結果:2×5=10,4×25=100,8×125=1000。
提高計算能力,除了加、減、乘、除基本運算要熟練之外,還要掌握一定的運算技巧。
巧算中,經常要用到一些運算定律,例如乘法交換律、乘法結合律、乘法分配律等等,善於運用運算定律,是提高巧算能力的關鍵。
二、精講精練【例題1】你有好辦法算出下麵各題的結果嗎?(1)25×17×4 (2)8×18×125(3)8×25×4×125 (4)125×2×8×5練習1:1、計算:(1)25×23×4 (2)125×27×82、計算:(1)5×25×2×4 (2)125×4×8×25 (3)2×125×8×5【例題2】你有好辦法計算下麵各題嗎?(1)25×8 (2)16×125(3)16×25×25 (4)125×32×25練習2:(1)25×12 (2)125×32 (3)48×125(4)125×16×5 (5)25×8×5【例題3】你能很快算出它們的結果嗎?(1)82×88 (2)51×59練習3:(1)72×78 (2)45×45(3)81×89 (4)91×99【例題4】簡便運算:(1)130÷5 (2)4200÷25 (3)34000÷125練習4:1、你能迅速算出結果嗎?(1)170÷5 (2)3270÷5 (3)2340÷52、計算:(1)7200÷25 (2)3600÷25 (3)5600÷25 【例題5】計算:31×25練習5:計算:(1)29×25 (2)17×25 (3)221×25三、課後作業1、想一想,怎樣算比較簡便?125×16 25×322、(1)125×64×25 (2)32×25×253、你能很快算出它們的結果嗎?(1)42×48 (2)61×694 、你有好辦法計算下麵各題嗎?(1)32000÷125 (2)78000÷125 (3)43000÷125(4)322×25 (5)2561×25 (6)3753×25。
小学三年级奥数精品讲义(1-34讲全集)

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。
选手们为争夺冠军,都在舞台上发挥着自己的最好水平。
台下的工作人员小熊和小白兔正在统计着最后的得分。
由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。
观众的情绪也影响着两位分数统计者。
只见分数一到小白兔手中,就像变魔术般地得出了答案。
等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。
小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。
于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。
你可以试一试。
”小熊照着小白兔说的去做,果然既快又对。
小学三年级的数学知识点 乘与除知识点

小学三年级的数学知识点乘与除知识点小学三年级的数学知识点 - 乘与除知识点一、乘法知识点在小学三年级,学生开始学习乘法的基本概念和运算方法。
以下是一些重要的乘法知识点:1. 乘法的概念:乘法是一种将两个或多个数相乘得到积的运算。
例如,对于两个数a和b,它们的乘积记作a × b,读作“a乘以b”。
2. 乘法的交换律:乘法满足交换律,即a × b = b × a。
这意味着乘法运算的顺序不影响最后的结果。
3. 乘法的分配律:乘法还满足分配律,即a × (b + c) = a × b + a × c。
这意味着在计算含有括号的乘法式子时,可以先将括号内的运算进行,再将结果与括号外的数相乘。
4. 乘法口诀表:学生需要掌握并熟记乘法口诀表,以便能够快速进行乘法运算。
通过乘法口诀表,学生可以快速计算任何两个一位数的乘积。
5. 多位数的乘法:学生在小学三年级还会学习多位数的乘法。
这需要他们掌握竖式乘法的方法,并能够正确地对齐位数进行运算。
二、除法知识点小学三年级的学生也开始学习除法的基本概念和运算方法。
以下是一些重要的除法知识点:1. 除法的概念:除法是一种将一个数分成若干等份的运算。
除法的结果称为商,被除数除以除数得到商。
2. 除法的商和余数:当被除数不能整除除数时,除法的结果通常由商和余数组成。
商表示能够整除的次数,余数表示除法运算后的剩余部分。
3. 除法的整除和余数的概念:当被除数能够整除除数时,余数为零,这种情况下称为“整除”。
当被除数不能整除除数时,余数不为零。
4. 除法的反运算:乘法除法与乘法是互为反运算的。
例如,对于等式a ÷ b = c,可以通过乘法运算反向计算得到等式c × b = a。
5. 除数和被除数的关系:除数是用来除以被除数的数,它决定了分成多少份。
被除数是需要被除以除数的数,它被分成了几份。
三、综合运用乘除运算在小学三年级,学生将乘法和除法运算进行综合运用,解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级数学奥数讲解乘法与除法1.算式333×625×125×25×5×16×8×4×2的结果中末尾有多少个零?解答:找出算式中含有5的是:625×125×25×5=(5×5×5×5)×(5×5×5)×(5×5)×5,共10个5;找出算式中含有2的是:16×8×4×2=(2×2×2×2)×(2×2×2)×(2×2)×2,共10个2。
每一组5×2=10,产生1个0,所以共有10个0。
答:结果中末尾有10个零。
2.如果n=2×3×5×7×11×13×17×125。
那么n的各位数字的和是多少?解答:2×3×5×7×11×13×17×125=(7×11×13) ×(3×17) ×(2×5×125)=1001×51×1250=1001×(50×1250+1×1250)=1001×(12500÷2+1250)=1001×(62500+1250)=(1000+1)×63750=63750000+63750=638137506+3+8+1+3+7+5+0=33答:n的各位数字的和是33.3.(1)计算:5÷(7÷11)÷(11÷15)÷(15÷21),(2)计算:(11×10×9…×3×2×1)÷(22×24×25×27).解答:(1)5÷(7÷11)÷(11÷15)÷(15÷21)=5×11÷7×15÷11×21÷15=5×11÷11×15÷15×21÷7=5×21÷7=5×3×7÷7=5×3=15(2)(11×10×9…×3×2×1)÷(22×24×25×27)=(11×10×9…×3×2×1)÷22÷24÷25÷27)=(11×2÷22) ×(10×5÷25) ×(9×6 ÷27) ×(8×3÷24) ×7×4=1×2×2×1×7×4=4×28=1124.在算式(□□-7×□)÷16=2的各个方框内填入相同的数字后可使等式成立,求这个数字.