2020届高三理数一轮讲义:2.4-幂函数与二次函数(含答案)
高三数学一轮总复习第二章函数导数及其应用2.4二次函数与幂函数课件

解析:(1)由于 f(x)有两个零点 0 和-2, 所以可设 f(x)=ax(x+2)(a≠0)。 这时 f(x)=ax(x+2)=a(x+1)2-a, 由于 f(x)有最小值-1,
所以必有-a>a0=,-1, 解得 a=1。 因此 f(x)的解析式是 f(x)=x(x+2)=x2+2x。
25
(2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式。 解析:(2)设点 P(x,y)是函数 g(x)图象上任一点,它关于原点对称的点 P′(-x, -y)必在 f(x)图象上, 所以-y=(-x)2+2(-x), 即-y=x2-2x,y=-x2+2x, 故 g(x)=-x2+2x。
解析:因为函数 f(x)=4x2-mx+5 的单调递增区间为m8 ,+∞,所以m8 ≤2,即 m≤16。
答案:(-∞,16]
16
5.设函数 f(x)=mx2-mx-1,若 f(x)<0 的解集为 R,则实数 m 的取值范围是 __________。
m<0, 解析:当 m=0 时,显然成立;当 m≠0 时,Δ=-m2+4m<0, 解得-4<m <0。 综上可知,实数 m 的取值范围是(-4,0]。 答案:(-4,0]
26
►名师点拨 二次函数解析式的求法 根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点坐标,宜选用一般式; (2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式; (3)已知图象与 x 轴两交点坐标,宜选用两根式。
27
通关特训 2 已知二次函数 f(x)同时满足条件: (1)f(1+x)=f(1-x); (2)f(x)的最大值为 15; (3)f(x)=0 的两根平方和等于 17。 求 f(x)的解析式。 解析:依条件, 设 f(x)=a(x-1)2+15 (a<0), 即 f(x)=ax2-2ax+a+15。 令 f(x)=0,即 ax2-2ax+a+15=0, ∴x1+x2=2,x1x2=1+1a5。 x21+x22=(x1+x2)2-2x1x2=4-21+1a5=2-3a0=17, ∴a=-2,∴f(x)=-2x2+4x+13。
2020版高考理科数学(人教版)一轮复习讲义:第二章 第五节 二次函数与幂函数 Word版含答案

第五节二次函数与幂函数1.幂函数(1)幂函数的定义一般地,形如y =x α(α∈R)的函数称为幂函数,其中x 是自变量,α为常数.(2)常见的5种幂函数的图象排列特点:第一象限内,在直线x =1右侧,其指数越大,图象越高,即“指大图高”.图象规律:幂函数的图象一定会出现在第一象限,一定不会出现在第四象限.图象若与坐标轴有交点,一定交于坐标原点.三点注意:(1)当α<0时,函数图象与坐标轴没有交点,类似于y =x -1的图象,且在第一象限内,逆时针方向指数在增大;(2)当0<α<1时,函数图象倾向x 轴,类似于y =x 的图象;12(3)当α>1时,函数图象倾向y 轴,类似于y =x 3的图象,且在第一象限内,逆时针方向指数在增大.(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.对于形如f (x )=x (其中m ∈N *,n ∈Z ,m 与n 互质)的幂函数:nm (1)当n 为偶数时,f (x )为偶函数,图象关于y 轴对称;(2)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称;(3)当m 为偶数时,x >0(或x ≥0),f (x )是非奇非偶函数,图象只在第一象限(或第一象限及原点处).2.二次函数(1)二次函数解析式的3种形式①一般式:f (x )=ax 2+bx +c (a ≠0).②顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ).③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点.(2)二次函数的图象和性质函数y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)图象(抛物线)定义域R值域[4ac -b 24a,+∞)(-∞,4ac -b 24a]对称轴x =-b 2a 顶点坐标(-b 2a ,4ac -b 24a)奇偶性当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在上是减函数;(-∞,-b2a]在上是增函数[-b2a,+∞)在上是增函数;(-∞,-b2a]在上是减函数[-b2a,+∞)[熟记常用结论]关于二次函数的几个常用结论(1)关于函数f (x )=a (x -h )2+k (a >0),x ∈[p ,q ]的最值问题若h ∈[p ,q ],则x =h 时有最小值k ,最大值是f (p )与f (q )中较大者;若h ∉[p ,q ],则f (p ),f (q )中较小者为最小值,较大者为最大值.(2)根的分布问题设函数y =ax 2+bx +c (a ≠0),若对区间[a ,b ]有f (a )≥0,f (b )≤0,则曲线必与x 轴相交(至少有一个交点,且交点必在[a ,b ]上).设x 1,x 2是实系数一元二次方程ax 2+bx +c =0(a >0)的两根,根的分布对照y =ax 2+bx +c (a >0)的图象,知其等价不等式组的关系是:①若x 1<x 2<m ,则Error!②若m <x 1<x 2,则Error!③若x 1<m <x 2,则Error!④若x 1,x 2∈(m 1,m 2),则Error!⑤若x 1,x 2有且仅有一个在(m 1,m 2)内,则Error![小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)函数y =2x 是幂函数.( )13(2)当n >0时,幂函数y =x n 在(0,+∞)上是增函数.( )(3)二次函数y =ax 2+bx +c (x ∈R)不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是.( )4ac -b 24a(5)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( )答案:(1)× (2)√ (3)× (4)× (5)√二、选填题1.已知幂函数y =f (x )的图象经过点,则f (2)=( )(4,12)A. B .414C.D.222解析:选C 设f (x )=x α,∵图象过点,∴f (4)=4α=,解得α=-,(4,12)1212∴f (2)=2=.故选C.12222.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图象如图,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c解析:选B 根据幂函数的性质及图象知选B.3.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A. B.(0,120)(-∞,-120)C.D.(120,+∞)(-120,0)解析:选C ∵函数f (x )=ax 2+x +5的图象在x 轴上方,∴Error!解得a >.1204.函数f (x )=(m 2-m -1)x m 是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值为________.解析:∵f (x )=(m 2-m -1)x m 是幂函数,∴m 2-m -1=1,解得m =-1或m =2.又∵f (x )在(0,+∞)上为增函数,∴m =2.答案:25.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解析:因为函数f (x )=4x 2-mx +5的单调递增区间为,所以≤2,即m ≤16.[m8,+∞)m 8答案:(-∞,16]考点一[基础自学过关]幂函数的图象与性质[题组练透]1.已知幂函数f (x )的图象经过点(9,3),则f (2)-f (1)=( )A .3 B .1-2C.-1D .12解析:选C 设幂函数f (x )=x α,则f (9)=9α=3,即α=,所以f (x )=x =,所以f (2)-f (1)1212x =-1,故选C.22.当x ∈(0,+∞)时,幂函数y =(m 2+m -1)x -5m -3为减函数,则实数m 的值为( )A .-2 B .1C .1或-2D .m ≠-1±52解析:选B 因为函数y =(m 2+m -1)x -5m -3既是幂函数又是(0,+∞)上的减函数,所以Error!解得m =1.3.幂函数y =x(m ∈Z)的图象如图所示,则m 的值为( )2-2-3m m。
2.4幂函数与二次函数课件高三数学一轮复习

单调递减,则 n 的值为( B )
A.-3
B.1
C.2
D.1 或 2
【解析】 由于 f(x)为幂函数,所以 n2+2n-2=1,解得 n=1 或 n=-3,经检验只 有 n=1 符合题意,故选 B.
12
12
11
3.若 a= 2 3 ,b= 5 3 ,c= 2 3 ,则 a,b,c 的大小关系是( D )
A.a<b<c
B.c<a<b
C.b<c<a
D.b<a<c
【解析】
∵y=x
2 3
(x>0)是增函数,∴a=12
2 3
>b=15
2 3
.∵y=12x 是减函数,
∴a=12
2 3
<c=12
1 3
,∴b<a<c.故选
D.
考点二 求二次函数的解析式
【例 1】 已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大值是 8,试确 定此二次函数的解析式.
【思路探索】 根据 f(2),f(-1)可设一般式;根据 f(x)的最大值为 8,可设顶点式; 根据隐含的 f(2)+1=0,f(-1)+1=0 可考虑零点式.
【解】 解法一(利用一般式): 设 f(x)=ax2+bx+c(a≠0),
4a+2b+c=-1, 由题意得4aa-c4-ba+b2c==8-,1,
上单调
在x∈-2ba,+∞上单调递减
函数的图象关于 x=-2ba 对称
提醒:二次函数系数的特征 (1)二次函数 y=ax2+bx+c(a≠0)中,系数 a 的正负决定图象的开口方向及开口大小. (2)-2ba的值决定图象对称轴的位置. (3)c 的取值决定图象与 y 轴的交点. (4)b2-4ac 的正负决定图象与 x 轴的交点个数.
