人教版高中数学B版必修二向量的概念
平面向量的基本概念人教版高中数学

知识图谱-向量的线性运算向量的概念向量的加减法及数乘向量向量共线的条件第01讲_平面向量的基本概念错题回顾向量的线性运算知识精讲一.向量的概念:1.我们把既有大小又有方向的量叫向量.向量的表示方法:(1)用有向线段表示;(2)用字母,等表示;(3)用有向线段的起点与终点字母;(4)向量的长度称为向量的模,记作.2.有向线段:具有方向的线段就叫做有向线段有向线段的三个要素:起点、方向、长度.3.零向量、单位向量概念:(1)长度为0的向量叫零向量,记作. 的方向是任意的.(2)长度为1个单位长度的向量,叫做单位向量.说明:零向量、单位向量的定义都只是限制了大小.4.共线向量定义:方向相同或相反的非零向量叫共线向量;说明:我们规定与任一向量共线.5.相等向量定义:长度相等且方向相同的向量叫相等向量.(1)向量与相等,记作;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.6.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.二.平面向量的加减法方法:向量的加法可以运用三角形法则,要求两个向量首尾相对应,理解方法,比如说一个物体从A点运动到B点,再从B点运动到C点,那么就相当于这个物体从A点直接运动到C点.或者运用平行四边形法则,这个类似于物理里两个分力求合力的方法一样.向量的减法要求两个向量首首相对应,然后方向指向被减向量(前头那个向量).三.两个向量共线的条件1.实数与向量的积:实数与向量的积是一个向量,记作:;当时与方向相同;时与方向相反;当时.2.运算定律结合律:;分配律:,3.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数,使三点剖析一. 注意事项1. 零向量的方向是任意的,与任意向量都共线.2. 因为我们研究的平面向量是自由向量,所以在平面向量里,向量的共线和平行可以理解为一个概念,这不同于直线的共线和平行,是两个完全不一样的概念.3. 向量的加法是首尾相对应,就类似于人走路,从A点走到B 点,再从B 点走到C 点,就相当于直接从A 点走到C 点,因此,向量的减法是首首相对应,指向被减向量.4. 两个向量共线的条件:实数与向量的积是一个向量,记作:,当时与方向相同;时与方向相反.二. 必备公式题模精讲题模一向量的概念例1.1、下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥密度;⑦功.其中不是向量的有()A、1个B、2个C、3个D、4个例1.2、以下说法错误的是()A、零向量与任一非零向量平行B、零向量与单位向量的模不相等C、平行向量方向相同D、平行向量一定是共线向量例1.3、下列说法正确的是()向量就是的基线平行于A、B、长度相等的向量叫相等向量的基线C、零向量的长度等于0D、共线向量是在一条直线上的向量题模二向量的加减法及数乘向量例2.1、在平行四边形ABCD中,若|+|=|-|,则必有()A、=B、=或=C、ABCD是矩形D、ABCD是正方形例2.2、在平行四边形ABCD中,E、F分别是BC、CD的中点,DE交AF于H,记、分别为、,则=()A、-B、+C、-+D、--例2.3、下面给出四个命题:①对于实数和向量、恒有:②对于实数、和向量,恒有③若,则有④若,则其中正确命题的个数是()A、1B、2C、3D、4题模三向量共线的条件例3.1、,是平面内不共线两向量,已知=-k,=2+,=3 -,若A,B,D三点共线,则k的值是()A、1B、2C、3D、4例3.2、下列命题:(1)若向量||=||,则与的长度相等且方向相同或相反;(2)对于任意非零向量若||=||且与的方向相同,则=;(3)非零向量与非零向量满足∥,则向量与方向相同或相反;(4)向量与是共线向量,则A,B,C,D四点共线;(5)若∥,且∥,则∥正确的个数()A、0B、1C、2D、3例3.3、在四边形中,,,,求证:四边形是梯形.随堂练习随练1.1、下列命题正确的是()A、方向不同的两个向量不可能是共线向量B、长度相等,方向相同的向量是相等向量C、平行且模相等的两个向量是相等向量D、若,则随练1.2、设为单位向量,(1)若为平面内的某个向量,则;(2)若与平行,则;(3)若与平行且,则.