解答:□□-7×□=11×□-7×□=□×(11-7)=□×4,因为□×4÷16=2,所以□×4=32,□=8答:□=8.5. 计算:9×17+91÷17-5×17+45÷17.解答:9×17+91÷17-5×17+45÷17=9×17-5×17+91÷17+45÷17=(9-5)×17+(91+45)÷17=4×17+136÷17=68+8=766. 计算:567×142+426×811-8520×50.解答:567×142+426×811-8520×50=567×142+3×142×811-8520×100÷2 .=142×(567+3×811)-852000÷2=142×3000-426000=426000-426000=07. 计算:28×5+2×4×35+21×20+14×40+8×62.解答:28×5+2×4×35+21×20+14×40+8×62=2×2×7×5+2×4×5×7+3×7×4×5+2×7×5×2×4+8×62=2×2×7×5×(1+2+3+4)+496=10×14×10+496=1400+496=18968. 计算:55×66+66×77+77×88+88×99.解答:55×66+66×77+77×88+88×99=(11×5)×(11×6)+(11×6)×(11×7)+(11×7)×(11×8)+(11×8)×(11×9)=11×11×(5×6+6×7+7×8+8×9)=11×(10+1)×(30+42+56+72)=(110+11)×200=121×200=242009. 计算:(123456+234561+345612+456123+561234+612345) ÷7.解答:(123456+234561+345612+456123+561234+612345) ÷7=[(1×100000+2×10000+3×1000+4×100+5×10+6)+(2×100000+3×10000+4×1000+5×100+6×10+1)+(3×100000+4×10000+5×1000+6×100+1×10+2)+(4×100000+5×10000+6×1000+1×100+2×10+3)+(5×100000+6×10000+1×1000+2×100+3×10+4)+(6×100000+1×10000+2×1000+3×100+4×10+5)] ÷7=[1+2+3+4+5+6]×100000+(2+3+4+5+6+1)×10000+(3+4+5+6+1+2)×1000+(4+5+6+1+2+3)×100+(5+6+1+2+3+4)×10+(6+1+2+3+4+5)×1] ÷7=(21×100000+21×10000+21×1000+21×100+21×10+21×1)÷7=21×100000÷7+21×10000÷7+21×1000÷7+21×100÷7+21×10÷7+21×1÷7=300000+30000+3000+300+30+3=33333310. (87+56+73+75+83+63+57+53+67+78+65+77+84+62) ÷14.解答:(87+56+73+75+83+63+57+53+67+78+65+77+84+62) ÷14=[(8+5+7+7+8+6+5+5+6+7+6+7+8+6)×10+(7+6+3+5+3+3+7+3+7+8+5+7+4+2)]÷14=[(14×7-7)×10+(14×7-28)] ÷14=[(13×7)×10+(10×7)]÷14=(130+10)×7÷14=140×7÷14=10×7=7011.在算是12345679×□=888888888,12345679×○=555555555的方框和圆圈内分别填入恰当的数后可使两个等式都成立,求所填的两个数之和.解答:□×9个位是8,○×9个位是5,所以□的个位是2,○的个位是5。
12000000×82>888888888,13000000×62<888888888,所以□=7212000000×55>555555555, 13000000×35<555555555,所以○=4572+45=117答:所填的两个数之和是117.12.计算:(1)42×45,(2)31×39,(3)45×45,(4)132×138.解答:(1)42×45=42×(50-5)=2100-210=1890(2)31×39=31×(40-1)=1240-31=1209(3)45×45=45×(50-5)=2250-225=2025(4)132×138=(100+30+2)×138=13800+4140+276=1821613.计算:(1)13579×11,(2)124×111,(3)1111×1111.解答:(1)13579×11=13579×(10+1)=135790+13579=149369(2)124×111=124×(100+10+1)=12400+1240+124=13764(3)1111×1111=1111×(1000+100+10+1)=1111000++111100+11110+1111=123432114.(1)给出首位是1的两位数的简便算法,据此计算10至19中任意两数的乘积,并排列成一个乘法表. (2)有一类小于200的自然数,每一个数的各位数字之和是奇数,而且都是两个两位数的乘积,例如144=12×12.那么在此类自然数中,第三大的数是多少?解答:(1)1□×1△=(10+□) ×(1△)=10×1△+□×1△=100+△×10+□×10+□×△=100+(△+□) ×10+□×△首位是1的两位数的乘积=100+两个数个位数字之和的10倍+两个数个位数字之积首位是1的两位数乘法表10 10011 110 12112 120 132 14413 130 143 156 16914 140 154 168 182 19615 150 165 180 195 210 22516 160 176 192 208 224 240 25617 170 187 204 221 238 255 272 28918 180 198 216 234 252 270 288 306 32419 190 209 228 247 266 285 304 323 342 36110 11 12 13 14 15 16 1718 19(2)最大的是195=13×15,其次是182=13×14,再次是180=12×15在此类自然数中,第三大的数是180.15.有16张纸,每张纸的正面用红色笔任意写1,2,3,4中的某个数字,在反面用蓝笔也写1,2,3,4中的某个数字,要求红色数相同的任何两张纸上,所写的蓝色数一定不同.现在把每张纸上的红、蓝两个数相乘,求这16个乘积的和.解答:红1可对应?,2,3,4;红2可对应蓝1,2,3,4;红3可对应蓝1,2,3,4;红4可对应蓝1,2,3,4,共有16种不同的情况。