基本初等函数专题强化训练
基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 基本初等函数、函数与方程(原卷+答案)1.函数y =log 2(4+3x -x 2)的一个单调增区间是( ) A .⎝ ⎛⎭⎪⎫-∞,32 B .⎣⎢⎡⎭⎪⎫32,+∞ C .⎝ ⎛⎭⎪⎫-1,32 D .⎣⎢⎡⎭⎪⎫32,4 2.已知函数f (x )=⎩⎨⎧ax 2-x -14,x ≤1log a x -1,x >1,是R 上的单调函数,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫14,12B .⎣⎢⎡⎦⎥⎤14,12 C .⎝ ⎛⎦⎥⎤0,12 D .⎝ ⎛⎭⎪⎫12,1 3.若不等式x 2-log a x <0在⎝⎛⎭⎪⎫0,12 内恒成立,则a 的取值范围是( )A .116 ≤a <1B .116 <a <1 C .0<a ≤116 D .0<a <1164.若函数f (x )=x +ax -1在(0,2)上有两个不同的零点,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,14B .⎝ ⎛⎭⎪⎫-2,14C .⎣⎢⎡⎦⎥⎤0,14D .⎝ ⎛⎭⎪⎫0,145.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示,在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫作信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,增加带宽,提高信号功率和降低噪声功率都可以提升信息传递速度,若在信噪比为1 000的基础上,将带宽W 增大到原来的2倍,信号功率S 增大到原来的10倍,噪声功率N 减小到原来的15 ,则信息传递速度C 大约增加了( )(参考数据:lg 2≈0.3) A .87% B .123% C .156% D .213%6.已知函数f (x )=⎩⎪⎨⎪⎧||log 2x ,x >0,-x 2-4x +4,x <0. 若函数g (x )=f (x )-m 有四个不同的零点x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是( )A .(0,4)B .(4,8)C .(0,8)D .(0,+∞)7.已知函数f (x )是定义在R 上的奇函数,满足f (x +2)=f (-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则函数y =f (x )-x 3的零点个数是( )A .2B .3C .4D .5 8.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h )的函数关系为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12, (如图所示)实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.(1)k =________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.9.函数f (x )=⎩⎪⎨⎪⎧x 3+2,x ≤0x -3+e x,x >0 的零点个数为________. 10.已知函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤1log 2x ,x >1 ,若1<f (a )≤2,则实数a 的取值范围为________.11.已知函数f (x )=⎩⎪⎨⎪⎧10x -2-102-x ,x ≤2||x -3-1,x >2,则不等式f (x )+f (x -1)<0的解集为________.12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 恰有两个零点,则实数c 的取值范围是________.13.已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)14.定义在R 上的偶函数f (x )满足f (2-x )=f (2+x ),且当x ∈[0,2]时,f (x )=⎩⎨⎧2x-1,0≤x ≤12sin π2x -1,1<x ≤2,若关于x 的方程m ln ||x =f (x )至少有8个实数解,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎦⎥⎤0,1ln 5B .⎣⎢⎡⎦⎥⎤-1ln 6,1ln 5 C .⎝ ⎛⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎭⎪⎫0,1ln 5 D .⎝ ⎛⎭⎪⎫-1ln 6,1ln 5参考答案1.解析:函数y =log 2(4+3x -x 2)的定义域为(-1,4). 要求函数y =log 2(4+3x -x 2)的一个单调增区间, 只需求y =4+3x -x 2的增区间,只需x <32 . 所以-1<x <32 .所以函数y =log 2(4+3x -x 2)的一个单调增区间是⎝ ⎛⎭⎪⎫-1,32 .故选C.答案:C2.解析:当函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调递减函数,所以⎩⎪⎨⎪⎧0<a <112a ≥1a -54≥-1,解得14 ≤a ≤12 ,因为a >0且a ≠1,所以当x ≤1时,f (x )不可能是增函数, 所以函数f (x )在R 上不可能是增函数, 综上:实数a 的取值范围为⎣⎢⎡⎦⎥⎤14,12 ,故选B.答案:B3.解析:当a >1时,由x ∈⎝ ⎛⎭⎪⎫0,12 ,可得log a x <0,则-log a x >0,又由x 2>0,此时不等式x 2-log a x <0不成立,不合题意; 当0<a <1时,函数y =log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递减,此时函数y =-log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递增,又由y =x 2在⎝ ⎛⎭⎪⎫0,12 上单调递增,要使得不等式x 2-log a x <0在⎝ ⎛⎭⎪⎫0,12 内恒成立,可得⎝ ⎛⎭⎪⎫12 2-log a 12 ≤0,解得116 ≤a <1.故选A.答案:A4.解析:函数f (x )=x +ax -1在(0,2)上有两个不同的零点等价于方程x +ax -1=0在(0,2)上有两个不同的解,即a =-x 2+x 在(0,2)上有两个不同的解.此问题等价于y =a 与y =-x 2+x (0<x <2)有两个不同的交点.由下图可得0<a <14 .故选D. 答案:D5.解析:提升前的信息传递速度C =W log 2S N =W log 21 000=3W log 210=3Wlg 2≈10W ,提升后的信息传递速度C ′=2W log 210S 15N =2W log 250SN =2W log 250 000=2W ·4+lg 5lg 2 =2W ·5-lg 2lg 2 ≈94W 3 ,所以信息传递速度C 大约增加了C ′-CC =943W -10W 10W ≈2.13=213%.故选D.答案:D6.解析:函数g (x )有四个不同的零点等价于函数f (x )的图象与直线y =m 有四个不同的交点.画出f (x )的大致图象,如图所示.由图可知m ∈(4,8).不妨设x 1<x 2<x 3<x 4,则-4<x 1<-2<x 2<0,且x 1+x 2=-4.所以x 2=-x 1-4,所以x 1x 2=x 1(-x 1-4)=-(x 1+2)2+4∈(0,4),则0<x 3<1<x 4,因为||log 2x 3 =||log 2x 4 ,所以-log 2x 3=log 2x 4,所以log 2x -13 =log 2x 4,所以x 3·x 4=1,所以x 1·x 2·x 3·x 4=x 1·x 2∈(0,4).故选A. 答案:A7.解析:由f (x +2)=f (-x )可得f (x )关于x =1对称, 由函数f (x )是定义在R 上的奇函数,所以f (x +2)=f (-x )=-f (x )=-[-f (x -2)]=f (x -2), 所以f (x )的周期为4,求函数y =f (x )-x 3的零点问题即y =f (x )-x 3=0的解, 即函数y =f (x )和y =x 3的图象交点问题,根据f (x )的性质可得如图所示图形,结合y =x 3的图象,由图象可得共有3个交点,故共有3个零点,故选B. 答案:B8.解析:(1)由题图可知,当t =12 时,y =1,所以2k =1,所以k =2. (2)由(1)可知,y =⎩⎪⎨⎪⎧2t ,0<t <12,12t ,t ≥12,当t ≥12 时,y =12t ,令y <0.75,得t >23 ,所以在消毒后至少经过23 小时,即40分钟人方可进入房间.答案:(1)2 (2)409.解析:当x ≤0时,令x 3+2=0,解得x =3-2 ,3-2 <0,此时有1个零点;当x >0时, f (x )=x -3+e x ,显然f (x )单调递增,又f ⎝ ⎛⎭⎪⎫12 =-52 +e 12 <0,f (1)=-2+e>0,由零点存在定理知此时有1个零点;综上共有2个零点.答案:210.解析:若a ≤1,则f (a )=4a -1,故1<4a -1≤2,解得12 <a ≤log 43,故12 <a ≤log 43;若a >1,则f (a )=log 2a ,故1<log 2a ≤2,解得2<a ≤4; 综上:12 <a ≤log 43或2<a ≤4. 答案:⎝ ⎛⎦⎥⎤12,log 43 ∪(2,4]11.