2020年高考数学一轮总复习:幂函数、二次函数

2020年高考数学一轮总复习:幂函数、二次函数[基础梳理]1.幂函数(1)定义:一般地,函数y=xα叫做幂函数,其中底数x是自变量,α是常数.(2)幂函数的图象比较:2.二次函数(1)解析式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-h)2+k(a≠0).两根式:f(x)=a(x-x1)(x-x2)(a≠0).(2)图象与性质:(-∞,+∞)(-∞,+∞)1.一个易混点函数y =ax 2+bx +c ,不能盲目认为是二次函数,要注意对a 的讨论,a >0,a =0,a <0.2.两个条件:一元二次不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是⎩⎨⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是⎩⎨⎧a <0,b 2-4ac <0.3.幂函数y =x α在第一象限的图象特征(1)α>1时,图象过(0,0),(1,1),下凸递增,例如y =x 3; (2)0<α<1时,图象过(0,0),(1,1),上凸递增,例如y =x 12;(3)α<0时,图象过(1,1),下凸递减,且以两条坐标轴为渐近线,例如y =x -1. 4.巧记幂函数的图象五个幂函数在第一象限内的图象的大致情况可以归纳为“正抛负双,大竖小横”,即α>0(α≠1)时的图象是抛物线型(α>1时的图象是竖直抛物线型,0<α<1时的图象是横卧抛物线型),α<0时的图象是双曲线型. [四基自测]1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A.12B .1C.32 D .2答案:C2.幂函数f (x )=x α(α是有理数)的图象过点⎝ ⎛⎭⎪⎫2,14,则f (x )的一个单调递减区间是( ) A .[0,+∞) B .(0,+∞) C .(-∞,0] D .(-∞,0)答案:B3.若g (x )=x 2+ax +b ,则g (2)与12[g (1)+g (3)]的大小关系为________. 答案:g (2)<12[g (1)+g (3)]4.(2017·高考全国卷Ⅰ改编)函数y =x 2+1x 的增区间为__________. 答案:⎝ ⎛⎭⎪⎪⎫132,+∞ 5.(2018·高考全国卷Ⅰ改编)设函数f (x )=⎩⎨⎧x 2+1 x ≤01 x >0,则f (x )>f (1)的x 的取值范围为________. 答案:(-∞,0)考点一 幂函数的图象和性质◄考基础——练透[例1] (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )解析:设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数, 当0<x <1时,其图象在直线y =x 的上方. 答案:C(2)若a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则下列正确的是( )A .a >b >cB .a >c >bC .c >a >bD .b >c >a解析:因为y =x 25在第一象限内为增函数,所以a =⎝ ⎛⎭⎪⎫3525>c =⎝ ⎛⎭⎪⎫2525,因为y =⎝ ⎛⎭⎪⎫25x是减函数,所以c =⎝ ⎛⎭⎪⎫2525>b =⎝ ⎛⎭⎪⎫2535,所以a >c >b .答案:B1.利用幂函数的单调性比较幂值大小的技巧在比较幂值的大小时,必须结合幂值的特点,转化为同指数幂,再选择适当的函数,借助其单调性进行比较.若底数相同,指数不同可考虑指数函数;若底数不同指数相同,可考虑幂函数.2.幂函数的单调性只与指数的正、负有关,要注意幂函数定义域.1.幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数解析:设幂函数f (x )=x α,代入点(3,33),得:33=3α,解得α=13,所以f (x )=x 13,可知函数为奇函数,在(0,+∞)上单调递增. 答案:C2.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析:因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .答案:D考点二 二次函数的图象与性质◄考能力——知法 角度1 二次函数的单调性[例2] (1)函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是( ) A .[-3,0) B .(-∞,-3] C .[-2,0]D .[-3,0]解析:当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a2a , 由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 答案:D(2)已知函数f (x )=log 0.5(sin x +cos 2x -1),x ∈⎝ ⎛⎭⎪⎫0,π2,则f (x )的取值范围是( )A .(-∞,2]B .(-∞,-2]C .[2,+∞)D .[-2,+∞)解析:设g (x )=sin x +cos 2x -1=sin x +1-sin 2x -1=-sin 2x +sin x ,x ∈⎝⎛⎭⎪⎫0,π2,∵0<x <π2,∴0<sin x <1.∵二次函数g (x )=-sin 2x +sin x 图象的对称轴为-12×(-1)=12,∴sin x =12时,g (x )取得最大值,为14,∴0<g (x )≤14,∴log 0.5g (x )≥log 0.514=log 12⎝ ⎛⎭⎪⎫122=2,∴f (x )的取值范围是[2,+∞),故选C. 答案:C关于y =ax 2+bx +c 的单调性问题,其关键点为: (1)定方向,根据a 的符号确定抛物线开口方向; (2)定对称轴,对称轴x =-b2a ;(3)定单调区间,当a >0时,增区间⎝ ⎛⎭⎪⎫-b 2a ,+∞,减区间为⎝ ⎛⎭⎪⎫-∞,-b 2a ;当a <0时,增区间⎝ ⎛⎭⎪⎫-∞,-b 2a ,减区间⎝ ⎛⎭⎪⎫-b 2a ,+∞.角度2 二次函数的最值[例3] (1)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时,有最大值2,则a 的值为________.解析:函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,对称轴方程为x =a . 当a <0时,f (x )max =f (0)=1-a , 所以1-a =2,所以a =-1. 当0≤a ≤1时,f (x )max =a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去).当a >1时,f (x )max =f (1)=a ,所以a =2. 综上可知,a =-1或a =2.答案:-1或2(2)已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值. 解析:①当a =0时,f (x )=-2x 在[0,1]上单调递减, ∴f (x )min =f (1)=-2.②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为x =1a .(ⅰ)当1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,1上单调递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a .(ⅱ)当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象对称轴在[0,1]的右侧,∴f (x )在[0,1]上单调递减. ∴f (x )min =f (1)=a -2.③当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上单调递减.∴f (x )min =f (1)=a -2. 综上所述f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.将本例(1)改为“已知函数f (x )=-x 2+2x +1-a ”在[0,a ]上的最大值记为g (a ),求g (a )并求其最大值.解析:∵f (x )=-(x -1)2+2-a ,关于x =1对称 又∵x ∈[0,a ]∴当a ≤1时,x ∈[0,a ]上为增函数, f (x )max =g (a )=-a 2+2a +1-a =-a 2+a +1, 当a >1时,则f (x )max =f (1)=g (a )=2-a ,∴g (a )=⎩⎨⎧-a 2+a +1, a ≤12-a , a >1当a≤1时,g(a)=-(a-12)2+54≤54,当a>1时,g(a)=2-a<1,∴g(a)的最大值为5 4.主要有三种类型:轴定区间定、轴动区间定、轴定区间动.不论哪种类型,解决的关键是弄清楚对称轴与区间的关系.当含有参数时,要依据对称轴与区间的关系进行分类讨论.设f(x)=ax2+bx+c(a>0),则二次函数在闭区间[m,n]上的最大、最小值有如下的分布情况:a <0的情况,讨论类似.其实质是:无论开口向上或向下,都有两种结论: (1)若-b2a∈[m ,n ],则 f (x )max =max⎩⎨⎧⎭⎬⎫f ⎝ ⎛⎭⎪⎫-b 2a , f (x )min =min {}f (m ),f (n ); (2)若-b2a[m ,n ],则f (x )max =max {f (m ),f (n )},f (x )min =min{f (m ),f (n )}.(2018·衡水金卷信息卷)已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤-π3,0B.⎣⎢⎡⎦⎥⎤-π6,0C.⎣⎢⎡⎦⎥⎤-π3,π6 D.⎣⎢⎡⎦⎥⎤-π6,π3解析:由题意得f (x )=-10⎝ ⎛⎭⎪⎫sin 2x +sin x +14+2,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,令t =sin x ,则f (x )=g (t )=-10⎝ ⎛⎭⎪⎫t +122+2,令g (t )=-12,得t =-1或t =0,由g (t )的图象,可知当-12≤t ≤0时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,2,所以-π6≤m ≤0.故选B.答案:B角度3 二次函数中的恒成立问题[例4] (1)(2019·太原模拟)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________. 解析:法一:当a >0时,f (x )=a ⎝ ⎛⎭⎪⎫x -1a 2+2-1a ,由f (x )>0,x ∈(1,4)得:⎩⎪⎨⎪⎧1a ≤1,f (1)=a -2+2≥0或⎩⎪⎨⎪⎧1<1a <4,f ⎝ ⎛⎭⎪⎫1a =2-1a >0或⎩⎪⎨⎪⎧1a ≥4,f (4)=16a -8+2≥0.所以⎩⎨⎧a ≥1,a ≥0或⎩⎪⎨⎪⎧14<a <1,a >12或⎩⎪⎨⎪⎧a ≤14,a ≥38,所以a ≥1或12<a <1或, 即a >12,当a <0时,⎩⎨⎧f (1)=a -2+2≥0,f (4)=16a -8+2≥0,解得;当a =0时,f (x )=-2x +2,f (1)=0,f (4)=-6, 所以不合题意.综上可得,实数a 的取值范围是a >12.法二:由f (x )>0,即ax 2-2x +2>0,x ∈(1,4), 得a >-2x 2+2x 在(1,4)上恒成立. 令g (x )=-2x 2+2x =-2⎝ ⎛⎭⎪⎫1x -122+12,1x ∈(14,1),g (x )max =12,所以要f (x )>0在(1,4)上恒成立, 只要a >12即可. 答案:⎝ ⎛⎭⎪⎫12,+∞(2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.解析:2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立;。
2020届高三第一轮复习讲义【11】-幂函数与双曲线函数

2020届高三第一轮复习讲义【11】幂函数与双曲线函数一、知识梳理: 1. 幂的有关概念(1) 正整数指数幂: ()n n a a a a n *=⋅⋅⋅∈L ?14243个; (2) 零指数幂: 0a =_____________(其中__________);(3) 负整数指数幂: pa -=_______________(其中0a ≠, p *∈¥); (4) 分数指数幂: nma =______________(其中,m n *∈¥, 且m , n 既约).2. 幂的运算性质(1) m n a a ⋅=_____________(0a >, ,m n ∈¡); (2) ()m n a =_____________(0a >, ,m n ∈¡); (3) ()m ab =_____________(0, 0a b >>, m ∈¡). 幂函数的定义 形如k y x =, k 为常数, k 为有理数的函数叫做幂函数.幂函数2y x -= 1y x -= 12y x -=13y x =图像幂函数 12y x =y x =2y x = 3y x = 图像幂函数的性质0k >时, k y x =在[0,)+∞上是增函数; 0k <时, k y x =在(0,)+∞上是减函数.10a ≠1pa m na m n a +mn a m m a b4. 函数(0)ay x a x=+>的图像与性质函数在区间(0,)+∞部分函数的图像如右图所示, 它是一条双曲线. 主要性质如下:(1) 定义域:________________;(2) 奇偶性: ______________; (3) 单调性: 在(0,)+∞中, 在区间上单调递减, 在区间上单调递增;(4) 值域与最值: 在(0,)+∞上时,函数值的取值范围是当时, 取到最小值______.5. 函数(0)ay x a x=+<的图像与性质函数在区间(0,)+∞部分函数的图像如右图所示, 它是一条双曲线. 主要性质如下:(1) 定义域: ________________;(2) 奇偶性: ______________;(3) 单调性: 在_________________________单调递增; (4) 值域与最值: _________________________________;(5) 零点二、基础检测:1. 幂函数()y f x =的图像经过点, 则(8)f =_________.2. 下列函数中, 既是偶函数又是(0,)+∞上的增函数的是答 [ ] A. 43y x =B. 32y x =C. 2y x -= D. 14y x -= 3. 