专升本高等数学(二)必考公式、必考题型与模拟试题答卷
专升本高等数学二(一元函数微分学)模拟试卷3(题后含答案及解析)

专升本高等数学二(一元函数微分学)模拟试卷3(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设f(x)在x=0处可导,则= ( )A.f’(0)B.f’(0)C.2f’(0)D.f’(0)正确答案:C解析:知识模块:一元函数微分学2.设函数y=ex-2,则dy= ( )A.ex-3dxB.ex-2dxC.ex-1dxD.exdx正确答案:B解析:因为y=ex-2,y’=ex-2,所以dy=ex-2dx.知识模块:一元函数微分学3.下列函数中,在x=0处可导的是( )A.y=|x|B.y=C.y=x3D.y=lnx正确答案:C解析:选项A中,y=|x|,在x=0处左右导数不相同,则y=|x|在x=0处不可导;选项B中,在x=0处无定义,即y=在x=0处不可导;选项C中,y=x3,y’=3x2处处存在,即y=x3处处可导,也就在x=0处可导;选项D中,y=lnx在x=0点没定义,所以y=lnx在x=0处不可导.知识模块:一元函数微分学4.f(x)=(x+1)(x+2)…(x+100),则f’(一1)= ( )A.100!B.99!C.∞D.一99!正确答案:B解析:由导数的定义可知f’(一1)==(x+2)…(x+100)=99!.知识模块:一元函数微分学5.曲线y=( )A.有一个拐点B.有两个拐点C.有三个拐点D.无拐点正确答案:D解析:因y’=,则y’’在定义域内恒不等于0,且无二阶不可导点,所以无拐点.知识模块:一元函数微分学6.函数y=ex+e-x的单调增加区间是( )A.(一∞,+∞)B.(一∞,0]C.(一1,1)D.[0,+∞)正确答案:D解析:y=ex+e-x,则y’=ex一e-x=,令y’>0,则x>0,所以y 在区间[0,+∞)上单调递增.知识模块:一元函数微分学7.函数f(x)=在[0,3]上满足罗尔定理,则ξ= ( )A.2B.3C.0D.1正确答案:A解析:由f(x)=,得f(0)=f(3)=0.又因f’(x)=,故f’(ξ)=0,所以ξ=2.知识模块:一元函数微分学8.设y=f(x)在[0,1]上连续,且f(0)>0,f(1)<0,则下列正确的是( ) A.y=f(x)在[0,1]上可能无界B.y=f(x)在[0,1]上未必有最小值C.y=f(x)在[0,1]上未必有最大值D.方程f(x)=0在(0,1)内至少有一个实根正确答案:D解析:函数在闭区间上连续,则在该区间必定有界,且存在最大、最小值,由零点定理可知选项D正确.知识模块:一元函数微分学填空题9.设函数y=(x一3)4,则dy=________.正确答案:4(x一3)3dx解析:因为y=(x一3)4,y’=4(x一3)3,则dy=4(x一3)3dx.知识模块:一元函数微分学10.设y=x2ex,则y(10)|x=0=________.正确答案:90解析:y’=2xex+x2ex=ex(x2+2x)=ex[(x+1)2一1],y’’=ex(x2+2x)+ex(2x+2)=ex[(x+2)2一2],y’’’=ex(x2+4x+2)+ex(2x+4)=ex[(x+3)2一3],…y(10)=ex[(x+10)2一10],所以y(10)|x=0=90.知识模块:一元函数微分学11.x=,y=t3,则=________.正确答案:一3t2(1+t)2解析:=一3t2(1+t)2.知识模块:一元函数微分学12.曲线y=的水平渐近线方程为_________.正确答案:y=解析:的水平渐近线.知识模块:一元函数微分学13.f(x)=xex,则f(n)(x)的极小值点为_________.正确答案:x=一(n+1)解析:f’(x)=ex+xex=(x+1)ex,f’’(x)=ex+(x+1)ex=(x+2)ex,f’’’(x)=ex+(x+2)ex=(x+3)ex,…,f(n)(x)=(x+n)ex,故(f(n)(x))’=f(n+1)(x)=(x+n+1)ex=0,则x=一(n+1),显然当x>一(n+1)时,f(n+1)(x)>0;当x<一(n+1)时,f(n+1)(x)<0,因此f(n)(x)的极小值点为x=一(n+1).知识模块:一元函数微分学解答题14.讨论f(x)=在x=0处的可导性.正确答案:f-’(0)==0,f+’(0)==0.故函数在x=0处可导且f’(0)=0.涉及知识点:一元函数微分学15.求曲线y=e-x上通过原点的切线方程及和直线x+y=2垂直的法线方程.正确答案:曲线y=e-x上任一点(x0,e-x0)处的切线方程为y=e-x0=一(e -x)|x=x0(x—x0),即y—e-x0=一e-x0(x—x0).因切线过原点,则将x=0,y=0代入得x0=一1,则切点为(一1,e),故过原点的切线方程为y=一ex.又曲线y=e-x上任意点的法线方程为y—e-x0=ex0(x—x0),因法线与x+y=2垂直,故有ex0.(一1)=一1,得x0=0,从而所求法线方程为y=x+1.涉及知识点:一元函数微分学16.函数y=y(x)由方程ey=sin(x+y)确定,求dy.正确答案:将ey=sin(x+y)两边对x求导,有ey.y’=cos(x+y)(1+y’),所以y’=dx.涉及知识点:一元函数微分学17.求函数y=的导数[已知f(μ)可微].正确答案:设y=f(μ),μ=ν2,ν=sint,t=,则涉及知识点:一元函数微分学18.设f(x)在x0点可导,求.正确答案:=2f’( x0).涉及知识点:一元函数微分学19.已知g(x)=af2(x)且f’(x)=,证明:g’(x)=2g(x).