上述说法中,不正确的个数是()A、0个B、1个C、2个D、3个随练1.3、P为四边形ABCD所在平面上一点,+++=+,则P 为()A、四边形ABCD对角线交点B、AC中点C、BD中点D、CD边上一点随练1.4、如图,正六边形ABCDEF的中心为O,若=,=,则=____(用,来表示).随练1.5、如图,△ABC为等腰三角形,∠A=∠B=30°,设=,=,AC边上的高为BD.若用,表示,则表达式为()A、+B、-C、+D、-随练1.6、下列命题中正确的是()A、与共线,与共线,则与也共线B、任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C、向量与不共线,则与都是非零向量D、有相同起点的两个非零向量不平行随练1.7、已知向量是两个不共线的向量,且向量与共线,则实数m的值为________.随练1.8、设是不共线的两个非零向量,(1)若,求证:三点共线;(2)若与共线,求实数的值.自我总结课后作业作业1、下列关于向量的命题,正确的是()A、零向量是长度为零,且没有方向的向量B、若=-2(≠),则是的相反向量C、若=-2,则||=2||D、在同一平面上,单位向量有且仅有一个作业2、判断下列四个命题:①若则②若则③若则;④若则正确的个数是()A、1B、2C、3D、4作业3、给出下列命题:①若||=||,则=;②若A,B,C,D是不共线的四点,则是四边形ABCD为平行四边形的充要条件;③若=,=,则=;④=的充要条件是||=||且//;⑤若//,//,则//;作业4、已知a,b为两个非零向量,(1)2a与a的方向相同,且2a的模是a的模的两倍;(2)与5a的方向相反,且的模是5a的模的;(3)与2a是一对相反向量;(4)与是一对相反向量.以上说法中正确的有_________.作业5、若点O是△ABC所在平面内的一点,且满足,则△ABC的形状为__________.作业6、设,是两个不共线的向量,且向量=2-与向量=+λ是共线向量,则实数λ=____.作业7、如图,已知D,E,F是正△ABC三边的中点,由A,B,C,D,E,F六点中的两点构成的向量中与共线(除外)的向量个数为()A、2B、4C、5D、7作业8、已知△OAB中,点D在线段OB上,且OD=2DB,延长BA到C,使BA=AC.设=,=.(1)用,表示向量,;(2)若向量与+k共线,求k的值.。
向量必修二知识点总结

向量必修二知识点总结一、向量的基本概念1. 定义向量是具有大小和方向的量,通常用带箭头的线段表示。
在平面直角坐标系中,一个向量可以用一个有序数对表示。
如表示向量$\overrightarrow{AB}$,可以写成$\overrightarrow{AB}=(x,y)$,其中$x$和$y$分别是向量的横坐标和纵坐标。
2. 向量的模向量的模表示向量的大小,可以用两点间距离的数值来表示。
在平面直角坐标系中,向量$\overrightarrow{AB}=(x,y)$的模记为$|\overrightarrow{AB}|=\sqrt{x^2+y^2}$。
3. 向量的方向角在平面直角坐标系中,向量$\overrightarrow{AB}=(x,y)$的方向角记为$\alpha$,其计算公式为$\tan \alpha=\frac{y}{x}$,其中$\alpha$是向量与$x$轴的夹角的正切值。
4. 平行向量若两向量的方向相同或相反,则这两向量是平行向量。
若向量$\overrightarrow{A}=(x_,y_)$和$\overrightarrow{B}=(x_2,y_2)$是平行向量,则有$\frac{x_1}{x_2}=\frac{y_1}{y_2}$。
5. 单位向量模为1的向量称为单位向量。
单位向量可以由任意非零向量除以其模得到。
如$\overrightarrow{A}=(x,y)$的单位向量记为$\vec{u}=\frac{\overrightarrow{A}}{|\overrightarrow{A}|}$。
6. 零向量模为0的向量称为零向量,记作$\overrightarrow{0}$。
零向量的方向是任意的。