下列命题中, 正确的是答 [ ]A. 当0k =时, 函数k y x =的图像是一条直线B. 幂函数的图像都经过点(0,0)和(1,1)C. 当0k <时且k y x =是奇函数时, k y x =是减函数D. 幂函数的图像不可能过第四象限4. 函数2, [1,2]y x x x=+∈的值域是______________.5. 函数21y x x =+-在定义域(1,]a 上的最小值是, 则实数a 的取值范围是_______________. 6. 函数(0)cy x c x=+≠在[2,)+∞上单调递增, 则实数c 的取值范围是________________.奇函数奇函数 (,0)-∞与(0,)+∞上分别 值域为¡, 无最值 (,0)(0,)-∞⋃+∞(,0)(0,)-∞⋃+∞)+∞)+∞x =x =三、例题精讲:【例1】将下列函数图像的标号, 填入相应函数后面的横线上.(1)32 y x =: _________; (2)43y x=: _________; (3)53y x=: _________; (4)23y x-=: _________.【例2】已知函数221()m my mx---=∈¢在区间(,0)-∞上是减函数, 求m的最大值.解: 即考虑函数22(0)m my x x+-=≠,若函数是奇函数, 由函数在(,0)-∞递减, 可知其在(0,)+∞上递减,则有220(2,1)m m m+-<⇒∈-,当1m=-时, 222m m+-=-, 是偶函数, 不合题意;若函数是偶函数, 由函数在(,0)-∞递减, 可知其在(0,)+∞上递增,则有220(,2)(1,)m m m+->⇒∈-∞-⋃+∞,当3m=-时, 224m m+-=, 是偶函数, 符合题意;综上所述, m的最大负整数值为3-.【例3】已知函数23y x-=.(1)画出它的图像;(2)判断它的奇偶性;(3)写出它的单调区间.解:(1)(2) ()f x是偶函数;(3)23y x-=在(),0-∞是增函数,()0,+∞是减函数.A BC D【例4】已知幂函数()()21322p p Z f x x p -++=∈在()0,+∞上是增函数,且在定义域上是偶函数,求p的值,并写出相应的函数.解:因为()()21322p p f x xp Z -++=∈在()0,+∞是增函数,所以213022p p -++>, 即2230p p --<,解得13p -<<,所以p =0、1、2. 当p =0时,32y x =不是偶函数,故p =0舍去; 当p =1时,2y x =是偶函数,故p =1符合题意; 当p =2时,32y x =不是偶函数,故p =2舍去. 综上p =1,()2y f x x ==. 【例5】已知()()22k k x k Z f x -++=∈满足()()23f f <.(1)求k 的值;(2)是否存在正数m ,使()()()[]121,1,2g x mf x m x x =-+-∈-的值域为174,8⎡⎤-⎢⎥⎣⎦? 若存在,求出m 的范围;若不存在,说明理由.解:(1)由()21924k f x x⎛⎫--+ ⎪⎝⎭=且()()23f f <,知()f x 在()0,+∞上单调递增,故220k k -++>,12k -<<因此1k =或0;(2)()2f x x =,()()[]2222141121,1,224m m g x mx m x m x x m m -+⎛⎫=-+-=--+∈- ⎪⎝⎭, 对称轴为112x m =-,则1122m-≥,得12m ≤-,与0m >矛盾,所以m 不存在. 【例6】设01a b c d <<<<<,正数,,,m n k r 满足:01a b c dm n k r <===<,则,,,,1m n k r 之间的大小关系为________________。
2020年高考理科数学一轮总复习:二次函数与幂函数

2020年高考理科数学一轮总复习:二次函数与幂函数第4讲 二次函数与幂函数1.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x 3,y =x 12,y =x -1.(2)五种幂函数的图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质(-∞,+∞)(-∞,+∞)导师提醒1.巧记三类幂函数的图象特征(1)当α<0时,函数图象与坐标轴没有交点,类似于y =x -1的图象,且在第一象限内,逆时针方向指数在增大.(2)当0<α<1时,函数图象倾向x 轴,类似于y =x 12的图象.(3)当α>1时,函数图象倾向y 轴,类似于y =x 3的图象,且在第一象限内,逆时针方向指数在增大.2.关注一个易错点注意二次项系数对函数性质的影响,经常对二次项系数分大于零与小于零两种情况讨论. 3.记牢一元二次不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.判断正误(正确的打“√”,错误的打“×”) (1)函数y =2x 12是幂函数.( )(2)如果幂函数的图象与坐标轴相交,则交点一定是原点. ( ) (3)当n <0时,幂函数y =x n 是定义域上的减函数.( )(4)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b 24a.( )(5)二次函数y =ax 2+bx +c,x ∈R 不可能是偶函数.( )(6)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( )答案:(1)× (2)√ (3)× (4)× (5)× (6)√(教材习题改编)已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=( )A.12B .1C.32D .2解析:选C.因为函数f (x )=k ·x α是幂函数,所以k =1,又函数f (x )的图象过点⎝⎛⎭⎫12,22,所以⎝⎛⎭⎫12α=22,解得α=12,则k +α=32. (教材习题改编)如图是①y =x a ;②y =x b ;③y =x c 在第一象限的图象,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .a <c <b解析:选D.根据幂函数的性质,可知选D.(教材习题改编)已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( )A .a ≥3B .a ≤3C .a <-3D .a ≤-3 解析:选D.函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧,所以-2a ≥6,解得a ≤-3,故选D.(教材习题改编)函数g (x )=x 2-2x (x ∈[0,3])的值域是 ( ) A .[0,3] B .[-1,3] C .[-1,0]D .[1,3]解析:选B.由g (x )=x 2-2x =(x -1)2-1,x ∈[0,3],得g (x )在[0,1]上是减函数,在[1,3]上是增函数.所以g (x )min =g (1)=-1,而g (0)=0,g (3)=3. 所以g (x )的值域为[-1,3],故选B.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________.解析:因为函数f (x )=ax 2+x +5的图象在x 轴上方,所以⎩⎪⎨⎪⎧a >0,Δ=12-20a <0,解得a >120. 答案:⎝⎛⎭⎫120,+∞幂函数的图象及性质(自主练透)1.幂函数y =f (x )的图象经过点(3,33),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是增函数 D .非奇非偶函数,且在(0,+∞)上是减函数解析:选C.设幂函数f (x )=x α,代入点(3,33),得:33=3α,解得α=13,所以f (x )=x 13,可知函数为奇函数,在(0,+∞)上单调递增.2.当x ∈(0,+∞)时,幂函数y =(m 2+m -1)x -5m -3为减函数,则实数m 的值为( ) A .-2 B .1C .1或-2D .m ≠-1±52解析:选B.因为函数y =(m 2+m -1)x-5m -3既是幂函数又是(0,+∞)上的减函数,所以⎩⎪⎨⎪⎧m 2+m -1=1,-5m -3<0,解得m =1. 3.若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c解析:选D.因为y =x 23在第一象限内是增函数,所以a =⎝⎛⎭⎫1223>b =⎝⎛⎭⎫1523,因为y =⎝⎛⎭⎫12x是减函数,所以a =⎝⎛⎭⎫1223<c =⎝⎛⎭⎫1213,所以b <a <c . 4.若(a +1)12<(3-2a )12,则实数a 的取值范围是________.解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数, 所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23幂函数的性质与图象特征的关系(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)判断幂函数y =x α(α∈R )的奇偶性时,当α是分数时,一般将其先化为根式,再判断. (3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.二次函数的解析式(师生共研)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 法一:(利用一般式) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7. 法二:(利用顶点式) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12.所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝⎛⎭⎫x -122+8. 因为f (2)=-1,所以a ⎝⎛⎭⎫2-122+8=-1, 解得a =-4,所以f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.已知二次函数f (x )有两个零点0和-2,且它有最小值-1,则f (x )的解析式为f (x )=________.解析:由二次函数f (x )有两个零点0和-2,可设f (x )=a (x +2)x ,则f (x )=a (x 2+2x )=a (x +1)2-a .又f (x )有最小值-1,则a =1.所以f (x )=x 2+2x . 答案:x 2+2x2.已知二次函数y =f (x )的顶点坐标为(-32,49),且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.解析:设f (x )=a (x +32)2+49(a ≠0),方程a (x +32)2+49=0的两个根分别为x 1,x 2,则|x 1-x 2|=2-49a=7,所以a =-4,所以f (x )=-4x 2-12x +40. 答案:f (x )=-4x 2-12x +40二次函数的图象与性质(多维探究) 角度一 二次函数的图象已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )【解析】 A 项,因为a <0,-b2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错. B 项,因为a <0,-b2a>0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错. C 项,因为a >0,-b2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D.【答案】 D角度二 二次函数的单调性函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件. 当a ≠0时,f (x )的对称轴为x =3-a2a ,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <03-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0][迁移探究] (变条件)若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a =-1,解得a =-3.角度三 二次函数的最值问题设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.【解】 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1.当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.角度四 二次函数中的恒成立问题(1)已知函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,则实数m 的取值范围是________.(2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________.【解析】 (1)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0, 令g (x )=x 2-3x +1-m ,要使g (x )=x 2-3x +1-m >0在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. 因为g (x )=x 2-3x +1-m 在[-1,1]上单调递减, 所以g (x )min =g (1)=-m -1. 由-m -1>0,得m <-1 .因此满足条件的实数m 的取值范围是(-∞,-1). (2)2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,-3<0,成立;当x ≠0时,a <32⎝⎛⎭⎫1x -132-16,因为1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12. 综上,实数a 的取值范围是⎝⎛⎭⎫-∞,12. 【答案】 (1)(-∞,-1) (2)⎝⎛⎭⎫-∞,12解决二次函数图象与性质问题时应注意的三点(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论. (2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)由不等式恒成立求参数取值范围的思路及关键解题思路:一是分离参数;二是不分离参数.