高三理数一轮讲义:8.3-空间点、直线、平面之间的位置关系(练习版)
人教版高三数学一轮复习精品课件5:8.3 空间点、直线、平面之间的位置关系

考点1 平面的基本性质
【典例1】(1)(2015·厦门模拟)下列四个命题中,真命题的个数为( )
①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;
②两条直线可以确定一个平面;
③空间中,相交于同一点的三条直线在同一平面内;
④若M∈α,M∈β,α∩β=l,则M∈l.
A.1
B.2
C.3
D.4
(2)①AM和CN不是异面直线. 理由:连接MN,A1C1,AC. 因为M,N分别是A1B1,B1C1的中点, 所以MN∥A1C1. 又因为A1A C1C, 所以四边形A1ACC1为平行四边形, 所以A1C1∥AC,所以MN∥AC, 所以A,M,N,C在同一平面内, 故AM和CN不是异面直线.
②D1B和CC1是异面直线. 理由: 因为ABCD -A1B1C1D1是正方体,所以B,C,C1,D1不共面. 假设D1B与CC1不是异面直线, 则存在平面α,使D1B⊂平面α,CC1⊂平面α, 所以D1,B,C,C1∈α, 这与B,C,C1,D1不共面矛盾.所以假设不成立, 即D1B和CC1是异面直线.
路漫漫其修远兮,吾将上下而求索!
表示 公理
文字语言
_过__不__在__一__条__直__线__上__ 公理2 的三点,有且只有一个
平面
公理3
如果两个不重合的
平面有一个公共点, 那么它们有且只有
_一__条__过该点的公共 直线
图形语言
符号语言
A,B,C三点不共线 ⇒有且只有一个平 面α,使A∈α, B∈α,C∈α
(2)如图,连接CD1,EF,A1B,因为E,F分别是AB和AA1的中点,
所以EF∥A1B且EF=
1 2
A1B.
又因为A1D1∥BC,且A1D1=BC,
2023年高考数学一轮复习课件:第八章 8-3空间点、直线、平面之间的位置关系

跟踪训练3 (1)如图,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点, 用过点A,E,C1的平面截去该正方体的下半部分,则剩余几何体的正视 图是
√
在正方体ABCD-A1B1C1D1中, 过点A,E,C1的平面截去该正方体的下半部分后, 剩余部分的直观图如图. 则该几何体的正视图为图中粗线部分,故选A.
(2)当AC,BD满足条件__A_C__=__B_D_且__A_C__⊥__B_D___时,四边形 EFGH为正方形.
∵四边形EFGH为正方形, ∴EF=EH且EF⊥EH, ∵EF 綉12AC,EH 綉12BD, ∴AC=BD且AC⊥BD.
TANJIUHEXINTIXING
探究核心题型
题型一 平面基本性质的应用 例1 如图所示,已知在正方体ABCD-A1B1C1D1中,E,F分别为D1C1, C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:
√C.l⊄α,A∈l⇒A∉α
D.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合
对于A,因为M∈α,M∈β,α∩β=l,由公理3可知M∈l,A对; 对于B,A∈α,A∈β,B∈α,B∈β,故直线AB⊂α,AB⊂β,即α∩β =AB,B对; 对于C,若l∩α=A,则有l⊄α,A∈l,但A∈α,C错; 对于D,有三个不共线的点在平面α,β中,故α,β重合,D对.
教师备选
如图所示,在正方体ABCD-A1B1C1D1中,点E,F分别是AB,AA1的中 点,连接D1F,CE.求证:
(1)E,C,D1,F四点共面;
如图所示,连接CD1,EF,A1B, ∵E,F分别是AB,AA1的中点, ∴EF∥A1B,且 EF=12A1B. 又∵A1D1∥BC,A1D1=BC, ∴四边形A1BCD1是平行四边形, ∴A1B∥CD1,∴EF∥CD1, ∴EF与CD1能够确定一个平面ECD1F, 即E,C,D1,F四点共面.
高考数学(理科)一轮复习:单元八 立体几何 8.3 空间点、直线、平面之间的位置关系

正确;命题④中没有说清三个点是否共线,∴④不正确.
2
解析
关闭
答案
第八章
考点1 考点2 考点3
8.3
空间点、直线、平面之间的位置关系
关键能力
必备知识
-11-
考点 1
平面的基本性质及应用
例1
(1)如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD= 1 1 ∠FAB=90°,BC= 2AD,BE= FA ,G,H分别为FA,FD的中点. 2 ①四边形BCHG的形状是 ; ②点C,D,E,F,G中,能共面的四点是 . (2)在正方体ABCD-A1B1C1D1中,对角线A1C与平面BDC1交于点 O,AC与BD交于点M,则点O与直线C1M的关系是 . 答案: (1)①平行四边形 ②C,D,E,F
关闭
只有B1C1与EF在同一平面内,是相交的.选项A,B,C中直线与EF都是异面 直线,故选D.
关闭
D
解析 答案
第八章
知识梳理 考点自测
8.3
空间点、直线、平面之间的位置关系
关键能力
必备知识
-8-
1
2
3
4
5
3.已知a,b是异面直线,直线c平行于直线a,则c与b ( A.一定是异面直线 B.一定是相交直线 C.不可能是平行直线 D.不可能是相交直线
)
关闭
由已知得,直线c与b可能为异面直线,也可能为相交直线,但不可能为平行 直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾.
关闭
C
解析 答案
第八章
知识梳理 考点自测
8.3
空间点、直线、平面之间的位置关系
关键能力
必备知识
-9-
1
2020届高三理数一轮讲义:8.3-空间点、直线、平面之间的位置关系(含答案)