解析:①当x ≤2时,x -1≤1,∵f (x )=10x -2-102-x 在(-∞,2]上单调递增,∴f (x )≤f (2)=0,又f (x -1)≤f (1)<f (2)=0, ∴f (x )+f (x -1)<0恒成立;②当2<x ≤3时,1<x -1≤2,f (x )=||x -3 -1=2-x <0, 又f (x -1)≤f (2)=0,∴f (x )+f (x -1)<0恒成立;③当3<x ≤4时,2<x -1≤3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=3-x ;∴f (x )+f (x -1)=-1<0恒成立;④当x >4时,x -1>3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=x -5,∴f (x )+f (x -1)=2x -9<0,解得x <92 ,∴4<x <92 ; 综上所述:不等式f (x )+f (x -1)<0的解集为⎝ ⎛⎭⎪⎫-∞,92 .答案:⎝ ⎛⎭⎪⎫-∞,92 12.解析:因为a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.,所以f (x )=(x 2-2)⊗(x -1)=⎩⎨⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2 ,由图可知,当-2<c ≤-1或1<c ≤2时,函数f (x )与y =c 的图象有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2]. 答案:(-2,-1]∪(1,2] 13.解析:令g (x )=f (x )-x 2, 因为f (x )是定义在R 上的偶函数, 所以f (-x )=f (x ),则g (-x )=f (-x )-(-x )2=g (x ), 所以函数g (x )也是偶函数, g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x ≥0, 所以函数g (x )在(0,+∞)上递增, 不等式f (x )>x 2+2即为不等式g (x )>2, 由f (1)=3,得g (1)=2, 所以g (x )>g (1),所以||x >1,解得x >1或x <-1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞). 故选B. 答案:B14.解析:因为f (2-x )=f (2+x ),且f (x )为偶函数, 所以f (x -2)=f (x +2),即f (x )=f (x +4), 所以函数f (x )是以4为周期的周期函数,作出y=f(x),y=m ln x在同一坐标系的图象,如图,因为方程m ln ||x=f(x)至少有8个实数解,所以y=f(x),y=m ln |x|图象至少有8个交点,根据y=f(x),y=m ln |x|的图象都为偶函数可知,图象在y轴右侧至少有4个交点,由图可知,当m>0时,只需m ln 5≤1,即0<m≤1ln 5,当m<0时,只需m ln 6≥-1,即-1ln 6≤m<0,当m=0时,由图可知显然成立,综上可知,-1ln 6≤m≤1ln 5.故选B.答案:B。
基本初等函数专项训练(含答案)经典题

一、简答题1、设.(1)判断函数的奇偶性;(2)求函数的定义域和值域.2、设函数(Ⅰ)讨论的单调性;(Ⅱ)求在区间的最大值和最小值.3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数.(1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围;(2)解关于x的方程f(x)=|f′(x)|;(3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值.4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|.(1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式;(2)求该城市旅游日收益的最小值(万元).5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是:P(x)=x(x+1)(41-2x)(x≤12且x∈N*)(1)写出第x月的需求量f(x)的表达式;(2)若第x月的销售量g(x)=(单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403)6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数).(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;(2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间.7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因;(2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值.8、已知函数图象上一点P(2,f(2))处的切线方程为.(Ⅰ)求的值;(Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,);(Ⅲ)令,如果图象与轴交于,AB中点为,求证:.9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.二、选择题10、已知函数是定义在上的偶函数,且在区间上是增函数.令,,,则()A. B. C. D.11、函数是()A.周期为的奇函数 B.周期为的偶函数C.周期为的奇函数 D.周期为的偶函数12、曲线在点处的切线方程为( )A. B. C. D.13、函数的单调增区间为A、RB、C、D、14、已知,若恒成立,则的取值范围是(A)(B)(C)(D)15、已知函数其中表示不超过的最大整数,(如,,).若直线与函数的图象恰有三个不同的交点,则实数的取值范围是A. B. C. D.16、已知,,,则A. B. C. D.17、已知函数f(x)=,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围为()A.()B.()C.(,12)D.(6,l2)18、下列函数中既是奇函数,又在区间上单调递减的函数是A. B.C. D.19、已知,,,则(A )(B )(C )(D)20、函数的部分图象为()21、A BC D21、已知函数的两个极值点分别为,且,,点表示的平面区域为,若函数的图像上存在区域内的点,则实数的取值范围是()A. B. C. D.22、已知.我们把使乘积为整数的数n叫做“优数”,则在区间(1,2004)内的所有优数的和为( )A.1024 B.2003 C.2026 D.204823、若直角坐标平面内A、B两点满足①点A、B都在函数的图象上;②点A、B关于原点对称,则点(A,B)是函数的一个“姊妹点对”。
基本初等函数练习题

基本初等函数练习题基本初等函数练习题函数是数学中的重要概念,它描述了一种映射关系,将一个集合中的元素映射到另一个集合中的元素。
而初等函数则是指可以由有限次的四则运算、指数和对数运算以及三角函数和反三角函数运算得到的函数。
在数学学习中,初等函数是一个基础且重要的概念,下面我们来练习一些基本初等函数的题目。
1. 计算函数f(x) = 3x + 2在x = 5处的值。
解答:将x = 5代入函数f(x) = 3x + 2中,得到f(5) = 3 * 5 + 2 = 17。
所以函数在x = 5处的值为17。
2. 求函数g(x) = x^2 - 4x + 3的零点。
解答:零点即函数的解,即g(x) = 0。
将g(x) = x^2 - 4x + 3置零,得到x^2 -4x + 3 = 0。
通过求根公式,我们可以得到x = 1和x = 3。
所以函数的零点为x = 1和x = 3。
3. 计算函数h(x) = log2(x)在x = 8处的值。
解答:将x = 8代入函数h(x) = log2(x)中,得到h(8) = log2(8)。
由于2的多少次方等于8,所以log2(8) = 3。
所以函数在x = 8处的值为3。
4. 求函数k(x) = sin(x) + cos(x)的最大值和最小值。
解答:由于三角函数的取值范围在[-1, 1]之间,所以sin(x)和cos(x)的最大值和最小值都是1和-1。
所以函数k(x) = sin(x) + cos(x)的最大值为1 + 1 = 2,最小值为-1 - 1 = -2。
5. 计算函数m(x) = e^x在x = 2处的值。
解答:将x = 2代入函数m(x) = e^x中,得到m(2) = e^2。
e是一个数学常数,约等于2.71828。
所以函数在x = 2处的值为e^2。
通过以上的练习题,我们可以巩固对基本初等函数的理解和运用。
初等函数在数学中的应用非常广泛,它们可以描述各种各样的数学关系和现象。
高一数学基本初等函数提高训练及答案