两种思路都是将问题归结为求函数的最值或值域.1.已知函数f (x )=ax 2+bx +c ,若a >b >c 且a +b +c =0,则它的图象可能是( )解析:选D.由a >b >c 且a +b +c =0,得a >0,c <0,所以函数图象开口向上,排除A ,C.又f (0)=c <0,所以排除B ,故选D.2.已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数. 解:(1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], 所以f (x )在[-4,2]上单调递减,在[2,6]上单调递增, 所以f (x )的最小值是f (2)=-1, 又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4,故a 的取值范围是(-∞,-6]∪[4,+∞).分类讨论思想在二次函数问题中的应用已知函数f (x )=ax 2-2x (0≤x ≤1),求函数f (x )的最小值. 【解】 (1)当a =0时,f (x )=-2x 在[0,1]上单调递减, 所以f (x )min =f (1)=-2.(2)当a >0时,f (x )=ax 2-2x 的图象开口向上且对称轴为x =1a .①当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的对称轴在(0,1]内,所以f (x )在⎣⎡⎦⎤0,1a 上单调递减,在⎣⎡⎦⎤1a ,1上单调递增.所以f (x )min =f ⎝⎛⎭⎫1a =1a -2a =-1a . ②当1a>1,即0<a <1时,f (x )=ax 2-2x 的对称轴在[0,1]的右侧, 所以f (x )在[0,1]上单调递减. 所以f (x )min =f (1)=a -2.(3)当a <0时,f (x )=ax 2-2x 的图象开口向下且对称轴x =1a <0,在y 轴的左侧,所以f (x )=ax 2-2x 在[0,1]上单调递减, 所以f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎪⎨⎪⎧a -2,a <1,-1a,a ≥1.二次函数是单峰函数(在定义域上只有一个最值点的函数),x =-b2a 为其最值点横坐标,在其两侧二次函数具有相反的单调性,当已知二次函数在某区间上的最值求参数时,要根据对称轴与已知区间的位置关系进行分类讨论确定各种情况最值,建立方程求解参数.已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解:f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去; (2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38; (3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.[基础题组练]1.幂函数y =x m 2-4m (m ∈Z )的图象如图所示,则m 的值为( )A .0B .1C .2D .3解析:选C.因为y =x m 2-4m (m ∈Z )的图象与坐标轴没有交点,所以m 2-4m <0,即0<m <4. 又因为函数的图象关于y 轴对称,且m ∈Z , 所以m 2-4m 为偶数,因此m =2.2.已知幂函数f (x )=(n 2+2n -2)·x n 2-3n (n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2解析:选B.由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,当n =1时,函数f (x )=x-2为偶函数,其图象关于y 轴对称,且f (x )在(0,+∞)上是减函数,所以n =1满足题意;当n =-3时,函数f (x )=x 18为偶函数,其图象关于y 轴对称,而f (x )在(0,+∞)上是增函数,所以n =-3不满足题意,舍去.故选B.3.对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )解析:选A.当0<a <1时,y =log a x 为减函数,y =(a -1)x 2-x 开口向下,其对称轴为x =12(a -1)<0,排除C ,D ;当a >1时,y =log a x 为增函数,y =(a -1)x 2-x 开口向上,其对称轴为x =12(a -1)>0,排除B.故选A.4.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围为( )A .[2,+∞)B .(2,+∞)C .(-∞,0)D .(-∞,2)解析:选A.二次函数y =kx 2-4x +2的对称轴为x =2k ,当k >0时,要使函数y =kx 2-4x+2在区间[1,2]上是增函数,只需2k≤1,解得k ≥2.当k <0时,2k<0,此时抛物线的对称轴在区间[1,2]的左侧,该函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).5.已知函数f (x )=ax 2+bx +c (a ≠0),且2是f (x )的一个零点,-1是f (x )的一个极小值点,那么不等式f (x )>0的解集是( )A .(-4,2)B .(-2,4)C .(-∞,-4)∪(2,+∞)D .(-∞,-2)∪(4,+∞)解析:选C.依题意,f (x )图象是开口向上的抛物线,对称轴为x =-1,方程ax 2+bx +c =0的一个根是2,另一个根是-4.因此f (x )=a (x +4)(x -2)(a >0),于是f (x )>0,解得x >2或x <-4.6.已知点(m ,8)在幂函数f (x )=(m -1)x n的图象上,设a =f ⎝⎛⎭⎫⎝⎛⎭⎫1312,b =f (ln π),c =f ⎝⎛⎭⎫-12,则a ,b ,c 的大小关系为( )A .c <a <bB .a <b <cC .b <c <aD .b <a <c解析:选A.根据题意,m -1=1, 所以m =2,所以2n =8, 所以n =3,所以f (x )=x 3.因为f (x )=x 3是定义在R 上的增函数,又-12<0<⎝⎛⎭⎫1312<⎝⎛⎭⎫130=1<ln π, 所以c <a <b .7.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (1)=f (3)>f (4),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:选B.若a =0,f (x )不满足题意,所以a ≠0,f (x )为二次函数. 因为f (1)=f (3),则x =2为对称轴,故-b2a =2,则4a +b =0,又f (3)>f (4),在(2,+∞)上f (x )为减函数,所以开口向下,a <0. 故选B.8.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则实数a 的取值范围是________. 解析:因为f (x )=x -12=1x(x >0),易知x ∈(0,+∞)时f (x )为减函数, 又f (a +1)<f (10-2a ),所以⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,所以3<a <5. 答案:(3,5)9.已知二次函数的图象与x 轴只有一个交点,对称轴为x =3,与y 轴交于点(0,3),则它的解析式为________.解析:由题意知,可设二次函数的解析式为y =a (x -3)2,又图象与y 轴交于点(0,3), 所以3=9a ,即a =13.所以y =13(x -3)2=13x 2-2x +3.答案:y =13x 2-2x +310.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则实数a 的取值范围是________.解析:因为f (x )=-x 2+2ax 在[1,2]上是减函数,所以a ≤1,又因为g (x )=ax +1在[1,2]上是减函数,所以a >0,所以0<a ≤1.答案:(0,1]11.已知函数f (x )=bx 2-2ax +a (a ,b ∈R )的图象过点⎝⎛⎭⎫12,14. (1)当a =2时,求函数y =log 12f (x )的单调增区间;(2)当a <0时,求使函数f (x )的定义域为[-1,1],值域为[-2,2]的a 值. 解:因为f (x )=bx 2-2ax +a 的图象过点⎝⎛⎭⎫12,14, 所以b =1,(1)当a =2时,f (x )=x 2-4x +2, 令f (x )>0可得, x >2+2或x <2-2,所以f (x )在(2+2,+∞)上单调递增,在(-∞,2-2)上单调递减, y =log 12t 在(0,+∞)上单调递减,根据复合函数的单调性可知函数y =log 12f (x )的单调增区间为(-∞,2-2).(2)当a <0时,函数f (x )=x 2-2ax +a 的对称轴x =a <0, ①a ≤-1时,函数f (x )在[-1,1]上单调递增,当x =-1时,函数有最小值f (-1)=1+3a =-2, 当x =1时,函数有最大值f (1)=1-a =2, 解得a =-1,②0>a >-1时,函数在[-1,1]上先减后增,当x =a 时,函数有最小值f (a )=a -a 2=-2,解得,a =2(舍)或a =-1(舍), 综上可得,a =-1.12.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. 解:(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],所以f (x )min =f ⎝⎛⎭⎫-32=94-92-3=-214, f (x )max =f (3)=15,所以函数f (x )的值域为⎣⎡⎦⎤-214,15. (2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,所以6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,所以-2a -1=1,即a =-1满足题意. 综上可知,a =-13或-1.[综合题组练]1.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是 ( )A .[0,+∞)B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞)解析:选C.由f (2+x )=f (2-x )可知,函数f (x )图象的对称轴为x =2+x +2-x2=2,又函数f (x )在[0,2]上单调递增,所以由f (a )≥f (0)可得0≤a ≤4,故选C.2.(应用型)已知二次函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与a 值有关解析:选C.该二次函数的图象开口向下,对称轴为直线x =14,又依题意,得x 1<0,x 2>0,又x 1+x 2=0, 所以当x 1,x 2在对称轴的两侧时, 14-x 1>x 2-14,故f (x 1)<f (x 2). 当x 1,x 2都在对称轴的左侧时, 由单调性知f (x 1)<f (x 2). 综上,f (x 1)<f (x 2).3.(创新型)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝⎛⎦⎤-94,-2 4.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0, 且-b2a =-1,解得a =1,b =2, 所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. 所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2.所以-2≤b ≤0.故b 的取值范围是[-2,0].。
2020版高考数学历史专用讲义:第二章 2.4 幂函数与二次函数

§2.4 幂函数与二次函数最新考纲 1.通过实例,了解幂函数的概念.2.结合函数y =x ,y =x 2,y =x 3,y=1x ,y =12x 的图象,了解它们的变化情况.3.理解并掌握二次函数的定义、图象及性质.4.能用二次函数、方程、不等式之间的关系解决简单问题.1.幂函数 (1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α是常数. (2)常见的五种幂函数的图象和性质比较函数y =xy =x 2y =x 3y =12xy =x -1图象性质定义域 R R R {x |x ≥0} {x |x ≠0} 值域 R {y |y ≥0} R {y |y ≥0} {y |y ≠0} 奇偶性 奇函数偶函数 奇函数非奇非偶函数奇函数 单调性在R 上单调递增在(-∞,0]上单调递减;在(0,+∞)上单调递增在R 上单调递增在[0,+∞)上单调递增在(-∞,0)和(0,+∞)上单调递减公共点 (1,1)2.二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 R R值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递减; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增 在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减 对称性 函数的图象关于直线x =-b2a对称概念方法微思考1.二次函数的解析式有哪些常用形式? 提示 (1)一般式:y =ax 2+bx +c (a ≠0); (2)顶点式:y =a (x -m )2+n (a ≠0); (3)零点式:y =a (x -x 1)(x -x 2)(a ≠0).2.已知f (x )=ax 2+bx +c (a ≠0),写出f (x )≥0恒成立的条件. 提示 a >0且Δ≤0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)二次函数y =ax 2+bx +c (a ≠0),x ∈[a ,b ]的最值一定是4ac -b 24a.( × ) (2)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( √ )(3)函数y =122x 是幂函数.