二、向量的运算规则1. 向量的加法设有向量$\overrightarrow{A}=(x_,y_)$和$\overrightarrow{B}=(x_2,y_2)$,则它们的和记作$\overrightarrow{A}+\overrightarrow{B}=(x_1+x_2,y_1+y_2)$。
高中数学必修二 专题6 1 平面向量的概念-同步培优专练

专题6.1 平面向量的概念知识储备一 向量的概念1.向量:既有大小又有方向的量叫做向量.2.数量:只有大小没有方向的量称为数量.二 向量的几何表示1.有向线段具有方向的线段叫做有向线段,它包含三个要素:起点、方向、长度,如图所示.以A 为起点、B 为终点的有向线段记作AB ,线段AB 的长度叫做有向线段AB 的长度记作|AB |.2.向量的表示(1)几何表示:向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.(2)字母表示:向量可以用字母a ,b ,c ,…表示(印刷用黑体a ,b ,c ,书写时用c b a ,,).3.模、零向量、单位向量 向量AB 的大小,称为向量AB 的长度(或称模),记作|AB |.长度为0的向量叫做零向量,记作0;长度等于1个单位长度的向量,叫做单位向量.思考 “向量就是有向线段,有向线段就是向量”的说法对吗?答案 错误.理由是:①向量只有长度和方向两个要素;与起点无关,只要长度和方向相同,则这两个向量就是相同的向量;②有向线段有起点、长度和方向三个要素,起点不同,尽管长度和方向相同,也是不同的有向线段.三 相等向量与共线向量1.平行向量:方向相同或相反的非零向量叫做平行向量.(1)记法:向量a 与b 平行,记作a ∥b .(2)规定:零向量与任意向量平行.2.相等向量:长度相等且方向相同的向量叫做相等向量.3.共线向量:由于任一组平行向量都可以平移到同一直线上,所以平行向量也叫做共线向量.要注意避免向量平行、共线与平面几何中的直线、线段的平行和共线相混淆.思考 (1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与任意向量都平行的向量是什么向量?(4)若两个向量在同一直线上,则这两个向量一定是什么向量?答案 (1)不一定;(2)不一定;(3)零向量;(4)平行(共线)向量.能力检测姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列关于空间向量的命题中,正确命题的个数是( )(1)长度相等、方向相同的两个向量是相等向量;(2)平行且模相等的两个向量是相等向量;(3)若a b ≠,则a b →→≠;(4)两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3【答案】B【解析】由相等向量的定义知(1)正确;平行且模相等的两个向量也可能是相反向量,(2)错;方向不相同且长度相等的两个是不相等向量,(3)错;相等向量只要求长度相等、方向相同,而表示两个向量的有向线段的起点不要求相同,(4)错, 所以正确答案只有一个.故选B .2.下列命题正确的是( )A .若||0a =,则0a =B .若||||a b =,则a b =C .若||||a b =,则//a bD .若//a b ,则a b =【答案】A 【解析】模为零的向量是零向量,所以A 项正确;||||a b =时,只说明向,a b 的长度相等,无法确定方向,所以B ,C 均错;a b 时,只说明,a b 方向相同或相反,没有长度关系,不能确定相等,所以D 错.故选A.3.若非零向量a 和b 互为相反向量,则下列说法中错误是( )A .//a bB .a b ≠C .a b ≠D .a b =-【答案】C 【解析】由平行向量的定义可知A 项正确;因为a 和b 的方向相反,所以a b ≠,故B 项正确;由相反向量的定义可知a b =-,故选项D 正确;由相反向量的定义知a b =,故C 项错误.故选C.4.如图,设O 是正六边形ABCDEF 的中心,则与BC 相等的向量为( )A .BAB .CDC .AD D .OD【答案】D 【解析】根据图形看出,四边形BCDO 是平行四边形//,BC OD BC OD ∴=BC OD ∴=故选:D 5.若向量a 与向量b 不相等,则a 与b 一定( )A .不共线B .长度不相等C .不都是单位向量D .