数学1(必修)第二章 基本初等函数(1)一、选择题1 函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,则a 的值为( ) A41 B 21 C2 D 4 2 已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A (0,1) B (1,2) C (0,2)D ∞[2,+) 3 对于10<<a ,给出下列四个不等式①)11(log )1(log a a a a +<+ ②)11(log )1(log a a a a +>+ ③a a a a 111++< ④a a a a 111++>其中成立的是( )A ①与③B ①与④C ②与③D ②与④4 设函数1()()lg 1f x f x x =+,则(10)f 的值为( )A 1B 1-C 10D 101 5 定义在R 上的任意函数()f x 都可以表示成一个奇函数()g x 与一个 偶函数()h x 之和,如果()lg(101),x f x x R =+∈,那么( )A ()g x x =,()lg(10101)x x h x -=++B lg(101)()2x x g x ++=,x lg(101)()2x h x +-= C ()2x g x =,()lg(101)2x x h x =+- D ()2x g x =-, lg(101)()2x x h x ++= 6 若ln 2ln 3ln 5,,235a b c ===,则( ) A a b c << B c b a <<C c a b <<D b a c <<二、填空题1 若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________2 若函数()12log 22++=x ax y 的值域为R ,则a 的范围为__________3 函数y =______;值域是______4 若函数()11x m f x a =+-是奇函数,则m 为__________5 求值:22log 3321272log 8-⨯+=__________ 三、解答题1 解方程:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++(2)2(lg )lg 1020x x x +=2 求函数11()()142x x y =-+在[]3,2x ∈-上的值域 3 已知()1log 3x f x =+,()2log 2x g x =,试比较()f x 与()g x 的大小 4 已知()()110212x f x x x ⎛⎫=+≠ ⎪-⎝⎭, ⑴判断()f x 的奇偶性; ⑵证明()0f x >(数学1必修)第二章 基本初等函数(1)参考答案一、选择题1 B 当1a >时1log 21,log 21,,2a a a a a ++==-=与1a >矛盾; 当01a <<时11log 2,log 21,2a a a a a ++==-=; 2 B 令[]2,0,0,1u ax a =->是的递减区间,∴1a >而0u >须恒成立,∴min 20u a =->,即2a <,∴12a <<;3 D 由10<<a 得111,11,a a a a<<+<+②和④都是对的; 4 A 11(10)()1,()(10)1,(10)(10)111010f f f f f f =+=-+=-++ 5 C ()()(),()()()()(),f x g x h x f x g x h x g x h x =+-=-+-=-+6 C a b c =====二、填空题1 (1,)+∞ 2210ax x ++>恒成立,则0440a a >⎧⎨∆=-<⎩,得1a > 2 []0,1 221ax x ++须取遍所有的正实数,当0a =时,21x +符合条件;当0a ≠时,则0440a a >⎧⎨∆=-≥⎩,得01a <≤,即01a ≤≤3 [)[)0,,0,1+∞ 111()0,()1,022x x x -≥≤≥;11()0,01()1,22x x >≤-<4 2 ()()11011x x m m f x f x a a --+=+++=--5 19 293(3)18lg1019-⨯-+=+=三、解答题1 解:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++ 33121x x x x -+=-+,得7x =或0x =,经检验0x =为所求 (2)2(lg )lg lg lg lg 1020,(10)20x x x x x x x +=+= 10,x =1或10,经检验10,x =1或10为所求 2 解:21111()()1[()]()14222x x x x y =-+=-+ 而[]3,2x ∈-,则11()842x ≤≤ 当11()22x =时,min 34y =;当1()82x =时,max 57y = ∴值域为3[,57]43 解:3()()1log 32log 21log 4x x x f x g x -=+-=+, 当31log 04x +>,即01x <<或43x >时,()()f x g x >; 当31log 04x +=,即43x =时,()()f x g x =; 当31log 04x +<,即413x <<时,()()f x g x < 4 解:(1)1121()()212221x x x x f x x +=+=⋅-- 2121()()221221x x x x x x f x f x --++-=-⋅=⋅=--,为偶函数 (2)21()221x x x f x +=⋅-,当0x >,则210x ->,即()0f x >; 当0x <,则210x -<,即()0f x >,∴()0f x >。
高中数学基本初等函数图像题专题训练含答案

高中数学基本初等函数图像题专题训练含答案姓名:__________ 班级:__________考号:__________一、选择题(共20题)1、函数的图象大致是 ( )A .B .C .D .2、已知函数的图象如图所示,则该函数的解析式可能是()A .B .C .D .3、函数在区间上的图象大致是()A . B .C .D .4、函数的图象大致为()A .B .C .D .5、 A . B .C .D .6、下列图象中不能作为函数的是()A .B .C .D .7、设函数满足对,都有,且在上单调递增,,,则函数的大致图象是()A .B .C .D .8、若方程在区间有解,则函数图象可能是()A .B .C .D .9、函数的图象大致为()A .B .C .D .10、函数的大致图象为()A .B .C .D .11、函数,图象大致为A. B .C .D .12、函数的图象大致是()A .B .C .D .13、已知函数,,则的图象不可能是()A .B .C .D .14、函数的图像可能是()A .B .C .D .15、函数的图像大致为()A .B .C .D .16、函数的图象大致为A .B .C .D .17、函数在其定义域上的图象大致为()A .B .C .D .18、函数的图象大致形状是()A .B .C .D .19、已知,函数与的图象可能是()A .B .C .D .20、函数的图象大致为()A .B .C .D .============参考答案============一、选择题1、B【解析】【分析】根据题意,先分析函数的奇偶性,排除AC ,再判断函数在上的符号,排除 D ,即可得答案.【详解】∵ f ( x ) 定义域 [ - 1 , 1 ] 关于原点对称,且,∴ f ( x ) 为偶函数,图像关于y 轴对称,故AC 不符题意;在区间上,,,则有,故 D 不符题意, B 正确.故选: B .2、D【解析】【分析】根据函数的图象结合函数的定义域,复合函数的奇偶性,利用排除法,即可得到结果 . 【详解】由图象可知函数是奇函数,函数和由复合函数的奇偶性可知,这两个函数为偶函数,故排除 A , C ;对于函数,由于时,,此时无意义,所以函数不经过原点,故 B 错误;故 D 满足题意.故选: D.3、A【解析】【分析】先判断函数的奇偶性,再由,进而得到正确选项 .【详解】∵ 函数,故函数为奇函数,排除 BD ;,可排除 C.故选: A.4、 B【分析】根据函数的奇偶性可排除 C ,再根据的符号即可排除 AD ,即可得出答案.【详解】解:函数的定义域为R ,因为,所以函数是偶函数,故排除 C ;,故排除 A ;,故排除 D.故选: B.5、【分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象 .【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且时,,据此可知选项B 错误 .故选: A.【点睛】函数图象的识辨可从以下方面入手: (1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6、 B【分析】根据函数的定义可知,对于x 的任何值y 都有唯一的值与之相对应,分析图象即可得到结论.【详解】由函数的定义可知,对定义域内的任意一个自变量x 的值,都有唯一的函数值y 与其对应,故函数的图象与直线x =a 至多有一个交点,图 B 中,存在x =a 与函数的图象有两个交点,不满足函数的定义,故 B 不是函数的图象.故选: B7、 A【分析】判断的奇偶性排除 BD ,再由当时,得出答案 .【详解】令,则函数为偶函数,故排除 BD当时,,则,故排除 C故选: A【点睛】关键点睛:本题关键是采用排除法,由奇偶性排除 BD ,再由当时,排除 C.8、 D【分析】由题意可得在区间上,能够成立,结合所给的选项,得出结论【详解】解:方程在区间上有解,在区间上,能够成立,结合所给的选项,只有 D 选项符合.故选: D .9、 A【分析】由条件判断函数为奇函数,且在为负数,从而得出结论 .【详解】,因此函数为奇函数,图像关于原点对称排除;当时,,,因此.故选:.【点睛】本题主要考查的是函数图像的应用,奇偶性的应用,根据奇偶函数的对称性进行判断是解决本题的关键,是中档题 .10、 A【分析】判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可【详解】解:函数,,,,则函数为非奇非偶函数,图象不关于 y 轴对称,排除 C , D ,当,排除 B ,故选 A【点睛】本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键11、 D【分析】根据函数的奇偶性和函数图像上的特殊点对选项进行排除,由此得出正确选项 .【详解】,故函数为奇函数,图像关于原点对称,排除选项 .由排除选项 . 由,排除 C 选项,故本小题选 D.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性的判断方法,属于基础题 .12、 C【分析】根据函数的奇偶性和值域即可判断 .【详解】所以为偶函数,所以图象关于轴对称,故排除 B ,当时,故排除 A ,当时,故排除 D故选: C .13、 D【分析】先分析出为偶函数 . ,其图像关于y 轴对称,即可得到答案 .【详解】定义域为 R.因为,所以为偶函数 . ,其图像关于y 轴对称,对照四个选项的图像,只能选 D.