( × )(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( √ ) (5)当n <0时,幂函数y =x n 是定义域上的减函数.( × ) 题组二 教材改编2.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α等于( )A.12 B .1 C.32 D .2 答案 C解析 由幂函数的定义,知⎩⎪⎨⎪⎧k =1,22=k ·⎝⎛⎭⎫12α.∴k =1,α=12.∴k +α=32.3.已知函数f (x )=x 2+4ax 在区间(-∞,6)内单调递减,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a <-3 D .a ≤-3答案 D解析 函数f (x )=x 2+4ax 的图象是开口向上的抛物线,其对称轴是x =-2a ,由函数在区间(-∞,6)内单调递减可知,区间(-∞,6)应在直线x =-2a 的左侧, ∴-2a ≥6,解得a ≤-3,故选D. 题组三 易错自纠 4.幂函数f (x )=21023a a x-+(a ∈Z )为偶函数,且f (x )在区间(0,+∞)上是减函数,则a 等于( )A .3B .4C .5D .6 答案 C解析 因为a 2-10a +23=(a -5)2-2, f (x )=2(5)2a x--(a ∈Z )为偶函数,且在区间(0,+∞)上是减函数, 所以(a -5)2-2<0,从而a =4,5,6,又(a -5)2-2为偶数,所以只能是a =5,故选C.5.已知函数y =2x 2-6x +3,x ∈[-1,1],则y 的最小值是______. 答案 -1解析 函数y =2x 2-6x +3的图象的对称轴为x =32>1,∴函数y =2x 2-6x +3在[-1,1]上单调递减,∴y min =2-6+3=-1.6.设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)________0.(填“>”“<”或“=”) 答案 >解析 f (x )=x 2-x +a 图象的对称轴为直线x =12,且f (1)>0,f (0)>0,而f (m )<0,∴m ∈(0,1),∴m -1<0,∴f (m -1)>0.题型一 幂函数的图象和性质1.若幂函数的图象经过点⎝⎛⎭⎫2,14,则它的单调递增区间是( )A .(0,+∞)B .[0,+∞)C .(-∞,+∞)D .(-∞,0)答案 D解析 设f (x )=x α,则2α=14,α=-2,即f (x )=x -2,它是偶函数,单调递增区间是(-∞,0).故选D.2.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c 答案 B解析 由幂函数的图象可知,在(0,1)上幂函数的指数越大,函数图象越接近x 轴,由题图知a >b >c >d ,故选B. 3.已知幂函数f (x )=(n 2+2n -2)23n nx-(n ∈Z )的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2 答案 B解析 由于f (x )为幂函数,所以n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意,故选B.4.(2018·潍坊模拟)若(a +1)13-<(3-2a )13-,则实数a 的取值范围是____________.答案 (-∞,-1)∪⎝⎛⎭⎫23,32 解析 不等式(a +1)13-<(3-2a )13-等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键. 题型二 求二次函数的解析式例1 (1)已知二次函数f (x )=x 2-bx +c 满足f (0)=3,对∀x ∈R ,都有f (1+x )=f (1-x )成立,则f (x )的解析式为________________. 答案 f (x )=x 2-2x +3 解析 由f (0)=3,得c =3, 又f (1+x )=f (1-x ),∴函数f (x )的图象关于直线x =1对称, ∴b2=1,∴b =2, ∴f (x )=x 2-2x +3.(2)已知二次函数f (x )与x 轴的两个交点坐标为(0,0)和(-2,0)且有最小值-1,则f (x )=________. 答案 x 2+2x解析 设函数的解析式为f (x )=ax (x +2)(a ≠0), 所以f (x )=ax 2+2ax ,由4a ×0-4a 24a=-1, 得a =1,所以f (x )=x 2+2x .思维升华 求二次函数解析式的方法跟踪训练1 (1)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ,a ≠0),x ∈R ,若函数f (x )的最小值为f (-1)=0,则f (x )=________. 答案 x 2+2x +1解析 设函数f (x )的解析式为f (x )=a (x +1)2=ax 2+2ax +a (a ≠0), 又f (x )=ax 2+bx +1,所以a =1, 故f (x )=x 2+2x +1.(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=________. 答案 x 2-4x +3解析 因为f (2-x )=f (2+x )对任意x ∈R 恒成立,所以f (x )图象的对称轴为直线x =2.又因为f (x )的图象被x 轴截得的线段长为2,所以f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3),所以3a =3,即a =1,所以f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.题型三 二次函数的图象和性质命题点1 二次函数的图象例2 (2018·重庆五中模拟)一次函数y =ax +b (a ≠0)与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )答案 C解析 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y 轴的右侧,故应排除B ,选C. 命题点2 二次函数的单调性例3 函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是( ) A .[-3,0) B .(-∞,-3] C .[-2,0] D .[-3,0]答案 D解析 当a =0时,f (x )=-3x +1在[-1,+∞)上单调递减,满足题意. 当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上单调递减,知⎩⎪⎨⎪⎧a <0,3-a 2a ≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 引申探究若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a =________. 答案 -3解析 由题意知f (x )必为二次函数且a <0, 又3-a 2a =-1,∴a =-3. 命题点3 二次函数的最值例4 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38;(3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3.引申探究将本例改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a . (1)当-a <12即a >-12时,f (x )max =f (2)=4a +5,(2)当-a ≥12即a ≤-12时,f (x )max =f (-1)=2-2a ,综上,f (x )max=⎩⎨⎧4a +5,a >-12,2-2a ,a ≤-12.命题点4 二次函数中的恒成立问题例5 (1)已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,若不等式f (x )>2x +m 在区间[-1,1]上恒成立,则实数m 的取值范围为____________. 答案 (-∞,-1)解析 设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,又f (x +1)-f (x )=2x ,得2ax +a +b =2x ,所以a =1,b =-1,所以f (x )=x 2-x +1.f (x )>2x +m 在区间[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立,令g (x )=x 2-3x +1-m =⎝⎛⎭⎫x -322-54-m ,x ∈[-1,1],g (x )在[-1,1]上单调递减,所以g (x )min =g (1)=1-3+1-m >0,所以m <-1.(2)函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________. 答案 2解析 令a x =t ,因为a >1,x ∈[-1,1],所以1a≤t ≤a ,原函数化为g (t )=t 2+3t -2,t ∈⎣⎡⎦⎤1a ,a ,显然g (t )在⎣⎡⎦⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2. 思维升华 解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,要注意分类讨论;(2)要注意数形结合思想的应用,尤其是给定区间上的二次函数最值问题,先“定性”(作草图),再“定量”(看图求解).(3)由不等式恒成立求参数取值范围的思路及关键解题思路:一是分离参数;二是不分离参数.两种思路都是将问题归结为求函数的最值或值域.跟踪训练2 (1)函数y =x 2+bx +c (x ∈[0,+∞))是单调函数的充要条件是( ) A .b ≥0 B .b ≤0 C .b >0 D .b <0答案 A解析 ∵函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,∴图象的对称轴x =-b2在区间[0,+∞)的左边或-b 2=0,即-b2≤0,得b ≥0.(2)已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________. 答案 -1或3解析 由于函数f (x )的值域为[1,+∞), 所以f (x )min =1.又f (x )=(x -a )2-a 2+2a +4, 当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1, 即a 2-2a -3=0,解得a =3或a =-1.(3)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫12,+∞解析 由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x <1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12.数形结合思想和分类讨论思想在二次函数中的应用研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.例 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值.解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1≤1,即t ≤0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t <1<t +1,即0<t <1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t ≥1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数,所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t ≤0,1,0<t <1,t 2-2t +2,t ≥1.1.幂函数y =f (x )经过点(3,3),则f (x )是( ) A .偶函数,且在(0,+∞)上是增函数 B .偶函数,且在(0,+∞)上是减函数 C .奇函数,且在(0,+∞)上是减函数 D .非奇非偶函数,且在(0,+∞)上是增函数 答案 D解析 设幂函数的解析式为y =x α,将(3,3)代入解析式得3α=3,解得α=12,∴y =12x ,故选D. 2.幂函数y =24m mx-(m ∈Z )的图象如图所示,则m 的值为( )A .0B .1C .2D .3答案 C 解析 ∵y =24m mx-(m ∈Z )的图象与坐标轴没有交点,∴m 2-4m <0,即0<m <4.又∵函数的图象关于y 轴对称且m ∈Z , ∴m 2-4m 为偶数,∴m =2. 3.若幂函数f (x )=(m 2-4m +4)·268m m x -+在(0,+∞)上为增函数,则m 的值为( )A .1或3B .1C .3D .2 答案 B解析 由题意得m 2-4m +4=1,m 2-6m +8>0, 解得m =1.4.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.⎝⎛⎭⎫0,120 B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞ D.⎝⎛⎭⎫-120,0 答案 C解析 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.5.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0答案 A解析 由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b2a=2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.6.已知函数f (x )=-x 2+2ax +1-a ,x ∈[0,1]有最大值2,则a 等于( ) A .2 B .0 C .0或-1 D .2或-1答案 D解析 函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1,其图象的对称轴方程为x =a .当a <0时,f (x )max =f (0)=1-a ,所以1-a =2,所以a =-1;当0≤a ≤1时,f (x )max =f (a )=a 2-a +1,所以a 2-a +1=2,所以a 2-a -1=0,所以a =1±52(舍去);当a >1时,f (x )max =f (1)=a ,所以a =2.