不都是零向量 【答案】D 【解析】向量a 与向量b 不相等,它们有可能共线、有可能长度相等、有可能都是单位向量但方向不相同,但不能都是零向量,即选项A 、B 、C 错误,D 正确.故选:D.6.下列说法错误的是( )A .若非零向量a b c ,,有//a b ,//b c ,则//a cB .零向量与任意向量平行C .已知向量a b ,不共线,且//a c ,//b c ,则0c =D .平行四边形ABCD 中,AB CD =【答案】D【解析】选项A :因为a b c ,,都不是零向量,所以由//a b ,可知向量a 与向量b 具有相同或相反方向.又由//b c ,可得向量c 与向量b 具有相同或相反方向,所以向量a 与向量c 具有相同或相反方向,故//a c ,故本说法是正确的;选项B :零向量与任意向量平行这是数学规定,故本说法是正确的;选项C :由//a c ,//b c ,可知:c 与向量a 具有相同或相反方向,c 与向量b 具有相同或相反方向,但是向量a b ,不共线,所以0c ,故本说法是正确的;选项D :平行四边形ABCD 中,应该有AB DC =,故本说法是错误的.故选:D7.a ,b 为非零向量,且a b a b +=+,则( )A .a ,b 同向B .a ,b 反向C .a b =-D .a ,b 无论什么关系均可【答案】A 【解析】当两个非零向量a 与b 不共线时,a b +的方向与a ,b 的方向都不相同,且a b a b +<+;当向量a 与b 同向时,a b +的方向与a ,b 的方向都相同,且a b a b +=+; 当向量a 与b 反向且a b <时,a b +的方向与b 的方向相同(与a 的方向相反),且a b b a +=-, 故选:A8.如图是34⨯的格点图(每个小方格都是单位正方形),若起点和终点都在方格的顶点处,则与AB的向量共有( )A.12个B.18个C.24个D.36个【答案】C⨯的格点图中【解析】由题意知,每个小正方形的对角线与AB34包含12个小正方形,所以有12条对角线,与AB平行的向量包含方向相同和相反,所有共有24个向量满足.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分。
高中数学(人教B版)向量基本定理

一一对应
向量c
实数对(x,y)
补充说明: (1)平面向量基本定理中的两个向量a,b都是非零向量.
补充说明: (1)平面向量基本定理中的两个向量a,b都是非零向量.
(2)特别地,当 a,b 不共线时, 因为0 = 0a+0b,所以对xa+yb 来说,当x 0或 y 0时,必定有xa+yb 0.
也就是说,当a,b不共线时, xa+yb 0的 充要条件是x与y中至少有一个不为0.
探究3.平面内两个不共始点的向量a,b不共线,则对该平面内任 意一个向量c,上述结论是否仍然成立?
当平面内两个不共线的向量a,b不共始点时,可在平面内任选一 点,通过向量平移,都可构造为共始点的情况;同时也可将任 意一个向量c平移至同一始点.
如果平面内两个向量a,b不共线,则对该平面内任意一个向 量c,存在实数对(x,y),使得 c=xa+yb .
(2)如果b // a,则存在不全为0的实数λ,μ,使得 λa+μb=0.
判断正误:
(2)如果b // a,则存在不全为0的实数λ,μ,使得λa+μb=0. ( √ )
分析:
当 a = b = 0时,对任意不全为0的实数λ,μ都有 λa+μb=0;
当 a ,b中有一个是0时,不妨设b = 0,
则对任意实数μ0且λ=0,都有 λa+μb=0;
判断正误: (1)如果a 0且b // a,则存在唯一的实数λ,使得 a=λb.
判断正误: (1)如果a0且b // a,则存在唯一的实数λ,使得a=λb.( × )
分析:当 b=0时,0 // a,此时λ0=0,所以a = 0. 这与已知 a 0矛盾, 所以不存在这样的实数λ.
第6章 6.2 6.2.1 向量基本定理-(新教材)人教B版(2019)高中数学必修第二册课件

(2)证明:设线段 EL 的中点为 P1,则 O→P1=12(O→E+O→L)=14(a+b+c). 设 FM,GN 的中点分别为 P2,P3,同理可求得 O→P2=14(a+b+c),O→P3=14(a+b+c). ∴O→P1=O→P2=O→P3, 即 EL,FM,GN 交于一点,且互相平分.