故选 :D14、 B【分析】根据、分类讨论的图象,利用导函数研究它在各个区间上的单调性,分别判断两个区间某一部份的单调性即可得到它的大致图象;【详解】1 、当时,,即,令,则,∴ 时,即单调递增,故,∴ 此时,,即在单调递增,故排除D 选项;2 、当时,,令,则,∴ ,,故有即,所以,∴ 在上,而,故在上一定有正有负,则有B 正确;故选: B【点睛】本题考查了利用导数研究函数单调性,并确定函数的大致图象,注意按区间分类讨论,以及零点、极值点的讨论15、 B【分析】由函数为偶函数可排除 AC ,再由当时,,排除 D ,即可得解.【详解】设,则函数的定义域为,关于原点对称,又,所以函数为偶函数,排除 AC ;当时,,所以,排除 D.故选: B.16、 C【分析】由可排除 A 、 D ;再利用导函数判断在上的单调性,即可得出结论 . 【详解】因为,故排除 A 、 D ;,令,在是减函数,,在是增函数,,存在,使得,单调递减,单调递增,所以选项 B 错误,选项 C 正确.故选: C【点睛】本题考查由解析式选择函数图象的问题,利用导数研究函数单调性是解题的关键,考查学生逻辑推理能力,是一道中档题 .17、 D【分析】求函数的定义域 , 判断函数的奇偶性和对称性, 利用排除法, 进行判断即可【详解】函数的定义域为.因为,,所以是奇函数,图象关于原点对称,排除 A,B ;当,,排除 C.故选 :D.18、 D【分析】利用排除法,先判断函数的奇偶性,再取特殊值即可判断【详解】解:函数的定义域为,因为,所以为偶函数,所以其图像关于轴对称,所以排除 A ,B ,因为,所以排除 C ,故选: D19、 B【分析】根据函数的定义域,判断两个函数的单调性,即可求解 .【详解】,函数在上是增函数,而函数定义域为,且在定义域内是减函数,选项 B 正确》故选 :B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题 .20、 A【分析】分析函数的奇偶性,并结合函数的解析式知:当时,即可确定大概函数图象 . 【详解】根据题意,设,其定义域为,有,则为奇函数,其图象关于原点对称,排除 C 、 D ,当时,,,必有,排除 B ,故选: A.【点睛】关键点点睛:分析函数的奇偶性与函数值符号,应用间接法确定函数图象 .。
高中数学基本初等函数练习题

(一)指数运算例1 计算:526743642++--- 例2 求值:238、12100-、31()4-、3416()81- 例3 用分数指数幂表示下列各式(其中各字母均为正数)(1)34a a ⋅;(2)a a a ;(2)3324()a b +;(二)指数函数的性质例1 下列函数是指数函数的是( )A .2y x =B .2x y =C .12x y += D .132x y +=⨯ 例2 函数22(0,1)x y a a a -=->≠ 且的图象恒过定点________________例3 比较下列各组数的大小(1)0.245()6-与145()6- (2)1()ππ-与1 (3)2(0.8)-与125()4- 例4 设a 是实数,2()()21x f x a x R =-∈+ (1)证明:不论a 为何实数,()f x 均为增函数;(2)试确定a 的值,使得()f x 为奇函数 例5 已知0a >,且1a ≠,11()12x f x a =--,则()f x 是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .函数的奇偶性与a 有关 例6 若函数221x x y aa =+-(01)a a >≠且在[1,1]x ∈-上的最大值为14,求a 的值.三、实战演练 1、化简:3322111143342(0,0)()a b ab a b a b a b ->>=_______________2、已知12102a -=,31032b =,则32410=a b +_______________ 3、函数2(33)x y a a a =-+是指数函数,则a 的值为4、函数()x b f x a -=的图像如图,其中a 、b 为常数,则下列结论正确的是( )A .B .C .D .5、比较大小:①0.70.8a =,0.90.8b =,0.81.2c =;②01, 2.50.4-,0.22-, 1.62.5; 7、已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数 (1)求a 、b 的值;(2)若对任意的,不等式恒成立,求k 的取值范围0,1<>b a 0,1>>b a 0,10><<b a 0,10<<<b a R t ∈0)2()2(22<-+-k t f t t f四、强化训练1、设a =b =c =,,a b c 的大小关系是_______________ 2、设137x =,则( ) A .21x -<<- B .32x -<<- C .10x -<< D .01x <<3、求函数的定义域和值域,并讨论函数的单调性、奇偶性4、已知定义在R 上的函数()22x xa f x =+,a 为常数 (1)如果()()f x f x =-,求a 的值;(2)当()f x 满足(1)时,用单调性定义讨论()f x 的单调性二、题型解析(一)对数计算例1 已知732log [log (log )]0x =,那么12x -=______________例2 计算:(1);(2);(3);(4)(二)对数运算例1 计算下列各式的值(1)1324lg 2493-(2(3) ; 例2 已知 , ,用,表示例3 若3484log 4log 8log log 16m ⋅⋅=,则m =______________例4 设3436x y ==,求21x y +的值四、强化训练1、已知2(3)4log 3233x f x =+,则的值等于例1 在(2)log (6)a x a -=-中,实数a 的取值范围是( )A .6a >或2a <B .26a <<C .23a <<或36a <<D .34a << 例2函数y = )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]3例3 若4log 15a<(01)a a >≠且,求实数a 的取值范围 2121x x y -=+9log27((2log20.4log 10.21log 35-2log 3a =3log 7b =a b 42log 568(2)(4)(8)(2)f f f f ++++例4 比较下列各组数中两个值的大小:(1),;(2),;(3),例5 求函数22log (56)y x x =-+的定义域、值域、单调区间例6 函数在上的最大值比最小值大,求的值;三、实战演练1、求下列函数的定义域(1)2(1)log (23)x y x x -=-++;(2)y =(01)a a >≠且2、已知log (31)a a -恒为正数,求a 的取值范围3、比较下列各题中两个数值的大小: ; ; ;4、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a = 5、若log (2)a y ax =-在[0,1]上是减函数,则a 的取值范围是 ( )A .(0,1)B .(0,2)C .(1,2)D .(2,)+∞四、强化训练1、已知函数()f x 满足:4x ≥,则1()()2x f x =;当4x <时()(1)f x f x =+,则2(2log 3)f += A .124 B .112 C .18 D .382、设01a a >≠且,函数2lg(23)()x x f x a -+=有最大值,则不等式2log (57)0a x x -+>的解集为 .3、已知01a a >≠且,21(log )()1a a f x x a x=-- (1)求()f x ;(2)判断()f x 的奇偶性与单调性;(3)对于()f x ,当(1,1)x ∈-时,有2(1)(1)0f m f m -+-<,求m 的集合M4、若x 满足21422(log )14log 30x x -+≤,求2()log 2x f x =最大值和最小值2log 3.42log 8.50.3log 1.80.3log 2.7log 5.1a log 5.2a (0,1)a a >≠log a y x =[2,4]1a 22log 3log 3.5和0.30.2log 4log 0.7和0.70.7log 1.6log 1.8和23log 3log 2和。
高中数学【基本初等函数、函数的应用】专题练习

高中数学【基本初等函数、函数的应用】专题练习1.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <a D.c <a <b答案 A解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝ ⎛⎭⎪⎫log 52422-1log 58<⎝ ⎛⎭⎪⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A.2.若2x -2y <3-x -3-y ,则( ) A.ln(y -x +1)>0 B.ln(y -x +1)<0 C.ln|x -y |>0 D.ln|x -y |<0 答案 A解析 设函数f (x )=2x -3-x .因为函数y =2x 与y =-3-x 在R 上均单调递增, 所以f (x )在R 上单调递增.原已知条件等价于2x -3-x <2y -3-y ,即f (x )<f (y ),所以x <y ,即y -x >0,y -x +1>1,所以A 正确,B 不正确. 因为|x -y |与1的大小不能确定,所以C ,D 不正确.3.设a ∈R ,函数f (x )=⎩⎨⎧cos (2πx -2πa ),x <a ,x 2-2(a +1)x +a 2+5,x ≥a ,若f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A.⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114 B.⎝ ⎛⎭⎪⎫74,2∪⎝ ⎛⎭⎪⎫52,114 C.⎝ ⎛⎦⎥⎤2,94∪⎣⎢⎡⎭⎪⎫114,3 D.⎝ ⎛⎭⎪⎫74,2∪⎣⎢⎡⎭⎪⎫114,3 答案 A解析 因为x 2-2(a +1)x +a 2+5=0最多有2个根, 所以c os (2πx -2πa )=0至少有4个根.