综上可知,a =-1或a =2.7.已知f (x )=x 2,g (x )=12x ,h (x )=x -2,当0<x <1时,f (x ),g (x ),h (x )的大小关系是________________.答案 h (x )>g (x )>f (x )解析 分别作出f (x ),g (x ),h (x )的图象如图所示,可知h (x )>g (x )>f (x ).8.已知二次函数y =f (x )的顶点坐标为⎝⎛⎭⎫-32,49,且方程f (x )=0的两个实根之差的绝对值等于7,则此二次函数的解析式是________________.答案 f (x )=-4x 2-12x +40解析 设f (x )=a ⎝⎛⎭⎫x +322+49(a ≠0), 方程a ⎝⎛⎭⎫x +322+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2 -49a=7, 所以a =-4,所以f (x )=-4x 2-12x +40.9.已知函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上为增函数,那么f (2)的取值范围是______________.答案 [7,+∞)解析 函数f (x )=x 2-(a -1)x +5在区间⎝⎛⎭⎫12,1上为增函数,由于其图象(抛物线)开口向上,所以其对称轴x =a -12或与直线x =12重合或位于直线x =12的左侧,即应有a -12≤12,解得a ≤2,所以f (2)=4-(a -1)×2+5≥7,即f (2)≥7.10.设函数f (x )=-2x 2+4x 在区间[m ,n ]上的值域是[-6,2],则m +n 的取值范围是______________.答案 [0,4]解析 令f (x )=-6,得x =-1或x =3;令f (x )=2,得x =1.又f (x )在[-1,1]上单调递增,在[1,3]上单调递减,∴当m =-1,n =1时,m +n 取得最小值0;当m =1,n =3时,m +n 取得最大值4.11.(2018·河南南阳一中月考)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是____________.答案 ⎝⎛⎭⎫-22,0 解析 因为函数图象开口向上,所以根据题意只需满足 ⎩⎪⎨⎪⎧f (m )=m 2+m 2-1<0,f (m +1)=(m +1)2+m (m +1)-1<0, 解得-22<m <0. 12.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.解 (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],函数图象的对称轴为x =-32∈[-2,3], ∴f (x )min =f ⎝⎛⎭⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴f (x )的值域为⎣⎡⎦⎤-214,15. (2)函数图象的对称轴为直线x =-2a -12. ①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3, ∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意.综上可知,a =-13或-1.13.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③ 答案 B解析 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b 2a =-1,2a -b =0,②错误; 结合图象,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.14.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.答案 (-∞,-5]解析 方法一 ∵不等式x 2+mx +4<0对x ∈(1,2)恒成立,∴mx <-x 2-4对x ∈(1,2)恒成立,即m <-⎝⎛⎭⎫x +4x 对x ∈(1,2)恒成立, 令y =x +4x ,x ∈(1,2),则函数y =x +4x在x ∈(1,2)上是减函数.∴4<y <5,∴-5<-⎝⎛⎭⎫x +4x <-4,∴m ≤-5.方法二 设f (x )=x 2+mx +4,当x ∈(1,2)时,由f (x )<0恒成立,得⎩⎪⎨⎪⎧ f (1)≤0,f (2)≤0, 解得⎩⎪⎨⎪⎧m ≤-5,m ≤-4,即m ≤-5.15.若函数φ(x )=x 2+m |x -1|在[0,+∞)上单调递增,求实数m 的取值范围.解 当0≤x <1时,φ(x )=x 2-mx +m ,此时φ(x )单调递增,则m 2≤0,即m ≤0; 当x ≥1时,φ(x )=x 2+mx -m ,此时φ(x )单调递增,则-m 2≤1,即m ≥-2.综上,实数m 的取值范围是[-2,0].16.是否存在实数a ∈[-2,1],使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]?若存在,求a 的值;若不存在,请说明理由. 解 f (x )=(x -a )2+a -a 2,当-2≤a <-1时,f (x )在[-1,1]上为增函数,∴由⎩⎪⎨⎪⎧ f (-1)=-2,f (1)=2,得a =-1(舍去); 当-1≤a ≤0时,由⎩⎪⎨⎪⎧ f (a )=-2,f (1)=2,得a =-1; 当0<a ≤1时,由⎩⎪⎨⎪⎧f (a )=-2,f (-1)=2,得a 不存在; 综上可得,存在实数a 满足题目条件,a =-1.。
高考数学一轮复习教学案二次函数与幂函数(含解析)

第六节二次函数与幂函数[知识能否忆起]一、常用幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0} 值域R{y|y≥0}R{y|y≥0}{y|y≠0} 奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、二次函数1.二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).3.二次函数的图象和性质a>0a<0 图象图象特点①对称轴:x=-b2a;②顶点:⎝⎛⎭⎫-b2a,4ac-b24a性质定义域 x ∈R值域y ∈⎣⎡4ac -b 24a ,+∞y ∈⎝⎛⎦⎤-∞,4ac -b 24a 奇偶性b =0时为偶函数,b ≠0时既非奇函数也非偶函数单调性x ∈-∞,⎦⎤-b 2a 时递减,x ∈-b2a,+∞时递增x ∈⎝⎛⎦⎤-∞,-b2a 时递增,x ∈⎣⎡⎭⎫-b 2a ,+∞时递减[小题能否全取]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2 C .f (x )=-x 2D .f (x )=x 2解析:选D 形如f (x )=x α的函数是幂函数,其中α是常数.2.(教材习题改编)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A 在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.3.(教材习题改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A.⎝⎛⎭⎫0,120B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞D.⎝⎛⎭⎫-120,0 解析:选C 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0得a >120.4.(教材习题改编)已知点M ⎝⎛⎭⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为________.解析:设幂函数的解析式为y =x α,则3=⎝⎛⎭⎫33α,得α=-2.故y =x -2. 答案:y =x -25.如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的最小值为________.解析:由题意知⎩⎨⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6.则f (x )=x 2-2x +6=(x -1)2+5≥5. 答案:51.幂函数图象的特点(1)幂函数的图象一定会经过第一象限,一定不会经过第四象限,是否经过第二、三象限,要看函数的奇偶性;(2)幂函数的图象最多只能经过两个象限内;(3)如果幂函数的图象与坐标轴相交,则交点一定是原点. 2.与二次函数有关的不等式恒成立问题 (1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[注意] 当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.幂函数的图象与性质典题导入[例1] 已知幂函数f (x )=(m 2-m -1)x-5m -3在(0,+∞)上是增函数,则m =________.[自主解答] ∵函数f (x )=(m 2-m -1)x -5m -3是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1. [答案] -1由题悟法1.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸; 0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.以题试法1.(1)如图给出4个幂函数大致的图象,则图象与函数对应正确的是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 13,②y =x 12,③y =x 2,④y =x -1解析:选B 由图①知,该图象对应的函数为奇函数且定义域为R ,当x >0时,图象是向下凸的,结合选项知选B.(2)(·淄博模拟)若a <0,则下列不等式成立的是( ) A .2a >⎝⎛⎭⎫12a>(0.2)aB .(0.2)a >⎝⎛⎭⎫12a>2aC.⎝⎛⎭⎫12a>(0.2)a>2aD .2a >(0.2)a >⎝⎛⎭⎫12a解析:选B 若a <0,则幂函数y =x a 在(0,+∞)上是减函数,所以(0.2)a >⎝⎛⎭⎫12a>0.所以(0.2)a >⎝⎛⎭⎫12a>2a .求二次函数的解析式典题导入[例2] 已知二次函数f (x )有两个零点0和-2,且它有最小值-1. (1)求f (x )解析式;(2)若g (x )与f (x )图象关于原点对称,求g (x )解析式. [自主解答] (1)由于f (x )有两个零点0和-2, 所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1,所以必有⎩⎪⎨⎪⎧a >0,-a =-1,解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x .(2)设点P (x ,y )是函数g (x )图象上任一点,它关于原点对称的点P ′(-x ,-y )必在f (x )图象上,所以-y =(-x )2+2(-x ), 即-y =x 2-2x , y =-x 2+2x , 故g (x )=-x 2+2x .由题悟法求二次函数的解析式常用待定系数法.合理选择解析式的形式,并根据已知条件正确地列出含有待定系数的等式,把问题转化为方程(组)求解是解决此类问题的基本方法.以题试法2.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图象如图,(3)由图象可知,函数f(x)的值域为(-∞,4].二次函数的图象与性质典题导入[例3]已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.[自主解答](1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6].所以f(x)在[-4,2]上单调递减,在[2,6]上单调递增,故f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.故a 的取值范围为(-∞,-6]∪[4,+∞).本例条件不变,求当a =1时,f (|x |)的单调区间. 解:当a =1时,f (x )=x 2+2x +3,则f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],故f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].由题悟法解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题的求法.以题试法3.(·泰安调研)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a >1时,y max =a ;当0≤a ≤1时,y max =a 2-a +1; 当a <0时,y max =1-a .根据已知条件⎩⎪⎨⎪⎧ a >1,a =2或⎩⎪⎨⎪⎧ 0≤a ≤1,a 2-a +1=2或⎩⎪⎨⎪⎧a <0,1-a =2,解得a =2或a =-1. 答案:2或-1二次函数的综合问题[例4] (·衡水月考)已知函数f (x )=x 2,g (x )=x -1. (1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.[自主解答] (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R , x 2-bx +b <0⇒(-b )2-4b >0⇒b <0或b >4. 故b 的取值范围为(-∞,0)∪(4,+∞). (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4. ①当Δ≤0,即-255≤m ≤255时,则必需⎩⎨⎧m2≤0,-255≤m ≤255⇒-255≤m ≤0.②当Δ>0,即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2).若m2≥1,则x 1≤0, 即⎩⎪⎨⎪⎧ m 2≥1,F (0)=1-m 2≤0⇒m ≥2; 若m2≤0,则x 2≤0, 即⎩⎪⎨⎪⎧m 2≤0,F (0)=1-m 2≥0⇒-1≤m ≤-255.综上所述,m 的取值范围为[-1,0]∪[2,+∞).