正确答案:g’(x)=(af2(x))’=lna.af2(x).[f2(x)]’=lna.af2(x).2f(x).f’(x),又f’(x)=,所以g’(x)=lna.af2(x).2f(x).=2af2(x)=2g(x).涉及知识点:一元函数微分学20.已知曲线y=ax4+bx2+x2+3在点(1,6)处与直线y=11x一5相切,求a,b.正确答案:曲线过点(1,6),即点(1,6)满足曲线方程,所以6=a+b+4,①再y’=4ax2+3bx2+2x,且曲线在点(1,6)处与y=11x一5相切,所以y’|x=1=4a+3b+2=11,②联立①②解得a=3,b=一1.涉及知识点:一元函数微分学21.设f(x)在[0,+∞)上连续,f(0)=0,f’’(x)在(0,+∞)内恒大于零,证明g(x)=在(0,+∞)内单调增加.正确答案:方法一因为f’’(x)>0,所以f’(x)在(0,+∞)单调增加,故f’(x)>f’(ξ),即g’(x)>0,从而g(x)在(0,+∞)单调增加.方法二g’(x)=,欲证分子φ(x)=f’(x)x-f(x)大于零,因为φ’(x)=f’’(x)x+f’(x)一f’(x)=f’’(x)x>0(x>0),所以x>0时φ(x)单调增加,即φ(x)>φ(0)=0,故当x>0,g(x)在(0,+∞)内单调增加.涉及知识点:一元函数微分学22.设f(x)在[a,b]上具有一、二阶导数,f(a)=f(b)=0,又F(x)=(x一a)2f(x).证明F(x)在(a,b)内至少存在一点ζ,使F’’(ζ)=0.正确答案:显然,F(x)在[a,b]上满足罗尔定理条件,故存在η∈(a,b),使F’(η)=0,又由F’(x)=2(x一a)f(x)+(x一a)2f’(x),知F’(a)=0.因此,F’(x)在[a,η]上满足罗尔定理条件,故存在ζ∈(a,η)(a,b),使得F’’(ζ)=0.涉及知识点:一元函数微分学23.当0<x<π时,证明.正确答案:令F(x)=,则F(0)=F(π)=0.又F’(x)=<F’(0)>F’(x)>F’(π).而F’(0)=<0,判别不出F’(x)的正负.注意到F’’(x)<0,则F(x)在0<x<π时是凸曲线,由于F(0)=F(π)=0,故F(x)>0,即,得证.涉及知识点:一元函数微分学24.设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,k为正整数,求证:存在一点ξ∈(0,1)使得ξf’(ξ)+kf(ξ)=f’(ξ).正确答案:xf’(x)+kf(x)=f’(x),整理得,(x一1)f’(x)=一kf(x),分离变量得,两边积分得lnf(x)=一kln(1一x)+C1,整理得lnf(x)(1一x)k=C1,即f(x)(1一x)k=C,所以设F(x)=f(x)(1一x)k,F(x)在[0,1]上连续,在(0,1)内可导,又F(0)=0,F(1)=0,则F(x)在[0,1]上满足罗尔定理,故存在一点ξ∈(0,1),使得F’(ξ)=0,即ξf’(ξ)+kf(ξ)=f’(ξ).涉及知识点:一元函数微分学25.证明当x>0时,有.正确答案:分析可得>0,又可构造辅助函数,用单调性证明.令F(x)=(0<x<+∞),因为F’(x)=<0,所以F(x)在(0,+∞)上单调减少,又=0,所以,对一切x∈(0,+∞),恒有F(x)>0,即.涉及知识点:一元函数微分学26.某企业计划生产一批服装a件,分若干批进行生产,设生产每批服装需要固定支出1000元,而每批生产直接消耗的费用与产品数量的平方成正比,已知当每批服装生产数量是40件时,直接消耗的生产费用是800元,问每批服装生产多少件时,才能使总费用最少?正确答案:设每批生产x件,则一年内生产批,每批生产直接消耗费用为p,则p=kx2,又因为根据条件,每批产品40件时,直接消耗的生产费用为800,所以,800=k402,即k=x2,该产品的总费用y为y=.0<x≤a,又因为在实际问题中唯一的极值点就是最值点,所以当x=≈45时,总费用最小.涉及知识点:一元函数微分学。
专升本高等数学二(一元函数微分学)模拟试卷1(题后含答案及解析)

专升本高等数学二(一元函数微分学)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设函数f(x)在点x0的某邻域内可导,且f(x0)为f(x)的一个极小值,则= ( )A.一2B.0C.1D.2正确答案:B解析:因f(x)在x=x0处取得极值,且可导,于是f’(x0)=0.又=2f’(x0)=0.知识模块:一元函数微分学2.设函数f(x)=e-x2,则f’(x)等于( )A.一2e-x2B.2e-x2C.一2xe-x2D.2xe-x2正确答案:C解析:因f(x)=e-x2,则f’(x)=e-x2.(一2x)=一2xe-x2.知识模块:一元函数微分学3.设函数f(x)=2lnx+ex,则f’(2)= ( )A.eB.1C.1+e2D.ln2正确答案:C解析:因f(x)=2lnx+ex,于是f’(x)=+ex,故f’(2)=1+e2.知识模块:一元函数微分学4.设y=exsinx,则y’’’= ( )A.cosx.exB.sinx.exC.2ex(cosx—sinx)D.2ex(sinx—cosx)正确答案:C解析:y’=exsinx+excosx=ex(sinx+cosx),y’’=ex(sinx+cosx)+ex(cosx—sinx)=2excosx,y’’’=2excosx一2exsinx=2ex(cosx—sinx).知识模块:一元函数微分学5.设f(x)可导,且满足=一2,则曲线y=f(x)在点(1,f(1))处的切线斜率为( )A.4B.一4C.1D.