由2πx -2πa =π2+k π,k ∈Z 可得x =k 2+14+a ,k ∈Z .由0<k 2+14+a <a 可得-2a -12<k <-12.①当x <a 时,当-5≤-2a -12<-4时,f (x )有4个零点,即74<a ≤94;当-6≤-2a -12<-5时,f (x )有5个零点, 即94<a ≤114;当-7≤-2a -12<-6时,f (x )有6个零点, 即114<a ≤134;②当x ≥a 时,f (x )=x 2-2(a +1)x +a 2+5, Δ=4(a +1)2-4(a 2+5)=8(a -2), 当a <2时,Δ<0,f (x )无零点;当a =2时,Δ=0,f (x )有1个零点x =3;当a >2时,令f (a )=a 2-2a (a +1)+a 2+5=-2a +5≥0,则2<a ≤52,此时f (x )有2个零点;所以当a >52时,f (x )有1个零点.综上,要使f (x )在区间(0,+∞)内恰有6个零点,则应满足⎩⎪⎨⎪⎧74<a ≤94,2<a ≤52或⎩⎪⎨⎪⎧94<a ≤114,a =2或a >52或⎩⎨⎧114<a ≤134,a <2.则可解得a 的取值范围是⎝ ⎛⎦⎥⎤2,94∪⎝ ⎛⎦⎥⎤52,114.4.已知f (x )=|lg x |-kx -2,给出下列四个结论: (1)若k =0,则f (x )有两个零点; (2)∃k <0,使得f (x )有一个零点; (3)∃k <0,使得f (x )有三个零点; (4)∃k >0,使得f (x )有三个零点. 以上正确结论的序号是________. 答案 (1)(2)(4)解析 令f (x )=|lg x |-kx -2=0,可转化成两个函数y 1=|lg x |,y 2=kx +2的图象的交点个数问题. 对于(1),当k =0时,y 2=2与y 1=|lg x |的图象有两个交点,(1)正确; 对于(2),存在k <0,使y 2=kx +2与y 1=|lg x |的图象相切,(2)正确;对于(3),若k <0,则y 1=|lg x |与y 2=kx +2的图象最多有2个交点,(3)错误; 对于(4),当k >0时,过点(0,2)存在函数g (x )=lg x (x >1)图象的切线,此时共有两个交点,当直线斜率稍微小于相切时的斜率时,就会有3个交点,故(4)正确.1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ; (4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog ba (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数. 3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解. 4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质 【例1】 (1)(多选)下列命题中正确的是( ) A.∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13xB.∀x ∈(0,1),log 12x >log 13xC.∀x ∈⎝ ⎛⎭⎪⎫0,12,⎝ ⎛⎭⎪⎫12x >x 12D.∃x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x >log 13x(2)已知函数f (x )=⎩⎨⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( )A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3)答案 (1)ABC (2)D解析 (1)对于A ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =⎝ ⎛⎭⎪⎫13x的图象,如图(1),由图可知,当x ∈(0,+∞)时,⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x,故A 正确;对于B ,分别作出y =log 12x ,y =log 13x 的图象,如图(2),由图可知,当x ∈(0,1)时,log 12x >log 13x ,故B 正确;对于C ,分别作出y =⎝ ⎛⎭⎪⎫12x ,y =x 12的图象,如图(3),由图可知,当x ∈⎝ ⎛⎭⎪⎫0,12时,⎝ ⎛⎭⎪⎫12x >x 12,故C 正确;对于D ,当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫120=1,log 13x >log 1313=1,所以D 错误.故选ABC.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3. 综上所述,a 的取值范围是(0,1)∪(1,3).探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围. 2.基本初等函数的图象和性质是统一的,在解题中可相互转化. 【训练1】 (1)函数f (x )=x 2-1e x 的图象大致为( )(2)(多选)已知函数f (x )=log 2(1+4x )-x ,则下列说法正确的是( ) A.函数f (x )是偶函数 B.函数f (x )是奇函数C.函数f (x )在(-∞,0]上单调递增D.函数f (x )的值域为[1,+∞) 答案 (1)A (2)AD解析 (1)易知f (x )在定义域R 上为非奇非偶函数,B 不合题意. 当x <0且x →-∞时,f (x )>0,且f (x )→+∞,C 不合题意. 当x >0且x →+∞时,f (x )→0,知D 不合题意,只有A 满足.(2)因为f (x )的定义域为R ,且f (-x )=log 2⎝ ⎛⎭⎪⎫1+14x -(-x )=log 2⎝ ⎛⎭⎪⎫4x +14x +x =log 2(4x +1)-log 24x +x =log 2(1+4x )-2x +x =log 2(1+4x )-x =f (x ), 所以函数f (x )为偶函数,故A 正确,B 不正确;f ′(x )=4x ln 4(1+4x)ln 2-1=2×4x 4x +1-1=4x -14x +1, 则当x <0时,f ′(x )<0,函数f (x )单调递减,当x >0时,f ′(x )>0,函数f (x )单调递增,故C 不正确;由以上分析知,f (x )min =f (0)=1,所以函数f (x )的值域为[1,+∞),故D 正确.综上所述,选AD. 热点二 函数的零点与方程 考向1 确定函数零点个数【例2】 (1)设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( ) A.4 B.3 C.2D.1(2)已知函数f (x )=⎩⎨⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4 B.5 C.6D.3答案 (1)C (2)A解析 (1)易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,所以x ≥0时,f (x )在[0,+∞)上是增函数,且f (1)=0,所以x =1是函数y =f (x )在[0,+∞)上的唯一零点.根据奇偶性,知x =-1是y =f (x )在(-∞,0)内的零点, 因此y =f (x )有两个零点.(2)当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1, 作出函数f (x )的图象,如图. g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13.当t =13时,可得f (x )=13有三个实根,即g (x )有三个零点; 当t =3时,可得f (x )=3有一个实根,即g (x )有一个零点. 综上,g (x )共有四个零点.探究提高 判断函数零点个数的主要方法(1)解方程f (x )=0,直接求零点;(2)利用零点存在性定理;(3)数形结合法:对于给定的函数不能直接求解或画出图象,常会通过分解转化为两个能画出图象的函数,求其图象交点问题.【训练2】 (1)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2 B.3 C.4D.5(2)设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,则关于x 的方程为f (x )-log 8(x +2)=0在区间(-2,6)上根的个数为( ) A.1 B.2 C.3D.4答案 (1)B (2)C解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个. (2)对于任意的x ∈R ,都有f (2+x )=f (2-x ), ∴f (x +4)=f [2+(x +2)]=f [2-(x +2)]=f (-x )=f (x ), ∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,函数f (x )是定义在R 上的偶函数,且f (6)=f (-2)=1,则函数y =f (x )与y =log 8(x +2)在区间(-2,6)上的图象如图所示,根据图象可得y =f (x )与y =log 8(x +2)在区间(-2,6)上有3个不同的交点,即f (x )-log 8(x +2)=0在区间(-2,6)上有3个根. 考向2 根据函数的零点求参数的值或范围 【例3】 (1)已知函数f (x )=x 2-2x +a (e x -1+e-x +1)有唯一零点,则a =( )A.-12B.13C.12D.1(2)设a ,b ∈R ,函数f (x )=⎩⎪⎨⎪⎧x ,x <0,13x 3-12(a +1)x 2+ax ,x ≥0.