知识梳理
1.判断下列结论正误
B.45°
D.90°
∥EF,故∠D1B
1
是一个平面,m,n是两条直线,
对于选项B,如图(1)所示,连接CD,因为AB MQ∥CD,所以AB∥MQ,又AB⊄平面
图(1)图(2) ,其中O为BC的中点如图(2)所示),连接
确定一个平面,
个交点N,取不同的位置就确定不同的平面,
考点一平面的基本性质及应用
,A1B,
的中点,
四点共面;
,求证:P,A,C三点共线AD的中点,
B.相交但不垂直
D.异面但不垂直
,折起后有AD⊥BD,AD⊥DC,所以不相交,故AD与BC异面且垂直
B.②③
C.②④
D.②③④已知空间三条直线l,m,n,若l与m异面,且l与n异面,则
多维探究
中,AB=BC=1 5
2,
1
或直角)即为AC与BD
是异面直线BM与AN所成的角[思维升华]
基础巩固题组
)
外,它的三条边所在的直线分别交
C.3 5
AD1所成的角.
如图,将原图补成正方体ABCD-QGHP,连接
所成的角,
D1中,M,N分别为棱
,则BD∩AC=O,
.
,
相交;若取BA为l4,则
2
4 C.-
2 4
AB的垂线,H为垂足,易知BH=
的延长线于点T,,所以AG=12 2.
所成角的正切值.
ABCD的面积S=4,
OC与MD所成的角,由已知可得。
高三理科数学一轮复习讲义,复习补习资料:第八章立体几何8.3空间点直线平面之间的位置关系(原卷)

§8.3空间点、直线、平面之间的位置关系考纲展示► 1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.考点1 平面的基本性质及应用平面的基本性质(1)公理1:如果一条直线上的________在一个平面内,那么这条直线在此平面内.(2)公理2:过________的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有________公共点,那么它们有且只有一条过该点的公共直线.(4)公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条________直线有且只有一个平面;推论3:经过两条________直线有且只有一个平面.(1)[教材习题改编]直线a,b,c两两平行,但不共面,经过其中两条直线的平面的个数为( )A.1 B.3C.6 D.0(2)[教材习题改编]两两相交的三条直线最多可确定________个平面.判断点共线、线共点问题:直接法(直接运用公理或定理).(1)如图所示,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC=12AD,BE=12FA,G,H分别为FA,FD的中点.①四边形BCHG 的形状是________;②点C ,D ,E ,F ,G 中,能共面的四点是________.(2)在正方体ABCD -A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于点O ,AC 与BD 交于点M ,则点O 与直线C 1M 的关系是________.[典题1] (1)以下四个命题中,正确命题的个数是( ) ①不共面的四点中,其中任意三点不共线;②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面; ③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面; ④依次首尾相接的四条线段必共面. A .0 B .1 C .2 D .3(2)已知空间四边形ABCD (如图所示), E ,F 分别是AB ,AD 的中点,G ,H 分别是BC ,CD 上的点,且CG =13BC ,CH =13DC .求证:①E ,F ,G ,H 四点共面; ②三直线FH ,EG ,AC 共点.[点石成金] 共面、共线、共点问题的证明(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法:先证其中两条直线交于一点,再证其他直线经过该点.考点2 空间两直线的位置关系(1)[教材习题改编]已知直线a与b平行,直线c与b相交,则直线a与c的位置关系是________.(2)[教材习题改编]如图,正方体ABCD-A1B1C1D1中,PQ是异面直线A1D与AQ的公垂线,则直线PQ与BD1的位置关系为________.(填序号)①平行;②异面;③相交但不垂直;④垂直.两条直线关系判断误区:异面直线概念、理解不透.下列关于异面直线的说法正确的是________.①若a⊂α,b⊂β,则a与b是异面直线;②若a与b异面,b与c异面,则a与c异面;③若a,b不同在平面α内,则a与b异面;④若a,b不同在任何一个平面内,则a与b异面.[考情聚焦] 空间两条直线位置关系的判断是每年高考常考内容,并且常作为某一选项来考查,其中异面直线及平行关系是考查的重点.主要有以下几个命题角度:角度一两直线位置关系的判定[典题2] (1)已知a,b,c为三条不重合的直线,已知下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( )A.0 B.1C.2 D.3(2) [2019·浙江余姚模拟]如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是( )A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行[点石成金] 点、线、面之间的位置关系可借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.角度二异面直线的判定[典题3] (1)在下图中,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.(填上所有正确答案的序号)①②③④(2)如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为________对.[点石成金] 异面直线的判定常用的是反证法,先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设肯定两条直线异面.此法在异面直线的判定中经常用到.考点3 异面直线所成角[典题4] 如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB =2,则异面直线A1B与AD1所成角的余弦值为( )A.15B.25C.35D.45[题点发散1] 将题干条件“AA1=2AB=2”改为“AB=1,若平面ABCD内有且仅有一点到顶点A1的距离为1”,问题不变.[题点发散2] 将题干条件“AA1=2AB=2”改为“AB=1,若异面直线A1B与AD1所成角的余弦值为910”,试求AA1AB的值.[题点发散3] 将题干条件“AA1=2AB=2”改为“AB=1,且平面ABCD内有且仅有一点到顶点A1的距离为1”,则是否存在过顶点A的直线l,使l与棱AB,AD,AA1所成角都相等.若存在,存在几条?若不存在,请说明理由.[点石成金] 用平移法求异面直线所成的角的三个步骤(1)一作:即据定义作平行线,作出异面直线所成的角;(2)二证:即证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角,如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.已知三棱锥A-BCD中,AB=CD,且直线AB与CD所成的角为60°,点M,N分别是BC,AD的中点,求直线AB和MN所成的角的大小.[方法技巧] 1.要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).2.要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上,因此共线.3.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.4.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决.根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关.[易错防范] 1.异面直线是“不同在任何一个平面内”的直线,不要理解成“不在同一个平面内”.2.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.3.两条异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2.4.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.真题演练集训1.[2019·重庆模拟]平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.32 B.22C.33D.132.[2018·安徽模拟]已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面3.[2018·辽宁模拟]已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ⊂α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α4. [2018·浙江模拟]如图,在三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.课外拓展阅读构造平面研究直线相交问题[典例1] 在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.温馨提示1.本题难度不大,但比较灵活.对平面的基本性质、空间两条直线的位置关系的考查难度一般都不会太大.2.注意本题解法较多,但关键在于构造平面,但不少学生不会构造平面,因此失分较多.。
高考数学一轮总复习 8.3 空间点、直线、平面之间的位置关系精品课件 理 新人教版