一1正确答案:D解析:=2f’(1)=一2,故f’(1)=一1.知识模块:一元函数微分学6.曲线y=1+( )A.有水平渐近线,无铅直渐近线B.无水平渐近线,有铅直渐近线C.既有水平渐近线,又有铅直渐近线D.既无水平渐近线,也无铅直渐近线正确答案:C解析:对于曲线y==1,故有水平渐近线y=1;又=一∞,故曲线有铅直渐近线x=一1.知识模块:一元函数微分学7.曲线y==1的水平渐近线的方程是( )A.y=2B.y=一2C.y=1D.y=一1正确答案:D解析:=一1,所以水平渐近线为y=一1.知识模块:一元函数微分学8.曲线y=(x一1)2(x一3)2的拐点个数为( )A.0B.1C.2D.3正确答案:C解析:本题考察曲线拐点的概念,可直接求函数二阶导数为零的点,再判断在零点左右两侧的二阶导数是否异号,以求出拐点,但由于函数的一阶、二阶导数有明显的几何意义,因而这类题目若能结合曲线的形状,往往判断起来更为方便,本题的曲线对称于直线x=2,所以它或者没有拐点,或者只有两个拐点,因此B与D被排除掉,又y’=4(x一1)(x一2)(x一3),对导函数y’应用罗尔定理,知y’’有两个零点,从而知曲线有两个拐点,故选C.知识模块:一元函数微分学9.方程x3一3x+1=0 ( )A.无实根B.有唯一实根C.有两个实根D.有三个实根正确答案:D解析:令f(x)=x3一3x+1,则f’(x)=3(x+1)(x-1),可知,当一1<x<1时,f’(x)<0,f(x)单调递减;当x>1或x<一1时,f’(x)>0,f(x)单调递增,因f(一2)=一1<0,f(一1)一3>0,f(1)=一1<0,f(2)一3>0,由零点定理及f(x)的单调性知,在(一2,一1),(-1,1)及(1,2)各存在一个实根,故f(x)=x3一3x+1有且只有三个实根,故选D.知识模块:一元函数微分学填空题10.设函数f(x)在x=0处可导,且f(0)=0,f’(0)=b,若F(x)=在x=0处连续,则常数A=________.正确答案:a+b解析:由函数F(x)在x=0处连续可得=F(0),即=b+a=A.知识模块:一元函数微分学11.设y=2x,则y(n)=________.正确答案:(ln2)n2x解析:y=2x,y’=2xln2,y’’=2x.ln2.ln2=(ln2)22x,y’’’=(ln2)2.2x.ln2=(ln2)3.2x,…y(n)=(ln2)n2x.知识模块:一元函数微分学12.设y=,则y’=_________.正确答案:解析:知识模块:一元函数微分学13.设f(x)=ax3一6ax2+b在区间[一1,2]的最大值为2,最小值为一29,又知a>0,则a=_________,b=_________.正确答案:,2解析:f’(x)=3ax2-12ax,f’(x)=0,则x=0或x=4,而x=4不在[一1,2]中,故舍去,f’’(x)=6ax一12a,f’’(0)=一12a,因为a>0,所以f’’(0)<0,所以x=0是极大值点.又因f(一1)=一a一6a+b=b一7a,f(0)=b,f(2)=8a一24a+b=b一16a,因为a>0,故当x=0时,f(x)最大,即b=2;当x=2时,f(x)最小.所以b一16a=一29,即16a=2+29=31,故a=.知识模块:一元函数微分学14.若=1,则f(x)在x=a处取极_________值.正确答案:小解析:一1>0,又有(x一a)2>0,则由极限的保号性可知f(x)一f(a)>0,故f(a)为极小值.知识模块:一元函数微分学解答题15.求y=的n阶导数.正确答案:y’=,y’’=,y’’’=,依次类推y(n)=(一1)n.涉及知识点:一元函数微分学16.求函数y=ln(x+)的二阶导数y’’.正确答案:y’’=.涉及知识点:一元函数微分学17.设x=φ(y)是严格单调的连续函数y=f(x)的反函数,且f(1)=9,f’(1)=一,求φ’(9).正确答案:φ’(y)=,而f(1)=9,f’(1)=一,故φ’(9)=.涉及知识点:一元函数微分学18.设y=y(x)由所确定,f’’(t)存在且f’’(t)≠0,求.正确答案:涉及知识点:一元函数微分学19.设函数f(x)在(一∞,+∞)内具有二阶导数,且f(0)=f’(0)=0,试求函数g(x)=的导数.正确答案:当x≠0时,g’(x)=;涉及知识点:一元函数微分学20.求曲线y=x3一3x+5的拐点.正确答案:y’=3x2一3,y’’=6x.令y’’=0,解得x=0.当x<0时,y<0;当x>0时,y’’>0,当x=0时,y=5.因此,点(0,5)为所给曲线的拐点.涉及知识点:一元函数微分学已知f(x)是定义在R上的单调递减的可导函数,且f(1)=2,函数F(x)=∫0xf(t)dt一x2—1.21.判别曲线y=F(x)在R上的凹凸性,并说明理由;正确答案:∵F’(x)=f(x)一2x,F’’(x)=f(x)一2,且由题意知f’(x)≤0(x∈R),∴F’’(x)<0(x∈R),故曲线y=F(x)在R上是凸的;涉及知识点:一元函数微分学22.证明:方程F(x)=0在区间(0,1)内有且仅有一个实根.正确答案:显然F(x)在[0,1]上连续,且F(0)=一1<0,F(1)=∫01f(t)dt一2>∫012dt一2=0,∴方程F(x)=0在区间(0,1)内至少有一个实根.由F’’(x)<0知F’(x)在R上单调递减,∴x<1时,有F’(x)>F’(1)=f(1)一2=0,由此知F(x)在(0,1)内单调递增,因此方程F(x)=0在(0,1)内至多只有一个实根,故方程F(x)=0在区间(0,1)内有且仅有一个实根.涉及知识点:一元函数微分学23.若f(x)在[0,1]上有三阶导数,且f(0)=f(1)=0,设F(x)=x3f(x),试证在(0,1)内至少存在一个ξ,使F’’’(ξ)=0.