1.任意一向量基底表示的唯一性的理解
1.共线向量基本定理 如果 a≠0 且 b∥a,则存在_唯一____的实数 λ,使得_b_=__λ_a_. 在共线向量基本定理中: (1)b=λa 时,通常称为 b 能用 a 表示. (2)其中的“唯一”指的是,如果还有 b=μa,则有 λ=μ.
思考 1:在共线向量基本定理中,为什么要求 a≠0? [提示] 若 a=0,则 0∥b,但是 λ0=0,从而 b=λa 中的实数 λ 具有不确定性,进而不能说存在唯一一个实数 λ,使得 b=λa.
(变结论)例 2 中,用A→E,A→F表示A→B. [解] A→B=A→E+E→B=A→E+F→E=A→E+(A→E-A→F)=2A→E-A→F.
用基底表示向量的方法 (1)用基底表示平面向量,要充分利用向量加法、减法的三角形 法则或平行四边形法则结合数乘定义,解题时要注意解题途径的优 化与组合. (2)将向量 c 用 a,b 表示,常采用待定系数法,其基本思路是设 c=xa+yb,其中 x,y∈R,然后得到关于 x,y 的方程组求解.
人教B版高中数学必修第二册精品课件 第六章 6.1.1 向量的概念

2.
名称
定义
记法
零向量
始点和终点 相同 的向量
0
单位向量
模等于1的向量
|e|=1(e为单位向量)
相等向量
大小 相等 、方向 相同 的向量
a=b
平行向量
两个非零向量的方向 相同或者相反
a∥b
(共线向量) 规定:零向量与任意向量平行
0∥a
3.如图,四边形ABCD是平行四边形,AC与BD相交于点O.
自主预习 新知导学
一、位移与向量
1.在物理中,我们学习过力,那么两个力相等的充要条件是什么?
提示:大小相等,且方向相同.
2.在物理中,如何表示一个力?
提示:用有向线段表示,有向线段的长度表示力的大小,有向线段的方向表
示力的方向.
3.向量的概念及表示.
既有 大小 又有 方向 的量称为向量(也称为矢量);
向量中与, , 相等的向量.
解: = = ; = = ; = = = .
随堂练习
1.下列说法正确的是(
)
A.对任意一个向量a,|a|>0总是成立的
B.同向的单位向量不一定相等
C.若a=b,则a∥b
D.若a≠b,则a与b不是共线向量
系.
(3)正确.因为|a|=|b|,且a与b同向,由两向量相等的条件,可得a=b.
(4)不正确.依据规定:0与任意向量平行.
(5)不正确.因为向量a与向量b若有一个是零向量,则其方向不定.
延伸探究
“a与b的方向相同”是“a∥b”的
条件.
答案:充分不必要
反思感悟
涉及向量时,一般既要考虑方向,又要考虑其大小.零向量是很特殊的向量,
新教材人教版高中数学必修第二册 6.1 平面向量的概念

6.1 平面向量的概念考点学习目标核心素养 平面向量的相关概念了解平面向量的实际背景,理解平面向量的相关概念数学抽象平面向量的几何表示 掌握向量的表示方法,理解向量的模的概念数学抽象相等向量与共线向量 理解两个向量相等的含义以及共线向量的概念数学抽象、逻辑推理问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些? 3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|. (2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.判断(正确的打“√”,错误的打“×”) (1)两个向量,长度大的向量较大.( ) (2)如果两个向量共线,那么其方向相同.( ) (3)向量的模是一个正实数.( ) (4)向量就是有向线段.( )(5)向量AB →与向量BA →是相等向量.( )(6)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (7)零向量是最小的向量.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× (7)× 已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M答案:D已知点O 固定,且|OA →|=2,则A 点构成的图形是( ) A .一个点 B .一条直线 C .一个圆 D .不能确定答案:C如图,四边形ABCD 和ABDE 都是平行四边形,则与ED →相等的向量有________.答案:AB →,DC →向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB →=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向.1.下列说法中正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的向量可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小解析:选D.不管向量的方向如何,它们都不能比较大小,故A ,B 不正确;向量的大小即为向量的模,指的是有向线段的长度,与方向无关,故C 不正确;向量的模是一个数量,可以比较大小.故D 正确.2.下列说法正确的是( )A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线 B .长度相等的向量叫做相等向量 C .零向量与任一向量平行D .共线向量是在一条直线上的向量解析:选C.向量AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故A 错;相等向量不仅要求长度相等,还要求方向相同,故B 错;C 显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D 错.