若函数y =f (x )-ax -b恰有3个零点,则( ) A.a <-1,b <0 B.a <-1,b >0 C.a >-1,b <0 D.a >-1,b >0答案 (1)C (2)C解析 (1)f (x )=(x -1)2+a (e x -1+e 1-x )-1, 令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),且t ∈R , ∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.(2)由题意,令y =f (x )-ax -b =0,得b =f (x )-ax =⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0. 设y =b ,g (x )=⎩⎨⎧(1-a )x ,x <0,13x 3-12(a +1)x 2,x ≥0,则以上两个函数的图象恰有3个交点,根据选项进行讨论.①当a <-1时,1-a >0,可知在x ∈(-∞,0)上,g (x )单调递增,且g (x )<0; 由g ′(x )=x 2-(a +1)x =x [x -(a +1)](x ≥0),a +1<0, 可知在x ∈[0,+∞)上,g (x )单调递增,且g (x )≥0.此时直线y =b 与g (x )的图象只有1个交点,不符合题意,故排除A ,B. ②当a >-1,即a +1>0时.因为g ′(x )=x [x -(a +1)](x ≥0),所以当x ≥0时,由g ′(x )<0可得0<x <a +1,由g ′(x )>0可得x >a +1,所以当x ≥0时,g (x )在(0,a +1)上单调递减,g (x )在(a +1,+∞)上单调递增.如图,y =b 与y =g (x )(x ≥0)的图象至多有2个交点.当1-a >0,即-1<a <1时,由图象可得,若要y =g (x )与y =b 的图象有3个交点,必有b <0;当1-a =0时,y =g (x )与y =b 的图象可以有1个、2个或无数个交点,但不存在恰有3个交点的情况,不符合题意,舍去;当1-a <0,即a >1时,y =g (x )与y =b 的图象可以有1个或2个交点,但不存在恰有3个交点的情况,不符合题意,舍去. 综上,-1<a <1,b <0.故选C.探究提高 1.求解第(1)题关键是利用函数f (x )有唯一零点找到解题思路.借助换元法,构造函数g (t )=f (t +1)=t 2+a (e t +e -t )-1,利用函数的性质求解. 2.解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】 设函数f (x )=e x (2x -1)-ax +a (a <1)有两个零点,则实数a 的取值范围是( ) A.(0,1) B.⎝ ⎛⎭⎪⎫0,43e -0.5 C.(-∞,1) D.⎝ ⎛⎭⎪⎫-∞,43e -0.5 答案 A解析 依题设,f (x )=e x (2x -1)-ax +a 有两个零点,∴函数y =e x (2x -1)的图象与直线y =a (x -1)有两个交点. 令y ′=[e x (2x -1)]′=e x (2x +1)=0,得x =-12.当x ∈⎝ ⎛⎭⎪⎫-∞,-12时,y ′<0,故y =e x(2x -1)为减函数; 当x ∈⎝ ⎛⎭⎪⎫-12,+∞时,y ′>0,故y =e x (2x -1)为增函数,如图.设直线y =a (x -1)与y =e x (2x -1)相切于点P (x 0,y 0), ∴y 0=e x 0(2x 0-1). 则过点P (x 0,y 0)的切线为 y -e x 0(2x 0-1)=e x 0(2x 0+1)(x -x 0).将点(1,0)代入上式,得x 0=0或x 0=32(舍去). 此时,直线y =a (x -1)的斜率为1.故若直线y =a (x -1)与函数y =e x (2x -1)的图象有两个交点,应有0<a <1. 热点三 函数的实际应用【例4】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO ′为铅垂线(O ′在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离h 1(米)与D 到OO ′的距离a (米)之间满足关系式h 1=140a 2;右侧曲线BO 上任一点F 到MN 的距离h 2(米)与F 到OO ′的距离b (米)之间满足关系式h 2=-1800b 3+6b .已知点B 到OO ′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价32k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解(1)如图,设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1是相应垂足.由条件知,当O′B=40时,BB1=-1800×403+6×40=160,则AA1=160.由140O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′所在直线为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-1800x3+6x,EF=160-y2=160+1800x3-6x.因为CE=80,所以O′C=80-x.设D(x-80,y1),则y1=140(80-x)2,所以CD =160-y 1=160-140(80-x )2=-140x 2+4x . 记桥墩CD 和EF 的总造价为f (x )万元, 则f (x )=k ⎝ ⎛⎭⎪⎫160+1800x 3-6x +32k ⎝ ⎛⎭⎪⎫-140x 2+4x=k ⎝ ⎛⎭⎪⎫1800x 3-380x 2+160(0<x <40). f ′(x )=k ⎝ ⎛⎭⎪⎫3800x 2-340x =3k 800x (x -20),令f ′(x )=0,得x =20或x =0(舍去). 列表如下:所以当x =20时,f (x )取得最小值. 答:(1)桥AB 的长度为120米;(2)当O ′E 为20米时,桥墩CD 与EF 的总造价最低.探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 “一骑红尘妃子笑,无人知是荔枝来”描述了封建统治者的骄奢生活,同时也讲述了古代资源流通的不便利.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e ax +b (a ,b 为常数),若该果蔬在6 ℃的保鲜时间为216小时,在24 ℃的保鲜时间为8小时,且该果蔬所需物流时间为3天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过( ) A.9 ℃ B.12 ℃ C.18 ℃ D.20 ℃答案 B解析 当x =6时,e 6a +b =216;当x =24时,e 24a +b =8, ∴e 6a +be 24a +b =2168=27,则e 6a =13. 若果蔬保鲜3天,则72=13×216=e 6a ·e 6a +b =e 12a +b , 故物流过程中果蔬的储藏温度最高不能超过12 ℃.一、选择题1.设a =log 2 0.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.b <c <aD.a <c <b答案 D解析 ∵log 20.3<log 21=0,∴a <0.∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1.∵0<0.40.3<0.40=1,∴0<c <1, ∴a <c <b .2.已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( ) A.2 B.3 C.4 D.5 答案 A解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点.3.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60 B.63 C.66 D.69答案 C 解析 ∵I (t )=K 1+e -0.23(t -53), ∴当I (t *)=0.95K 时,K1+e -0.23(t *-53)=0.95K ,则11+e -0.23(t *-53)=0.95⇒1+e -0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e0.23(t *-53)=19. ∴0.23(t *-53)=ln 19,∴t *=ln 190.23+53≈30.23+53≈66.4.已知函数f (x )=[x ]([x ]表示不超过实数x 的最大整数),若函数g (x )=e x -1e x -2的零点为x 0,则g [f (x 0)]等于( ) A.1e -e -2B.-2C.e -1e -2 D.e 2-1e 2-2答案 B解析 因为g (x )=e x -1e x -2, 所以g ′(x )=e x +1e x >0在R 上恒成立, 即函数g (x )=e x -1e x -2在R 上单调递增.又g(0)=e0-1e0-2=-2<0,g(1)=e1-1e1-2>0,所以g(x)在(0,1)上必然存在零点,即x0∈(0,1),因此f(x0)=[x0]=0,所以g[f(x0)]=g(0)=-2.5.(多选)若0<c<1,a>b>1,则()A.log a c>log b cB.ab c>ba cC.a log b c>b log a cD.a(b-c)>b(a-c) 答案AB解析对于A,因为0<c<1,a>b>1,所以log c a<log c b<0,所以log a alog a c<log b blog b c<0,即1 log a c<1log b c<0,所以0>log a c>log b c,故A正确;对于B,因为0<c<1,所以-1<c-1<0,所以当x>1时,函数y=x c-1单调递减,所以b c-1>a c-1,又ab>0,所以由不等式的基本性质得ab c>ba c,故B正确;对于C,由A知log b c<log a c<0,又a>b>1,所以a log b c<b log b c,b log b c<b log a c,所以a log b c<b log a c,故C不正确;对于D,因为0<c<1,a>b>1,所以ac>bc,所以-ac<-bc,所以ab-ac<ab-bc,即a(b-c)<b(a-c),故D不正确.