正确答案:由题设可知F(x),F’(x),F’’(x),F’’’(x)在[0,1]上存在,又F(0)=0,F(1)=f(1)=0,由罗尔定理,存在ξ1∈(0,1)使F’(ξ1)=0.又F’(0)=[3x2f(x)+x3f’(x)]|x=0=0,F’(x)在[0,ξ1]上应用罗尔定理,存在ξ2∈(0,ξ1)(0,1)使F’’(ξ2)=0,又F’’(0)=[6xf(x)+6x2f’(x)+x3f’’(x)]|x=0=0,对F’’(x)在[0,ξ2]上再次用罗尔定理,存在ξ∈(0,ξ2)(0,1)使F’’’(ξ)=0.涉及知识点:一元函数微分学24.设0<a<b<1,证明不等式arctanb—arctana<.正确答案:只需证明,在[a,b]上用拉格朗日中值定理,涉及知识点:一元函数微分学25.证明:当x>0时,有不等式(1+x)ln(1+x)>arctanx.正确答案:令f(x)=(1+x)ln(1+x)一arctanx,f’(x)=ln(1+x)+1一,f’’(x)=当x>0时,f’’(x)>0,则f’(x)单调递增,故有f’(x)>f’(0)=0,则f(x)单调递增,故有f(x)>f(0)=0,即(1+x)ln(1+x)>arctanx.涉及知识点:一元函数微分学26.证明当x>0时,x>ln(1+x).正确答案:令F(x)=x—ln(1+x),由F’(x)=1->0(当x>0时)知F(x)单调增加,又F(0)=0,所以,当x>0时,F(x)>0,即x—ln(1+x)>0,即x>ln(1+x).涉及知识点:一元函数微分学27.设有底为等边三角形的直柱体,体积为V,要使其表面积为最小,问底边的长应为多少?正确答案:设底边长为x,直柱体高为y,则V=,S’=,令S’=0得为极小值点,故在实际问题中,也为最小值点,即底边为时,表面积最小.涉及知识点:一元函数微分学。
成人高考专升本《高等数学二》公式大全

成人高考专升本《高等数学二》公式大全1.函数的导数公式:1)常数函数求导:(C)'=02)幂函数求导:(x^n)' = nx^(n-1), 其中n为常数3)指数函数求导:(a^x)' = a^x * ln(a), 其中a>0且a≠14)对数函数求导:(log_a(x))' = 1 / (x * ln(a)), 其中a>0且a≠15)三角函数求导:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x)6)反三角函数求导:(arcsin(x))' = 1 / sqrt(1 - x^2), (arccos(x))' = -1 / sqrt(1 - x^2), (arctan(x))' = 1 / (1 + x^2)2.高等数学中的极限公式:1)常数函数极限:lim(C) = C, 其中C为常数2)多项式函数极限:lim(a_n*x^n + a_(n-1)*x^(n-1) + ... +a_1*x + a_0) = a_n*x^n, 其中n为正整数,a_n为非零常数3)指数函数极限:lim(a^x) = 1, 其中a>0且a≠14)对数函数极限:lim(log_a(x)) = log_a(1) = 0, 其中a>0且a≠15)三角函数极限:lim(sin(x) / x) = 1, lim((1 - cos(x)) / x) = 0, 当x趋近于0时3.定积分公式:1)换元积分法:∫f(g(x)) * g'(x)dx = ∫f(u)du, 其中u = g(x) 2)分部积分法:∫u * dv = u * v - ∫v * du3)凑微分法:∫f(x)dx = ∫f(x) *1dx = ∫f(x) *[g'(x)/g'(x)]dx = ∫(f(x) * g'(x))/g'(x)dx4.微分方程公式:1)一阶线性微分方程:dy/dx + P(x)y = Q(x), y = e^(-∫P(x)dx) * ∫[Q(x) * e^(∫P(x)dx)]dx2)一阶齐次线性微分方程:dy/dx = f(y/x), 令v = y/x, 可得dv = [(f(v) - v)/x]dx5.级数公式:1)等比数列前n项和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比2)调和级数:∑(1/n)是发散级数3)幂级数展开:e^x = ∑(x^n)/n!, sin(x) = ∑[(-1)^n *(x^(2n+1))/(2n+1)!], cos(x) = ∑[(-1)^n * (x^(2n))/(2n)!]。
2020年成人高考专升本《高等数学(二)》模拟试题及参考答案

模拟试题参考答案
2.【答案】 应选 D. 【解析】 本题考查的知识点是分段函数在分段点处的极限计算.分段点处的极限一定 要分别计算其左、右极限后,再进行判定.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
B. C. D.
5. A.0 B.2x3 C.6x2 D.3x2 6.设ƒ(x)的一个原函数为 Inx,则ƒ(x)等于( ).
A.
B. C.
D.
7. A.y=x+1 B.y=x-1
C.
D.
8. A.0 B.e 一 1 C.2(e-1)
所以选 C. 9.【答案】 应选 D. 【提示】 z 对 x 求偏导时应将 y 视为常数,则有
所以选 D. 10.【答案】 应选 B.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
22.
23.
24. 25.(本题满分 8 分)设事件 A 与 B 相互独立,且 P(A)=0.6,P(B)=0.7,求 P(A+B).