向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB →,使|AB →|=4,点B 在点A 正东方向上; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°方向上.【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA →,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC →,如图所示.用有向线段表示向量的步骤已知飞机从A 地按北偏东30°的方向飞行2 000 km 到达B 地,再从B地按南偏东30°的方向飞行 2 000 km 到达C 地,再从C 地按西南方向飞行1 000 2 km 到达D 地.(1)作出向量AB →,BC →,CD →,DA →;(2)问D 地在A 地的什么方向?D 地距A 地多远? 解:(1)由题意,作出向量AB →,BC →,CD →,DA →,如图所示.(2)依题意知,三角形ABC 为正三角形,所以AC =2 000 km.又因为∠ACD =45°,CD =1 0002,所以△ACD 为等腰直角三角形,即AD =1 000 2 km ,∠CAD =45°,所以D 地在A 地的东南方向,距A 地1 000 2 km.共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO →,ED →,AB →.2.[变问法]本例条件不变,与AD →共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.1.已知向量AB →与向量BC →共线,下列关于向量AC →的说法中,正确的为( ) A .向量AC →与向量AB →一定同向B .向量AC →,向量AB →,向量BC →一定共线 C .向量AC →与向量BC →一定相等 D .以上说法都不正确解析:选B.根据共线向量的定义,可知AB →,BC →,AC →这三个向量一定为共线向量,故选B.2.如图,四边形ABCD 和BCED 都是平行四边形,在每两点所确定的向量中:(1)写出与BC →相等的向量; (2)写出与BC →共线的向量.解:(1)因为四边形ABCD 和BCED 都是平行四边形,所以BC ∥AD ∥DE ,BC =AD =DE ,所以BC →=AD →=DE →.故与BC →相等的向量为AD →,DE →.(2)与BC →共线的向量共有7个,分别是AD →,DE →,DA →,ED →,AE →,EA →,CB →.1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE →平行的向量为BE →,FD →,FC →共3个. 2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ;④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B.两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC →相等的向量; (2)与OB →长度相等的向量; (3)与DA →共线的向量. 解:画出图形,如图所示. (1)易知BC ∥AD ,BC =AD , 所以与BC →相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC , 所以与OB →长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →. (3)与DA →共线的向量为AD →,BC →,CB →.[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a|.A .3B .2C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的;对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的.2.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.3.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB →=OC →B.AB →∥DE → C .|AD →|=|BE →|D.AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →的方向不同,故AD →≠FC →,故选D. 4.设O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .模相等的向量 C .平行向量D .起点相同的向量解析:选B.因为三角形的外心是三角形外接圆的圆心,所以点O 到三个顶点A ,B ,C 的距离相等,所以AO →,BO →,CO →是模相等的向量.5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤解析:选B.①|a |>|b |不正确,a 是任一非零向量,模长是任意的,故不正确;②不一定有a ∥b ,故不正确;③向量的模长是非负数,而向量a 是非零向量,故|a |>0正确;④|b |=1,故④不正确;⑤a|a |是与a 同向的单位向量,不一定与b 同向,故不正确.6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22,所以|OA →|= 2. 答案: 27.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD →长度的最小值为________.解析:根据题意,在正△ABC 中,有向线段AD 的长度最小时,AD 应与边BC 垂直,有向线段AD 长度的最小值为正△ABC 的高,为532.答案:5328.