由题悟法二次函数与二次方程、二次不等式统称“三个二次”,它们之间有着密切的联系,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关“三个二次”的问题,数形结合,密切联系图象是探求解题思路的有效方法.4.若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解:(1)由f (0)=1,得c =1.即f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,则a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得,m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).1.已知幂函数f (x )=x α的部分对应值如下表:x 1 12 f (x )122则不等式f (|x |)≤2的解集是(A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |-4≤x ≤4}解析:选D 由f ⎝⎛⎭⎫12=22⇒α=12,即f (x )=x 12,故f (|x |)≤2⇒|x |12≤2⇒|x |≤4,故其解集为{x |-4≤x ≤4}.2.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )解析:选D ∵a >b >c ,且a +b +c =0, ∴a >0,c <0.∴图象开口向上与y 轴交于负半轴.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 解析:选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a .4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)解析:选D 由已知可得二次函数图象关于直线x =1对称,则f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)≤0,x ∈[0,1],所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.6.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,-52B.⎝⎛⎭⎫52,+∞ C .(-∞,-2)∪(2,+∞)D.⎝⎛⎭⎫-52,+∞ 解析:选B 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0,解得m >52. 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图象关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图象都是抛物线型. 其中正确的有________.解析:从两个函数的定义域、奇偶性、单调性等性质去进行比较. 答案:①②⑤⑥8.(·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________. 解析:由x ≥0,y ≥0,x =1-2y ≥0知0≤y ≤12,令t =2x +3y 2=3y 2-4y +2, 则t =3⎝⎛⎭⎫y -232+23. 在⎣⎡⎦⎤0,12上递减,当y =12时,t 取到最小值,t min =34.答案:3410.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数,且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.解:∵f (x )在(0,+∞)上是增函数, ∴-12p 2+p +32>0,即p 2-2p -3<0.∴-1<p <3.又∵f (x )是偶函数且p ∈Z , ∴p =1,故f (x )=x 2.11.已知二次函数f (x )的图象过点A (-1,0)、B (3,0)、C (1,-8). (1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值; (3)求不等式f (x )≥0的解集.解:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),得a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8,当x ∈[0,3]时,由二次函数图象知, f (x )min =f (1)=-8,f (x )max =f (3)=0. (3)f (x )≥0的解集为{x |x ≤-1,或x ≥3}.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f (3)=5,f (2)=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0. 当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧ f (3)=2,f (2)=5,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2. g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, ∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.(·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝⎛⎦⎤-94,-2 3.(·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知得c =1,a -b +c =0,-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.1.比较下列各组中数值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)4.125,3.8-25,(-1.4)35;(4)0.20.5,0.40.3.解:(1)函数y =3x 是增函数,故30.8>30.7. (2)y =x 3是增函数,故0.213<0.233.(3)4.125>1,0<3.8-25<1,而(-1.4)35<0,故4.125>3.8-25>(-1.4)35.(4)先比较0.20.5与0.20.3,再比较0.20.3与0.40.3,y =0.2x 是减函数,故0.20.5<0.20.3;y =x 0.3在(0,+∞)上是增函数,故0.20.3<0.40.3.则0.20.5<0.40.3.2.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 当-b2a <0时,ab >0,从而c >0,可排除A ,C ;当-b2a >0时,ab <0,从而c <0,可排除B ,选D.3.已知函数f (x )=ax 2-2x +1. (1)试讨论函数f (x )的单调性;(2)若13≤a ≤1,且f (x )在[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ),求g (a )的表达式;(3)在(2)的条件下,求证:g (a )≥12.解:(1)当a =0时,函数f (x )=-2x +1在(-∞,+∞)上为减函数; 当a >0时,抛物线f (x )=ax 2-2x +1开口向上,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为减函数,在⎣⎡⎭⎫1a ,+∞上为增函数; 当a <0时,抛物线f (x )=ax 2-2x +1开口向下,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为增函数,在⎣⎡⎭⎫1a ,+∞上为减函数. (2)∵f (x )=a ⎝⎛⎭⎫x -1a 2+1-1a, 由13≤a ≤1得1≤1a ≤3,∴N (a )=f ⎝⎛⎭⎫1a =1-1a . 当1≤1a <2,即12<a ≤1时,M (a )=f (3)=9a -5,故g (a )=9a +1a-6;当2≤1a ≤3,即13≤a ≤12时,M (a )=f (1)=a -1,故g (a )=a +1a-2.∴g (a )=⎩⎨⎧a +1a-2,a ∈⎣⎡⎦⎤13,12,9a +1a -6,a ∈⎝⎛⎦⎤12,1.(3)证明:当a ∈⎣⎡⎦⎤13,12时,g ′(a )=1-1a 2<0, ∴函数g (a )在⎣⎡⎦⎤13,12上为减函数; 当a ∈⎝⎛⎦⎤12,1时,g ′(a )=9-1a 2>0, ∴函数g (a )在⎝⎛⎦⎤12,1上为增函数,∴当a =12时,g (a )取最小值,g (a )min =g ⎝⎛⎭⎫12=12. 故g (a )≥12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4节幂函数与二次函数最新考纲 1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=x 12,y=1x的图象,了解它们的变化情况;2.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题.知识梳理1.幂函数(1)幂函数的定义一般地,形如y=xα的函数称为幂函数,其中x是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式:一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图象和性质[微点提醒]1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),则当⎩⎨⎧a >0,Δ<0时恒有f (x )>0,当⎩⎨⎧a <0,Δ<0时,恒有f (x )<0.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)函数y =2x 13是幂函数.( )(2)当n >0时,幂函数y =x n 在(0,+∞)上是增函数.( ) (3)二次函数y =ax 2+bx +c (x ∈R )不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b24a.( )解析 (1)由于幂函数的解析式为f (x )=x α,故y =2x 13不是幂函数,(1)错. (3)由于当b =0时,y =ax 2+bx +c =ax 2+c 为偶函数,故(3)错.(4)对称轴x =-b 2a ,当-b 2a 小于a 或大于b 时,最值不是4ac -b 24a ,故(4)错.答案 (1)× (2)√ (3)× (4)×2.(必修1P79T1改编)已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( ) A.12B.1C.32D.2解析 因为f (x )=k ·x α是幂函数,所以k =1.又f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,所以α=12,所以k +α=1+12=32.答案 C3.(必修1P44A9改编)若函数f (x )=4x 2-kx -8在[-1,2]上是单调函数,则实数k 的取值范围是________.解析 由于函数f (x )的图象开口向上,对称轴是x =k8,所以要使f (x )在[-1,2]上是单调函数,则有k 8≤-1或k8≥2,即k ≤-8或k ≥16.答案 (-∞,-8]∪[16,+∞)4.(2016·全国Ⅲ卷)已知a =243,b =323,c =2513,则( )A.b <a <cB.a <b <cC.b <c <aD.c <a <b解析 因为a =243=423,b =323,c =523又y =x 23在(0,+∞)上是增函数,所以c >a >b . 答案 A5.(2019·衡水中学月考)若存在非零的实数a ,使得f (x )=f (a -x )对定义域上任意的x 恒成立,则函数f (x )可能是( ) A.f (x )=x 2-2x +1B.f (x )=x 2-1C.f (x )=2xD.f (x )=2x +1解析 由存在非零的实数a ,使得f (x )=f (a -x )对定义域上任意的x 恒成立,可得函数图象的对称轴为x =a2≠0.只有选项A 中,f (x )=x 2-2x +1关于x =1对称.答案 A6.(2018·成都诊断)幂函数f (x )=(m 2-4m +4)·x m 2-6m +8在(0,+∞)上为增函数,则m 的值为________.解析 由题意知⎩⎨⎧m 2-4m +4=1,m 2-6m +8>0,解得m =1.答案1考点一 幂函数的图象和性质【例1】 (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的大致图象是()(2)若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( )A.a <b <cB.c <a <bC.b <c <aD.b <a <c解析 (1)设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,C 正确.(2)因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .答案 (1)C (2)D规律方法 1.对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.【训练1】 (1)(2018·洛阳二模)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,则函数f (x )是( ) A.奇函数 B.偶函数C.定义域内的减函数D.定义域内的增函数(2)(2018·上海卷)已知α∈⎩⎪⎨⎪⎧-2,-1,-12,⎭⎪⎬⎪⎫12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.解析 (1)由题意得a -1=1,且12=a b ,因此a =2且b =-1.故f (x )=x -1是奇函数,但在定义域(-∞,0)∪(0,+∞)不是单调函数.(2)由题意知α可取-1,1,3.又y =x α在(0,+∞)上是减函数,∴α<0,取α=-1. 答案 (1)A (2)-1 考点二 二次函数的解析式【例2】 (一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式. 解 法一 (利用“一般式”解题) 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎨⎧a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7. 