26
.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
2023年陕西省西安市成考专升本高等数学二自考模拟考试(含答案)

2023年陕西省西安市成考专升本高等数学二自考模拟考试(含答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1. ()。
A.0B.1C.e-1D.+∞2.3.4.5.6.7.已知事件A和B的P(AB)=0.4,P(A)=0.8,则P(B|A)=A.A.0.5B.0.6C.0.65D.0.78.A.B.C.exdxD.exIn xdx9.【】10.()。
A.-3B.0C.1D.311.下列极限计算正确的是【】A.B.C.D.12.13.14.曲线y=x3的拐点坐标是()。
A.(-1,-1)B.(0,0)C.(1,1)D.(2,8)15.A.B.C.D.16.()。
A.B.C.D.17.18.19.20.设事件A,B相互独立,A,B发生的概率分别为0.6,0.9,则A,B都不发生的概率为()。
A.0.54B.0.04C.0.1D.0.421.22.设函数f(sinx)=sin2x,则fˊ(x)等于()。
A.2cos xB.-2sin xcosxC.%D.2x23.24.A.A.B.C.D.25.26.27.()。
A.B.C.D.28.29.A.A.B.C.D.30.二、填空题(30题)31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.三、计算题(30题)61.62.求函数f(x,y)=4(x-y)-x2-y2的极值.63.64.65.66.67.68.69.70.71.72.73.74.在抛物线y=1-x2与x轴所围成的平面区域内作一内接矩形ABCD,其一边AB在x轴上(如图所示).设AB=2x,矩形面积为S(x).①写出S(x)的表达式;②求S(x)的最大值.75.76.77.78.79.80.81.82.83.84.求二元函数f(x,y)=x2+y2+xy在条件x+2y=4下的极值.85.86.87.88.89.90.四、综合题(10题)91.92.93.94.95.96.97.98.99.100.五、解答题(10题) 101.102.103. 104. 105. 106.107. 108. 109. 110.六、单选题(0题)111.()。
专升本高等数学二(解答题)模拟试卷16(题后含答案及解析)

专升本高等数学二(解答题)模拟试卷16(题后含答案及解析) 题型有:1.1.求极限.正确答案:因x≠0,且x→0时,有0≤≤|x|.而|x|=0,故由夹逼准则得原式=0.涉及知识点:函数、极限与连续2.求函数的连续区间和相应的极值:正确答案:涉及知识点:函数、极限和连续3.正确答案:涉及知识点:一元函数微分学4.正确答案:涉及知识点:一元函数微分学5.正确答案:涉及知识点:一元函数微分学6.设微分方程y’’+ay’+by=cex的一个特解为y=e2x+(1+x)ex,求该微分方程.正确答案:特解的一阶导数y’=2e2x+(2+x)ex,y’’=4e2x+(3+x)ex,将y’,y’’代入到原方程中可得4e2x+(3+x)ex+a[2e2x+(2+x)ex]+b[e2x+(1+x)ex]=(4+2a+b)e2x+[(a+b+1)x+2a+b+3]ex=cex.对应系数相等,故可得故原方程为y’’一3y’+2y=一ex.涉及知识点:常微分方程7.判断的敛散性.正确答案:涉及知识点:无穷级数8.求幂级数xn的收敛域.正确答案:所以收敛半径R=.当x=时,级数变为,发散;当x=时,级数变为,收敛.因此原级数的收敛域为.涉及知识点:无穷级数9.求幂级数1+(|x|<1)的和函数f(x)及其极值.正确答案:f’(x)=(一1)nx2n-1=.上式两边从0到x积分,得f(x)一f(0)=一∫0x ln(1+x2).由f(0)=1,得f(x)=1一ln(1+x2),(|x|<1).令f’(x)=0,求得唯一驻点x=0.由于f’’(x)=,f’’(0)=一1<0,可见f(x)在x=0处取得极大值,且极大值f(0)=1.涉及知识点:无穷级数10.设|a|=,|b|=1,〈a,b〉=,求向量a+b与a一b的夹角.正确答案:a.b=|a|.|b|.cos〈a,b〉=.所以所求夹角为θ=arccos.涉及知识点:向量代数与空间解析几何11.求下列不定积分:正确答案:涉及知识点:一元函数积分学12.正确答案:涉及知识点:综合13.正确答案:涉及知识点:综合14.正确答案:涉及知识点:综合15.正确答案:涉及知识点:综合。
专升本高等数学二(选择题)模拟试卷3(题后含答案及解析)

专升本高等数学二(选择题)模拟试卷3(题后含答案及解析)题型有:1.1.设y=exsinx,则y’’’= ( )A.cosx.exB.sinx.exC.2ex(cosx—sinx)D.2ex(sinx—cosx)正确答案:C解析:y’=exsinx+excosx=ex(sinx+cosx),y’’=ex(sinx+cosx)+ex(cosx—sinx)=2excosx,y’’’=2excosx一2exsinx=2ex(cosx—sinx).知识模块:一元函数微分学2.设函数y=f(x)具有二阶导数,且f’(x)<0,f’’(x)<0,又△y=f(x+△x)一f(x),dy=f’(x)△x,则当△x>0时,有( )A.△y>dy>0B.△y<dy<0C.dy>△y>0D.dy<△y<0正确答案:B解析:由于f’(x)<0,△x>0,可知dy=f’(x)△x=0,因此应排除A、C项,由于f’’(x)<0,可知曲线是凸的,f’(x)<0,曲线单调下降,因此曲线弧单调下降且为凸的,由曲线弧图形可知△y<dy,故选B.知识模块:一元函数微分学3.已知∫0k(2x一3x2)dx=0,则k= ( )A.0或1B.0或一1C.0或2D.1或一1正确答案:A解析:∫0k(2x一3x2)dx=(x2一x3)|0k=k2一k3=k2(1一k)=0,所以k=0或k=1.知识模块:一元函数积分学4.使∫1+∞f(x)dx=1成立的f(x)为( )A.B.C.D.