综上所述,选AB.6.(多选)已知f(x)是定义在R上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是()A.g(x)为偶函数B.g (x )在(1,2)上单调递增C.g (x )在[2 016,2 020]上恰有三个零点D.g (x )的最大值为2 答案 AD解析 易知函数g (x )的定义域为R ,且g (-x )=|f (-x )|+f (|-x |)=|-f (x )|+f (|x |)=|f (x )|+f (|x |)=g (x ), 所以g (x )为偶函数,故A 正确;因为f (1+x )=f (1-x ),所以f (x )的图象关于直线x =1对称,又f (x )是奇函数,当0≤x ≤1时,f (x )=x ,所以f (x )是周期为4的函数,其部分图象如图所示,所以当x ≥0时,g (x )=⎩⎪⎨⎪⎧2f (x ),x ∈[4k ,2+4k ],0,x ∈(2+4k ,4+4k ],k ∈N ,当x ∈(1,2)时,g (x )=2f (x ),g (x )单调递减,故B 错误;g (x )在[2 016,2 020]上零点的个数等价于g (x )在[0,4]上零点的个数,而g (x )在[0,4]上有无数个零点,故C 错误;当x ≥0时,易知g (x )的最大值为2,由偶函数图象的对称性可知,当x <0时,g (x )的最大值也为2,所以g (x )在整个定义域上的最大值为2,故D 正确. 综上可知,选AD. 二、填空题7.已知λ∈R ,函数f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________. 答案 (1,3]∪(4,+∞)解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.8.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25 mg/m 3时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (单位:mg/m 3)与经过的时间t (单位:min)之间的函数关系为y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t10-a,t ≥10(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是________.答案 9:30解析 由题图可得函数图象过点(10,1), 代入函数的解析式,可得⎝ ⎛⎭⎪⎫121-a=1,解得a =1,所以y =⎩⎪⎨⎪⎧0.1t ,0≤t <10,⎝ ⎛⎭⎪⎫12t 10-1,t ≥10. 设从喷洒药物开始经过t min 顾客方可进入商场,易知t >10, 则⎝ ⎛⎭⎪⎫12t10-1≤0.25,解得t ≥30,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.9.已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________. 答案 c <a <b解析 ln a =a -1,ln b =1b ,e c =1c .依次作出y =e x ,y =ln x ,y =x -1,y =1x 这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 三、解答题10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求实数m 的取值范围. 解 (1)函数f (x )的图象如图所示.(2)因为f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数,由0<a <b 且f (a )=f (b ),得0<a <1<b , 且1a -1=1-1b ,所以1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 故实数m 的取值范围为(0,1).11.随着中国经济的快速发展,节能减耗刻不容缓.某市环保部门为了提高对所辖水域生态环境的巡查效率,引进了一种新型生态环保探测器,该探测器消耗能量由公式E n =M v n T 给出,其中M 是质量(常数),v 是设定速度(单位:km/h),T 是行进时间(单位:h),n 为参数.某次巡查为逆水行进,水流速度为4 km/h ,行进路程为100 km.(逆水行进中,实际速度=设定速度-水流速度,顺水行进中,实际速度=设定速度+水流速度)(1)求T 关于v 的函数关系式,并指出v 的取值范围;(2)①当参数n =2时,求探测器最低消耗能量;②当参数n =3时,试确定使该探测器消耗的能量最低的设定速度.解 (1)由题意得,探测器实际速度为100T =v -4,则T =100v -4(v >4). (2)①当参数n =2时,E 2=100·M ·v 2v -4=100M ⎣⎢⎡⎦⎥⎤v -4+16v -4+8 ≥100M ⎣⎢⎡⎦⎥⎤2(v -4)·16v -4+8 =1 600M ⎝ ⎛⎭⎪⎫当且仅当v -4=16v -4,即v =8时取等号. 因此,当参数n =2时,该探测器最低消耗能量为1 600M .②当参数n =3时,E 3=100·M ·v 3v -4(v >4). 令f (v )=v 3v -4(v >4),则f ′(v )=2v 2(v -6)(v -4)2, 当4<v <6时,f ′(v )<0,f (v )单调递减,当v >6时,f ′(v )>0,f (v )单调递增.故当设定速度为6 km/h 时,该探测器消耗的能量最低.12.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天答案 B解析 由R 0=1+rT ,R 0=3.28,T =6,得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2,∴t 2-t 1=ln 20.38≈0.690.38≈1.8. 13.(多选)方程e x +x -2=0的根为x 1,ln x +x -2=0的根为x 2,则( ) A.x 1x 2>12 B.x 1ln x 2+x 2ln x 1<0 C.e x 1+e x 2<2eD.x 1x 2<e 2 答案 BD解析 令f (x )=e x +x -2,g (x )=ln x +x -2,作出函数y =-x +2,y =e x ,y =ln x 的图象,其中y =e x 与y =ln x 互为反函数,其图象关于直线y =x 对称,如图,则A (x 1,e x 1),B (x 2,ln x 2).设直线y =x 与y =-x +2的交点为C ,则C (1,1),且A ,B 关于点C 对称,∴e x 1=x 2,x 1+x 2=2.∵f (0)=-1<0,f ⎝ ⎛⎭⎪⎫12=e -32>0,g (1)=-1<0,g (2)=ln 2>0, ∴0<x 1<12<1<x 2<2,∴x 1x 2<12,故A 错误; ∵x 1ln x 2+x 2ln x 1<0等价于ln x 1x 1+ln x 2x 2<0,易知h (x )=ln x x 在(0,e)上单调递增, ∴h (x 1)<h ⎝ ⎛⎭⎪⎫12=-2ln 2,h (x 2)<h (2)=12ln 2, ∴h (x 1)+h (x 2)<-32ln 2<0,即ln x 1x 1+ln x 2x 2<0,故B 正确; ∵x 1+x 2=2且x 1≠x 2,∴e x 1+e x 2>2e x 1+x 2=2e ,故C 错误;∵e x 1=x 2,∴x 1x 2=x 1e x 1.易知φ(x )=x e x 在⎝ ⎛⎭⎪⎫0,12上单调递增, ∴φ(x 1)<φ⎝ ⎛⎭⎪⎫12, 即x 1e x 1<e 2,即x 1x 2<e 2,故D 正确. 故选BD.14.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”;(2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎨⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”.(2)解 函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎨⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝ ⎛⎭⎪⎫e -122=e 2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.。
高中数学专题练习《基本初等函数的导数》含详细解析