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图.(1)在每两点所确定的向量中,写出与向量FC →共线的向量; (2)求证:BE →=FD →.解:(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB →,ED →,DE →,AE →,EA →,AD →,DA →.(2)证明:在▱ABCD 中,AD 綊BC . 又E ,F 分别为AD ,BC 的中点, 所以ED 綊BF ,所以四边形BFDE 是平行四边形,所以BE 綊FD ,所以BE →=FD →.10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD满足下列情况.(1)四边形ABCD 是等腰梯形;(2)四边形ABCD 是平行四边形.解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB →∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD →|=|BC →|,同时两向量不平行.(2)AD →=BC →(或AD →∥BC →).若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是 ( )A .与AB →相等的向量只有一个(不含AB →)B .与AB →的模相等的向量有9个(不含AB →)C .BD →的模恰为DA →模的3倍D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →解析:选D.由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →的模相等而方向相反,故PE →≠PF →;EP →与PF →的模相等且方向相同,所以EP →=PF →.13.如图,在△ABC 中,∠ACB 的平分线CD 交AB 于点D .若AC →的模为2,BC →的模为3,AD →的模为1,则DB →的模为________.解析:如图,延长CD ,过点A 作BC 的平行线交CD 的延长线于点E .因为∠ACD =∠BCD =∠AED ,所以|AC →|=|AE →|.因为△ADE ∽△BDC , 所以|AD →||DB →|=|AE →||BC →|=|AC →||BC→|,故|DB →|=32. 答案:3214.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →;(2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →,如图所示.(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=5 5.[C 拓展探究]15.如图,A 1,A 2,…,A 8是⊙O 上的八个等分点,则在以A 1,A 2,…,A 8及圆心O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少个?模等于半径的2倍的向量有多少个?解:模等于半径的向量只有两类,一类是OA →i (i =1,2,…,8),共8个;另一类是A i O →(i=1,2,…,8),也有8个.两类共计有16个.以A 1,A 2,…,A 8中四点为顶点的⊙O 的内接正方形有两个,一个是正方形A 1A 3A 5A 7,另一个是正方形A 2A 4A 6A 8.在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的长度为半径的2倍,故模为半径的2倍的向量共有4×2×2=16(个).。
6. 向量的概念-【新教材】人教B版(2019)高中数学必修第二册精品课件

第6章 6.1 6.1.1 向量的概念-【新教材】人教B版(2019 )高中 数学必 修第二 册课件
向量的有关概念 【例 1】 判断下列命题是否正确,请说明理由. (1)若向量 a 与 b 同向,且|a|>|b|,则 a>b; (2)若向量|a|=|b|,则 a 与 b 的长度相等且方向相同或相反; (3)对于任意向量|a|=|b|,若 a 与 b 的方向相同,则 a=b; (4)由于 0 方向不确定,故 0 不与任意向量平行; (5)向量 a 与向量 b 平行,则向量 a 与 b 方向相同或相反. [思路探究] 解答本题应根据向量的有关概念,注意向量的大 小、方向两个要素.
第6章 6.1 6.1.1 向量的概念-【新教材】人教B版(2019 )高中 数学必 修第二 册课件
3.如图,在⊙O 中,向量O→B,O→C,A→O是( ) A.有相同起点的向量 B.共线向量 C.模相等的向量 D.相等的向量 C [由题知O→B,O→C,A→O对应的有向线段都是圆的半径,因此 它们的模相等.]
联系 条有向线段对应着一个向量,但每一个向量对应着无数多条 有向线段
第6章 6.1 6.1.1 向量的概念-【新教材】人教B版(2019 )高中 数学必 修第二 册课件
2.向量的有关概念 (1)零向量与非零向量 始点和终点相同的向量称为零向量.印刷时用加粗的阿拉伯数
→
字零表示,即 0;书写时,可写为0.模不为0 的向量称为非零向量. (2)单位向量 模等于_1 _的向量称为单位向量,如果 e 为单位向量,则|e|=1.
(1)O→A,使|O→A|=4 2,点 A 在点 O 北偏东 45°; (2)A→B,使|A→B|=4,点 B 在点 A 正东; (3)B→C,使|B→C|=6,点 C 在点 B 北偏东 30°. [解] (1)由于点 A 在点 O 北偏东 45°处,所以在坐标纸上点 A 距点 O 的横向小方格数与纵向小方格数相等.又|O→A|=4 2,小方格 边长为 1,所以点 A 距点 O 的横向小方格数与纵向小方格数都为 4, 于是点 A 位置可以确定,画出向量O→A如图所示.