正确答案:A解析:对于选项A,∫1+∞f(x)dx=∫1+∞dx=|1+∞=1,故此积分收敛,且收敛于1;对于选项B,∫1+∞f(x)dx=∫1+∞dx=lnx|1+∞不存在;对于选项C,∫1+∞f(x)dx=∫1+∞e-xdx=一e-x|1+∞=e-1,故此积分收敛,但收敛于e-1;对于选项D,∫1+∞f(x)dx=∫1+∞dx=arctanx|1+∞=,故此积分收敛,但收敛于.故选A.知识模块:一元函数积分学5.A.B.C.D.正确答案:B 涉及知识点:概率论初步6.区域D为( )时,dxdy=2.A.|x|≤1,|y|≤1B.|x|+|y|≤1C.0≤x≤1,0≤y≤2xD.0≤x2+y2≤2正确答案:B解析:由二重积分的性质知=SD=2,可求得A的面积SD=4,B的面积SD=2×2×=2,C的面积SD=2×1×=1,D的面积SD==2π,故选B.知识模块:多元函数积分学7.下列方程是二阶齐次线性微分方程的是( )A.(y’)2+5yy’’+xy=0B.x2y’’+2y’+y—x2=0C.yy’’+x2y’+y2=0D.xy’+2y’’+x2y=0正确答案:D解析:由二阶齐次线性微分方程的定义可知D正确,A、C项是非线性的,B项是非齐次的.知识模块:常微分方程8.设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则( )A.B.C.D.正确答案:A解析:将解λy1+μy2代入方程y’+p(x)y=q(x),得λ[y1’+p(x)y1]+μ[y2’+p(x)y2]=q(x).又y1’+p(x)y1=q(x),y2’+p(x)y2=q(x),故λ+μ=1;①将解λy1-μy2:代入方程y’+p(x)y=0,得λ[y1’+p(x)y1]一μ[y2’+p(x)y2]=0.又y1’+p(x)y1=q(x),y2’+p(x)y2=q(x),故λ一μ=0.②联立①,②两式,得,故选A.知识模块:常微分方程9.已知函数y=f(x)是微分方程2y’=y满足初始条件y|x=4=1的特解,则f(16)= ( )A.1B.eC.e2D.0正确答案:C解析:=y分离变量可得,两边积分得ln|y|=+C1,即y=,又方程满足y|x=4=1,可得C=e-2,故方程特解为y=,当x=16时,f(16)=e2,故选C.知识模块:常微分方程10.A.B.C.D.正确答案:D 涉及知识点:综合11.下列各选项正确的是( )A.B.C.D.正确答案:A解析:D项成立的前提条件是μn、νn是正项级数,D错,故选A.知识模块:无穷级数12.设a={一1,0,2},b={2,一3,1},则向量a与b的夹角为( )A.B.C.D.正确答案:D解析:cos==0,所以a,b夹角为.知识模块:向量代数与空间解析几何13.若两个非零向量a与b满足|a+b|=|a|+|b|,则( )A.a与b平行B.a与b垂直C.a与b平行且同向D.a与b平行且反向正确答案:C解析:|a|+|b|=|a+b|,(|a|+|b|)2=|a|2+|b|2+2|a||b|=(|a+b|)2=|a|2+|b|2+2ab=|a|2+|b|2+2|a||b|cos〈a,b〉,即cos〈a,b〉=1,故两向量平行,若二者反向则|a|+|b|>|a+b|.不满足条件,故两向量平行且同向.知识模块:向量代数与空间解析几何14.直线( )A.过原点且与y轴垂直B.不过原点但与y轴垂直C.过原点且与y轴平行D.不过原点但与y轴平行正确答案:A解析:若直线方程为,令比例系数为t,则直线可化为本题x0=y0=z0=0说明直线过原点,又β=0,则y=0,即此直线在平面xOz内,即垂直于y轴,故选A.知识模块:向量代数与空间解析几何15.直线l:与平面π:4x-2y-2z-3=0的位置关系是( )A.平行B.垂直相交C.直线l在π上D.相交但不垂直正确答案:A解析:直线的方向向量为{一2,一7,3},平面π的法向量为{4,一2,一2},∴(-2)×4+(-7)×(-2)+3×(-2)=0,且直线l:上的点(一3,一4,0)不在平面π:4x-2y-2z-3=0上,所以直线与平面平行.知识模块:向量代数与空间解析几何16.A.B.C.D.正确答案:B 涉及知识点:一元函数积分学17.A.B.C.D.正确答案:A 涉及知识点:一元函数积分学18.A.B.C.D.正确答案:D 涉及知识点:综合19.A.B.C.D.正确答案:D 涉及知识点:综合20.A.B.C.D.正确答案:D 涉及知识点:综合。
专升本(高等数学二)模拟试卷46(题后含答案及解析)

专升本(高等数学二)模拟试卷46(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.设函数f(x)在(-∞,+∞)上可导,且f(x)=e-2+,则f’(x)等于( ) A.-2e-2x+3B.C.-e-2xD.-2e-2x正确答案:D解析:因为是定值,其导数应为零.2.在下列函数中,当x→0时,函数f(x)的极限存在的是( )A.B.C.D.正确答案:C解析:A项:=20=1,∴当x→0时极限不存在;B 项:=1,∴当x→0时极限不存在;C项:,∴当x→0时极限存在;D项:,极限不存在.3.下列反常积分收敛的是( )A.B.C.D.正确答案:C解析:4.设f(x)的一个原函数为x2,则f(x)等于( )A.B.C.D.正确答案:B解析:5.如果∫df(x)=∫dg(x),则下列各式中不一定成立的是( )A.f(x)=g(x)B.f’(x)=g’(x)C.df(x)=dg(x)D.d∫f’(x)dx=d∫g’(x)dx正确答案:A解析:当f(x)=g(x)+C时,仍有∫df(x)=∫d[g(x)+C]=∫dg(x).6.根据f(x)的导函数f’(x)的图象(如图所示),判断下列结论正确的是( )A.在(-∞,1)上f(x)是单调递减的B.在(-∞,2)上f(x)是单调递减的C.f(1)为极大值D.f(1)为极小值正确答案:C解析:本题的关键是图象所代表的几何意义:在x轴上方的曲线是表示f’(x)>0(千万注意不是代表f(x)>0),而z轴下方的曲线则表示f’(x)<0.因此选项A与B都不正确.注意到在x=1处的左边即x<1时f’(x)>0,而2>x>1时f’(x)<0,根据极值的第一充分条件可知C项正确.7.A.B.C.D.正确答案:A解析:8.设函数z=f(x,v),v=φ(x,y),其中f,φ都有一阶连续偏导数,则等于( )A.B.C.D.