法二 (利用“顶点式”解题) 设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12,所以m =12. 又根据题意,函数有最大值8,所以n =8, 所以y =f (x )=a ⎝⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三 (利用“零点式”解题)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-(-a )24a=8.解得a=-4或a=0(舍).故所求函数的解析式为f(x)=-4x2+4x+7.规律方法求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:【训练2】已知二次函数f(x)的图象经过点(4,3),它在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.解析因为f(2-x)=f(2+x)对x∈R恒成立,所以y=f(x)的图象关于x=2对称.又y=f(x)的图象在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1或2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图象上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.答案x2-4x+3考点三二次函数的图象及应用【例3】 (1)对数函数y=log a x(a>0且a≠1)与二次函数y=(a-1)x2-x在同一坐标系内的图象可能是( )(2)设函数f(x)=x2+x+a(a>0),已知f(m)<0,则( )A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0解析(1)若0<a<1,则y=log a x在(0,+∞)上单调递减,y=(a-1)x2-x开口向下,其图象的对称轴在y轴左侧,排除C,D.若a>1,则y=log a x在(0,+∞)上是增函数,y=(a-1)x2-x图象开口向上,且对称轴在y轴右侧,因此B项不正确,只有选项A满足.(2)因为f(x)的对称轴为x=-12,f(0)=a>0,所以f(x)的大致图象如图所示.由f(m)<0,得-1<m<0,所以m+1>0,所以f(m+1)>f(0)>0.答案(1)A (2)C规律方法 1.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是抛物线上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.2.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.【训练3】一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象大致是( )解析A中,由一次函数y=ax+b的图象可得a>0,此时二次函数y=ax2+bx+c 的图象应该开口向上,A错误;B中,由一次函数y=ax+b的图象可得a>0,b>0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x=-b2a<0,B错误;C中,由一次函数y=ax+b的图象可得a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,对称轴x=-b2a<0,C正确;D中,由一次函数y=ax+b的图象可得a<0,b<0,此时二次函数y=ax2+bx+c 的图象应该开口向下,D错误.答案 C考点四二次函数的性质多维探究角度1 二次函数的单调性与最值【例4-1】已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.解(1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4,故a的取值范围是(-∞,-6]∪[4,+∞).角度2 二次函数的恒成立问题【例4-2】(2019·浙江“超级全能生”模拟)已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是( )A.[-2,2]B.[1,2]C.[2,3]D.[1,2]解析由于f(x)=x2-2tx+1的图象的对称轴为x=t,又y=f(x)在(-∞,1]上是减函数,所以,t≥1.则在区间[0,t +1]上,f (x )max =f (0)=1,f (x )min =f (t )=t 2-2t 2+1=-t 2+1,要使对任意的x 1,x 2∈[0,t +1],都有|f (x 1)-f (x 2)|≤2, 只需1-(-t 2+1)≤2,解得-2≤t ≤ 2. 又t ≥1,∴1≤t ≤ 2. 答案 B规律方法 1.二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想求解.2.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .【训练4】 已知二次函数f (x )=ax 2+bx +1(a ,b ∈R 且a ≠0),x ∈R . (1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.解(1)由题意知⎩⎪⎨⎪⎧a >0,-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞), 单调递减区间为(-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k<1,故k的取值范围是(-∞,1).[思维升华]1.幂函数y=xα的性质和图象,由于α的取值不同而比较复杂,一般可从三方面考查:(1)α的正负:α>0时图象经过(0,0)点和(1,1)点,在第一象限的部分“上升”;α<0时图象不过(0,0)点,经过(1,1)点,在第一象限的部分“下降”;(2)曲线在第一象限的凹凸性:α>1时曲线下凹,0<α<1时曲线上凸,α<0时曲线下凹;(3)函数的奇偶性:一般先将函数式化为正指数幂或根式形式,再根据函数定义域和奇偶性定义判断其奇偶性.2.求二次函数的解析式就是确定函数式f(x)=ax2+bx+c(a≠0)中a,b,c的值.应根据题设条件选用适当的表达形式,用待定系数法确定相应字母的值.3.二次函数与一元二次不等式密切相关,借助二次函数的图象和性质,可直观地解决与不等式有关的问题.4.二次函数的单调性与对称轴紧密相连,二次函数的最值问题要根据其图象以及所给区间与对称轴的关系确定.[易错防范]1.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.2.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.基础巩固题组(建议用时:40分钟)一、选择题1.(2019·济宁联考)下列命题正确的是( )A.y=x0的图象是一条直线B.幂函数的图象都经过点(0,0),(1,1)C.若幂函数y=xα是奇函数,则y=xα是增函数D.幂函数的图象不可能出现在第四象限解析A中,点(0,1)不在直线上,A错;B中,y=xα,当α<0时,图象不过原点,B错;C中,当α<0时,y=xα在(-∞,0),(0,+∞)上为减函数,C错.幂函数图象一定过第一象限,一定不过第四象限,D正确.答案 D2.若函数f(x)=x2+ax+b的图象与x轴的交点为(1,0)和(3,0),则函数f(x)( )A.在(-∞,2]上递减,在[2,+∞)上递增B.在(-∞,3)上递增C.在[1,3]上递增D.单调性不能确定解析由已知可得该函数图象的对称轴为x=2,又二次项系数为1>0,所以f(x)在(-∞,2]上是递减的,在[2,+∞)上是递增的.答案 A3.(2019·安阳模拟)已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( )A.1B.0C.-1D.2解析f(x)=-x2+4x+a=-(x-2)2+a+4,∴函数f(x)=-x2+4x+a在[0,1]上单调递增,∴当x=0时,f(x)取得最小值,当x=1时,f(x)取得最大值,∴f(0)=a=-2,f(1)=3+a=3-2=1.答案 A4.(2018·岳阳一中质检)已知函数y=ax2+bx-1在(-∞,0]是单调函数,则y =2ax+b的图象不可能是( )解析 ①当a =0,b ≠0时,y =2ax +b 的图象可能是A ; ②当a >0时,-b2a≥0⇒b ≤0,y =2ax +b 的图象可能是C ; ③当a <0时,-b2a≥0⇒b ≥0,y =2ax +b 的图象可能是D. 答案 B5.(2019·巢湖月考)已知p :|m +1|<1,q :幂函数y =(m 2-m -1)x m 在(0,+∞)上单调递减,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析 p :由|m +1|<1得-2<m <0,∵幂函数y =(m 2-m -1)x m 在(0,+∞)上单调递减, ∴m 2-m -1=1,且m <0,解得m =-1. ∴p 是q 的必要不充分条件. 答案 B 二、填空题6.已知函数f (x )为幂函数,且f (4)=12,则当f (a )=4f (a +3)时,实数a 等于________.解析 设f (x )=x α,则4α=12,所以α=-12.因此f (x )=x -12,从而a -12=4(a +3)-12,解得a =15.答案157.(2019·泉州质检)若二次函数f (x )=ax 2-x +b (a ≠0)的最小值为0,则a +4b 的取值范围是________.解析 依题意,知a >0,且Δ=1-4ab =0,∴4ab =1,且b >0. 故a +4b ≥24ab =2,当且仅当a =4b ,即a =1,b =14时等号成立.所以a +4b 的取值范围是[2,+∞). 答案 [2,+∞)8.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是________.解析 由题意可知函数f (x )的图象开口向下,对称轴为x =2(如图),若f (a )≥f (0),从图象观察可知0≤a ≤4. 答案 [0,4] 三、解答题9.已知奇函数y =f (x )定义域是R ,当x ≥0时,f (x )=x (1-x ). (1)求出函数y =f (x )的解析式;(2)写出函数y =f (x )的单调递增区间.(不用证明,只需直接写出递增区间即可) 解 (1)当x <0时,-x >0, 所以f (-x )=-x (1+x ). 又因为y =f (x )是奇函数, 所以f (x )=-f (-x )=x (1+x ). 综上f (x )=⎩⎨⎧x (1-x ),x ≥0,x (1+x ),x <0.(2)函数y =f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤-12,12.10.已知幂函数f (x )=(m -1)2xm 2-4m +2在(0,+∞)上单调递增,函数g (x )=2x -k . (1)求m 的值;(2)当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,设p :x ∈A ,q :x ∈B ,若p 是q 成立的必要条件,求实数k 的取值范围. 解 (1)依题意得:(m -1)2=1⇒m =0或m =2,当m =2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m =0. (2)由(1)得,f (x )=x 2,当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4), 当x ∈[1,2)时,g (x )∈[2-k ,4-k ), 即B =[2-k ,4-k ),因p 是q 成立的必要条件,则B ⊆A , 则⎩⎨⎧2-k ≥1,4-k ≤4,即⎩⎨⎧k ≤1,k ≥0,得0≤k ≤1. 故实数k 的取值范围是[0,1].能力提升题组 (建议用时:20分钟)11.(2019·武汉模拟)幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图象是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图象三等分,即有BM =MN =NA ,那么a -1b=( )A.0B.1C.12D.2解析 BM =MN =NA ,点A (1,0),B (0,1), 所以M ⎝ ⎛⎭⎪⎫13,23,N ⎝ ⎛⎭⎪⎫23,13,将两点坐标分别代入y =x a ,y =x b ,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0.答案 A12.(2017·浙江卷)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 有关,但与b 无关 C.与a 无关,且与b 无关 D.与a 无关,但与b 有关解析 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.答案 B13.已知函数f (x )=mx 2+(2-m )x +n (m >0),当-1≤x ≤1时,|f (x )|≤1恒成立,则f ⎝ ⎛⎭⎪⎫23=________.解析 当x ∈[-1,1]时,|f (x )|≤1恒成立. ∴⎩⎨⎧|f (0)|≤1⇒|n |≤1⇒-1≤n ≤1;|f (1)|≤1⇒|2+n |≤1⇒-3≤n ≤-1, 因此n =-1,∴f (0)=-1,f (1)=1.由f (x )的图象可知:要满足题意,则图象的对称轴为直线x =0, ∴2-m =0,m =2,∴f (x )=2x 2-1,∴f ⎝ ⎛⎭⎪⎫23=-19.答案 -1914.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解 (1)设f (x )=ax 2+bx +1(a ≠0), 则f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1, 又f (0)=1,所以c =1.因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立; 即x 2-3x +1>m 在区间[-1,1]上恒成立. 所以令g (x )=x 2-3x +1=⎝⎛⎭⎪⎫x -322-54,因为g (x )在[-1,1]上的最小值为g (1)=-1, 所以m <-1.故实数m 的取值范围为(-∞,-1).。