5.2 导数的运算5.2.1 基本初等函数的导数基础过关练题组一 利用导数公式求函数的导数1.(2020浙江绍兴稽山中学高二下期中)已知f(x)=cos30°,则f'(x)的值为( )A.-12B.12C.-32D.02.已知函数f(x)=1x2,则 )A.-14B.-18C.-8D.-163.函数y=1x在x=4处的导数是( )A.116B.-116C.18D.-184.下列求导运算正确的是( )A.(cos x)'=sin xB.(3x)'=3x log3eC.(lg x)'=1x ln10D.(x-2)'=-2x-15.设f0(x)=sin x,f1(x)=f0'(x),f2(x)=f1'(x),……,f n+1(x)=f n'(x),n∈N,则f2 019(x)=( )A.sin xB.-sin xC.cos xD.-cos x6.(多选)下列求导运算正确的是( )'=1x2B.(x)'=12xC.(x a)'=ax a-1D.(log a'=1x ln a 7.求下列函数的导数.(1)y=1x5;(2)y=x2x;(3)y=lg x;(4)y=5x-x.题组二 导数公式的应用8.(2020黑龙江佳木斯一中高二上期末)曲线y=1x在点A(-1,-1)处的切线方程是( )A.x+y-2=0B.x-y+2=0C.x+y+2=0D.x-y-2=09.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为( )A.4x-y-3=0B.x+4y-5=0C.4x-y+3=0D.x+4y+3=010.(2020福建三明第一中学月考)以正弦曲线y=sin x上一点P为切点作切线l,则切线l的倾斜角的范围是( )A.0,πB.[0,π), D.0,,11.已知函数f(x)=ln x,则函数g(x)=f(x)-f'(x)的零点所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)12.若曲线y=x-12在点(m,m-12)处的切线与两个坐标轴围成的三角形的面积为18,则m=( )A.64B.32C.16D.813.(多选)已知函数f(x)及其导数f'(x),若存在x0,使得f(x0)=f'(x0),则称x0是f(x)的一个“巧值点”.下列函数中,有“巧值点”的是( )A.f(x)=x2B.f(x)=e-xC.f(x)=ln xD.f(x)=1x14.(2019广东东莞高二上期末)设曲线y=x n+1(n∈N*)在点(1,1)处的切线,计算a1+a2+a3+…+a2019.与x轴交点的横坐标为x n,令a n=lg1x n答案全解全析基础过关练1.D ∵f(x)=cos 30°=32,∴f'(x)=0.2.D f'(x)=-2x -3=-2x 3,则故选D.3.B y'=-12x -32,∴y'x=4=-12×4-32=-116,故选B.4.C (cos x)'=-sin x,故A 不正确;(3x )'=3x ·ln 3,故B 不正确;(lg x)'=1x ·ln10,故C 正确;(x -2)'=-2x -2-1=-2x -3,故D 不正确.故选C.5.D f 0(x)=sin x,f 1(x)=f 0'(x)=(sin x)'=cos x,f 2(x)=f 1'(x)=(cos x)'=-sin x,f 3(x)=f 2'(x)=(-sin x)'=-cos x,f 4(x)=f 3'(x)=(-cos x)'=sin x,所以4为最小正周期,故f 2 019(x)=f 3(x)=-cos x.6.BCD 在A 中-1)'=-1x 2,故A 错误;在B 中,(x )'=(x 12)'=12×x -12=12x ,故B 正确;在C 中,(x a )'=ax a-1,故C 正确;在D 中,(log a '=1x ln a ,故D 正确.故选BCD.7.解析 (1)∵y=1x 5=x -5,∴y'=-5x -6.(2)∵y=x 2x =x 2x 12=x 32,∴y'=32x 12.(3)∵y=lg x,∴y'=1x ln10.(4)∵y=5x ,∴y'=5x ln 5.(5)∵-x =sin x,∴y'=cos x.8.C 由y=1x 得y'=-x -2,因此切线的斜率为k=-(-1)-2=-1,∴切线方程为y+1=-(x+1),即x+y+2=0,故选C.9.A ∵直线x+4y-8=0的斜率为-14,∴直线l 的斜率为4,又y'=4x 3,∴4x 3=4,得x=1,又当x=1时,y=x 4=1,∴直线l 的方程为y-1=4(x-1),即4x-y-3=0.10.A ∵y=sin x,∴y'=cos x,∵cos x ∈[-1,1],∴切线斜率的范围是[-1,1],∴倾斜角的范围是0,,π,故选A.11.B 由f(x)=ln x,得f'(x)=1x ,则g(x)=f(x)-f'(x)=ln x-1x .易知函数g(x)的定义域为(0,+∞),且函数g(x)在(0,+∞)上为增函数,又g(1)=ln 1-1=-1<0,g(2)=ln 2-12=ln 2-ln e >0,所以函数g(x)在区间(1,2)上有唯一零点.12.A 因为y'=-12x -32,所以曲线y=x -12在点(m,m -12)处的切线方程为y-m -12=-12·m -32(x-m),令x=0,得y=32m -12,令y=0,得x=3m,由题意可得,12×32m -12×3m=18,解得m=64.13.ACD 在A 中,若f(x)=x 2,则f'(x)=2x,则x 2=2x,这个方程显然有解,故A 符合要求;在B 中,若f(x)=e -x ,则ln 1e =-e -x ,即e -x =-e -x ,此方程无解,故B 不符合要求;在C 中,若f(x)=ln x,则f'(x)=1x ,由ln x=1x ,数形结合可知该方程存在实数解,故C 符合要求;在D 中,若f(x)=1x ,则f'(x)=-1x 2,由1x =-1x 2,可得x=-1,故D 符合要求.故选ACD.14.解析 因为y=x n+1,所以y'=(n+1)x n ,所以曲线y=x n+1(n ∈N *)在(1,1)处的切线斜率为k=n+1,切线方程为y-1=(n+1)(x-1).令y=0,得x=n n +1,即x n =n n +1,所以a n =lg 1x n =lg(n+1)-lg n,所以a 1+a 2+a 3+…+a 2 019=lg 2-lg 1+lg 3-lg 2+lg 4-lg 3+…+lg 2 020-lg 2 019=lg 2 020-lg 1=1+lg 202.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
专题强化训练(三)
基本初等函数(Ⅰ)
(30分钟50分)
一、选择题(每小题3分,共18分)
1.(2015·赣州高一检测)已知集合A={y|y=log3x,x>1},B={y|y=3x,x>0},则A∩B= ( )
A. B.{y|y>0}
C. D.{y|y>1}
【解析】选D.因为x>1得log3x>log31=0,
所以A={y|y>0}.因为x>0得3x>30=1,
所以B={y|y>1},所以A∩B={y|y>1}.
2.函数f(x)=-的定义域为( )
A.[-3,0]
B.(-3,0]
C.[-3,0)
D.(-3,0)
【解析】选B.由题意可得解得-3<x≤0.
【补偿训练】函数f(x)=的定义域为( )
A.(0,9)
B.[0,9)
C.[0,9]
D.(0,9]
【解析】选D.由题意可得解得0<x≤9.
3.(2015·益阳高一检测)若xy≠0,那么等式=-2xy成立的条件是
( ) A.x>0,y>0 B.x>0,y<0
C.x<0,y>0
D.x<0,y<0
【解析】选C.因为4x2y3≥0且xy≠0,所以y>0.又因为=2|x|y=-2xy,所以x<0,故选C.
4.已知f(x3)=lgx,则f(10)等于( )
A. B. C.-3 D.-
【解析】选A.因为f(x3)=lgx,令t=x3,则x=,所以f(t)=lg=lgt,故f(x)=lgx,所以f(10)=.
5.(2015·鄂州高一检测)若0<a<1,且log b a<1,则( )
A.0<b<a
B.0<a<b
C.0<a<b<1
D.0<b<a或b>1
【解析】选 D.当b>1时,log b a<1=log b b,所以a<b,即b>1成立.当0<b<1时,log b a<1=log b b,0<b<a<1,即0<b<a.
【补偿训练】已知a=212,b=,c=2log52,则a,b,c的大小关系为( ) A.c<b<a B.c<a<b
C.b<a<c
D.b<c<a
【解析】选A.因为a=212,b=,c=log54,
所以1<b<2,0<c<1,所以a>b>c,所以选A.
6.若f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=e x,
则有( )
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)
【解题指南】利用函数的奇偶性以及f(x)-g(x)=e x,分别求出f(x),g(x)的函数解析式,判断出函数f(x)的单调性即可比较出大小.
【解析】选D.用-x代x,f(-x)-g(-x)=e-x,即-f(x)-g(x)=e-x,结合f(x)-g(x)=e x,可得f(x)=,g(x)=-.所以f(x)为R上的增函数,且f(0)=0,g(0)=-1,所以f(3)>f(2)>f(0)>g(0),故选D.
二.填空题(每小题4分,共12分)
7.(2015·三亚高一检测)计算÷10= .
【解析】÷10=lg÷10
=-2÷=-20.
答案:-20
8.(2015·许昌高一检测)设f(x)=则f(f(1))= . 【解析】因为f(1)=2e1-1=2e0=2,所以
f(2)=log3(22-1)=1.
答案:1
9.若lg(x-y)+lg(x+2y)=lg2+lgx+lgy,则= .
【解析】由已知可得lg[(x-y)(x+2y)]=lg2xy,则有所
以
所以x=2y,即=2.
答案:2
三、解答题(每小题10分,共20分)
10.(2015·梅州高一检测)已知a=log32,用a来表示log38-2log36.
【解析】因为log38-2log36=log323-2log3(2×3)
=3log32-2(log32+log33)
=3log32-2(log32+1)=log32-2=a-2.
所以log38-2log36=a-2.
11.已知函数f(x)=a-在R上是奇函数,
(1)求a的值.
(2)判断并证明f(x)在R上的单调性.
【解析】(1)方法一:因为f(x)=a-在R上是奇函数,所以f(0)=0,即a-=0, 所以a=1,此时f(x)=1-.
经检验,当a=1时,f(-x)=-f(x),即函数f(x)为奇函数,所以a=1.
方法二:因为f(x)=a-在R上是奇函数,
所以f(-x)=-f(x),所以a-=-,
整理得a(e x+1)=e x+1,所以a=1.
(2)因为f(x)=1-,
任取x1,x2∈R,且x1<x2,
f(x1)-f(x2)=,
因为x 1<x2,所以<,>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以f(x)在R上是增函数.
关闭Word文档返回原板块。