正确答案:B解析:9.下列结论正确的是( )A.若A+B=Ω,则A,B互为对立事件B.若A,B为互不相容事件,则A,B互为对立事件C.若A,B为互不相容事件,则也互不相容D.若A,B为互不相容事件,则A-B=A正确答案:D解析:A,B为对立事件要满足A+B=Ω,AB=,而A,B互不相容只要满足AB=,所以对立事件一定互不相容,反之不一定成立.因此A项与B项都不正确,由事件的对偶律,可知选项C也不一定正确.对于选项D,A-B=A-AB A.10.样本4,1,2,1,2的方差是( )A.6B.1.4C.1.2D.0.8正确答案:C解析:(4+1+2+1+2)=2,s2=1/5(4-2)2+(1-2)2+(2-2)2+(1-2)2+(2-2)2]=6/5.填空题11.已知函数f(x)=在x=0点的极限存在,则a=_______.正确答案:1解析:=a,若在x=0点极限存在,则a=1.12.=_______正确答案:e解析:=e1=e.13.设函数f(x)在x=2处连续,且存在,则f(2)=_______.正确答案:1解析:∵存在,∴f(x)-1→0,即f(x)→1(x→2).∵f(x)在x=处连续,∴f(2)=1.14.由方程xy-ex+ey=0确定的隐函数的导数y’=_______.正确答案:令F(x,y)=xy-ex+ey=0.15.设f(t)=,则f’(t)=_______.正确答案:(1+2t)e2t解析:因为所以f’(t)=e2t+te2t×2=(1+2t)e2t.16.设f(x)=x(x+1)10,则∫f(x)dx=_______.正确答案:解析:f(x)dx=∫x(x+1)10dx=f(x+1)(x+1)10dx-∫(x+1)10dx=∫(x+1)11d(x+1)-∫(x+1)10d(x+1)=17.∫abf’(3x)dx=_______.正确答案:解析:18.z=(1-x)2+(2-y)2的驻点是_______.正确答案:(1,2)解析:∵,则x=1,,则y=2,∴驻点为(1,2).19.设f(x,y)==_______正确答案:0解析:20.设袋中有10个球,其中6个白球,4个黄球,从中任取2个球(设每个球取到的可能性相同),则取出的2个球是1个白球、1个黄球的概率P=_______.正确答案:8/15解析:取出的2个球是1个白球,1个黄球,意味着从6个白球中取1个,从4个黄球中取1个,其取法种数为C61C41,则此事件的概率P=解答题21.求由方程exy+ylnx=cos2x所确定的隐函数y=f(x)的导数y’.正确答案:两边对x求导解析:将y看成为x的复合函数,然后将等式两边分别对x求导数,但是一定要注意:式中的y(x)是x的复合函数,必须用复合函数求导公式计算,最后再解出y’.22.计算正确答案:解析:求“”型不定式极限的最佳方法有消去因式法、等价无穷小量代换法、洛必达法则,本题适用于消去因式法或洛必达法则.23.证明:当x>1时,正确答案:当x>1时,f’(x)>0,所以f(x)单调增加,则当x>1时,f(x)>f(1)=0,解析:利用函数的单调性是证明不等式的一种常用方法.其关键是构造一个函数,使其在某区间上单调增加或单调减少.24.计算∫01正确答案:令x=tant,则dx=当x=0时,t=0;当x=1时,t=π/4.解析:本题考查的知识点是用换元法去根号计算定积分,三角代换x=asint 和x=atant是大纲要求掌握的内容.25.计算∫01正确答案:=1-ln(1+e)+ln2.解析:在无法直接积分的情况下,对被积函数进行变换,因为是我们熟悉的,设法将被积函数改写为,问题就解决了.26.设z=x3f,其中f为可微函数.证明=3z.正确答案:解析:这是抽象的求偏导数的问题,只需注意:对x求偏导时,y当作常数,对y求偏导时,x当作常数,再用一元函数的求导公式即可.27.求函数z=x2+y2-xy在条件x+2y=7下的极值.正确答案:设F(x,y,λ)=x2+y2-xy+λ(x+2y-7),由①与②解得5x=4y,代入③得x=2,y=5/2,所以为极值.解析:本题主要考查二元函数的条件极值,通常先构造拉格朗日函数,再求解.28.某工厂要制造一个无盖的圆柱形发酵池,其容积是3π/2m3,池底的材料30元/m2,池壁的材料20元/m2,问如何设计,才能使成本最低?最低成本是多少元?正确答案:设池底半径为r,池高为h(如图所示),则所以r=1为唯一的极小值点,即为最小值点.因此,池底半径为1m,高为3/2m时,可使成本最低,最低成本为90π元.解析:本题考查的知识点是应用导数求实际问题的极值,所谓“成本最低”,即求制造成本函数在已知条件下的最小值,因此,本题的关键是正确写出制造成本函数的表达式,再利用已知条件将其化为一元函数,并求其极值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吴忧学数学
高等数学(二)必考公式1.预备知识
(1)直接代入求极限;
(2)利用等价无穷小极限;如
0tan
lim x
x x
→
=( C ).A.1-; B. 0; C. 1; D. 2.
(3)利用重要极限极限;如
1
lim(1)
3
x
x x
→∞
-=( D ).A.3e; B. 3
e-; C.
1
3
e; D.
1
3
e-.
(4)利用罗必达法则;如
3
lim
sin
x
x
x x
→
=
-
( A )A.6;B.-6;C. 0;D. 1.
(5)分段函数的极限
(6)分段函数的连续性;
如果函数1 , 02()ln(1),03x e x f x x k x x
⎧+≤⎪⎪=⎨+⎪+>⎪⎩处处连续,则k = ( C ).A .67;B . 67-;C . 76;D . 76-. 2. 导数及应用
(1) 利用导数定义求导; 如果(3)6f '=,则0(3)(3)lim 2x f x f x
→--=( B ). A. -6 ; B. -3 ; C. 3 ; D. 6 .
(2)
(3)(4)(5)(6) A. y (7求)微分(8) A .在1x =处取得极小值10,在5x =处取得极大值22-;
B . 在1x =处取得极大值10,在5x =处取得极小值22-;
C . 在1x =处取得极大值22-,在5x =处取得极小值10;
D . 在1x =处取得极小值22-,在5x =处取得极大值10.
(9)凹凸区间,拐点;如求曲线323
10510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,, 21010x x y +=', x y 2010+='',令0=''y , 得21-
=x ,
用2
1-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分. 当∈x 21,(--∞时,0<''y , 当∈x ),2
1(+∞-时,0>''y , 曲线的凹区间为),,21(+∞- 凸区间为),21,(--∞ 拐点为)665,21(-. (10)证明不等式;如试证当1≠x 时,x x e e >.
证明:令x x f x e e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='x x f .
(1) 积分上限函数;如设()sin x
a F x tdt =⎰,则()F x '=( B ). A. sin t ; B. sin x ; C. cos t ; D. cos x .
(2) 定积分的几何意义;
(3)N-L 公式;如积分121dx x
--=⎰( B ).A. ln 2 ; B. ln 2- ;C. ln 3 ; D. ln3- .
(4)换元法;如积分01x x dx e e -=+⎰( D ).A. 3π ; B. 4π ;C. 6
π ; D. 12π . (5)分部积分法;如积分0cos x xdx π
=⎰( A ).A . -2; B . 2; C . -1; D . 0.
(6)反常积分;如广义积分20x xe dx +∞
-=⎰( B ).A.13;B. 14
;C. 15;D. 16. (7)求面积;如求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.
解:如图,由⎪⎩⎪⎨⎧-==,
)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x ,
所求面积
()y y x x y y y y
z x x z z d 1ln d ln d d d ++⋅=∂∂+∂∂=∴. (3)多元函数的极值;如二元函数22(,)36f x y x xy y x y =++--的( ).C
A. 极小值为(0,0)0f =;
B. 极大值为(0,0)0f =;
C. 极小值为(0,3)9f =-;
D. 极大值为(0,3)9f =- .
6.概率
1. 设A与B相互独立,且p
A
P=
)
(,q
B
P=
)
(,则()
P A B=( C ).
A. 1q
-; B. 1pq
-; C. (1)(1)
p q
--; D. 1p q
-- .
2. 一盒子内有10只球,其中6只是白球,4只是红球,从中取2只球,则取出产品中至少有一个
是白球的概率为( C ).A. 3
5
; B.
1
15
; C.
14
15
; D.
2
5
.
3.设离散型随机变量ξ的分布列为
则ξ
1.当
A.
B.
C.
D.
2.
A.-3
B.一1
C.0
D
3.
A.
B.
C.
D.
4.
A.
B.
C.
D.
5.
A.0
B.2x3
C.6x2
D.3x2
6.设?(x)的一个原函数为Inx,则?(x)等于().
A.
B.
C.
D.
7.
A.
B.
C.
D.
8.
A.0
B.e一
C.
D.
9.
A.y4
B.- y4
C.y4
D.- y4
10.设
A.“5件都是正品”
B.“5件都是次品”
C.“至少有1件是次品”
D.“至少有1件是正品”
二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.(本题满分8分)设事件A与B相互独立,且P(A)=0.6,P(B)=0.7,求P(A+B).
26.
27.
28.(
形绕X
1
2
【解析】
3
【提示】本题考查的知识点是基本初等函数的导数公式.只需注意e3是常数即可.
4.【答案】应选D.
5.【答案】应选C.
【解析】本题考查的知识点是函数在任意一点x的导数定义.注意导数定义的结构式为6.【答案】应选A.
【提示】本题考查的知识点是原函数的概念,因此有所以选A.
7.【答案】应选B.
【解析】本题考查的知识点是:函数y=?(x)在点(x,?(x))处导数的几何意义是表示该函数对应
曲线过点(x,?(x)))的切线的斜率.由
可知,切线过点(1,0),则切线方程为y=x-1,所以选B.
8.【答案】应选C.
【解析】本题考查的知识点是奇、偶函数在对称区间上的定积分计算.
注意到被积函数是偶函数的特性,可知
所以选C.
9.【答案】应选D.
【提示】 z对x求偏导时应将y视为常数,则有
所以选D.
10.【答案】应选B.
【解析】本题考查的知识点是不可能事件的概念.不可能事件是指在一次试验中不可能发生的事件.由于只有4件次品,一次取出5件都是次品是根本不可能的,所以选B.
11
12.
13
【提示】
14
15
16.
【提示】
17
【解析】
18.
19
20
【解析】
21.
【解析】
解法1
解法2
22.本题考查的知识点是函数乘积的导数计算.
23.本题考查的知识点是凑微分积分法.
24.本题考查的知识点是定积分的凑微分法和分部积分法.
【解析】本题的关键是用凑微分法将?(x)dx写成udυ的形式,然后再分部积分.
25.本题考查事件相互独立的概念及加法公式.
【解析】若事件A与B相互独立,则P(AB)=P(A)P(B).
P(A+B)=P(A)+P(B)-p(AB)=P(A)+P(B)-p(A)P(日)=0.6+0.7-0.6×0.7=0.88.
26.本题考查的知识点是利用导数的图像来判定函数的单调区间和极值点,并以此确定函数的表达式.编者希望通过本题达到培养考生数形结合的能力.
【解析】 (1)
(2)因为
由上面三式解得α=2,b=-9,c=12.
27.本题考查的知识点是二元隐函数全微分的求法.
利用公式法求导的关键是需构造辅助函数
然后将等式两边分别对x(或y或z)求导.读者一定要注意:对x求导时,y,z均视为常数,而对y或z求导时,另外两个变量同样也视为常数.也即用公式法时,辅助函数F(x,y,z)中的三个变量均视为自变量.
求全微分的第三种解法是直接对等式两边求微分,最后解出出,这种方法也十分简捷有效,建议考生能熟练掌握.
解法1等式两边对x求导得
解法2
解法3
28.本题考查的知识点有平面图形面积的计算及旋转体体积的计算.
【解析】
多一条确定对x本
解。