形 ABCD 为平面图形,这与四边形 ABCD 为空间四边形相矛盾.∴BC 与 AD
(2)EG 与 FH 相交.
是异面直线.
(2)如图,连接 AC,BD,则 EF∥AC,HG∥AC,因此 EF∥HG;同理 EH∥FG,
则 EFGH 为平行四边形.又 EG,FH 是▱ EFGH 的对角线,∴EG 与 HF 相交.
(1)位置关系的分类
相交直线
:同一平面内,有且只有
共面直线
一个公共点
平行直线
异面直线:不同在
任何
:同一平面内,没有公共点
一个平面内,没有公共点
(2)公理 4:平行于同一条直线的两条直线互相平行.
符号表示为:设 a,b,c 是三条直线,a∥b,c∥b,则
a∥c .
公理 4 实质上是说平行具有传递性,在平面、空间中这个性质都适用.
与 b'所成的
锐角(或直角) 叫做异面直线 a 与 b 所成的角(或夹角),两
条异面直线所成的角的范围是
π
0,
2
,计算中,通常把两条异面直线所成的角
转化为两条相交直线所成的角.
第六页,共30页。
梳理(shūlǐ)
自测
3.直线和平面的位置关系
位置关
系
公共点
直线 a 在平面 α 内
无数个 公共点
直线 a 与平面 α 相交
或 75°.
(kǎo diǎn)一
答案
答案
(dá àn)
考点(kǎo diǎn)二
考点(kǎo diǎn)三
第二十三页,共30页。
探究(tànjiū)
突破
方法提炼
求异面直线所成角的一般步骤:
2020届高三数学一轮复习导学案教师讲义第8章第3讲 空间点、直线、平面之间的位置关系

第3讲 空间点、直线、平面之间的位置关系[学生用书P127]1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行. 2.空间直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝⎛⎦⎤0,π2. (3)定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系 (1)空间中直线与平面的位置关系(2)空间中两个平面的位置关系判断正误(正确的打“√”,错误的打“×”)(1)如果两个不重合的平面α,β有一条公共直线a ,就说平面α,β相交,并记作α∩β=a .( )(2)两个平面α,β有一个公共点A ,就说α,β相交于过A 点的任意一条直线.( ) (3)两个平面ABC 与DBC 相交于线段BC .( ) (4)经过两条相交直线,有且只有一个平面.( ) (5)没有公共点的两条直线是异面直线.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× (教材习题改编)下列命题正确的是( ) A .经过三点确定一个平面B .经过一条直线和一个点确定一个平面C .四边形确定一个平面D .两两相交且不共点的三条直线确定一个平面解析:选D .A 选项考查公理2,即三点必须不在同一条直线上,才能确定平面;B 选项如果点在直线上,则该直线和这个点不能确定平面;C 选项中的四边形有可能是空间四边形,只有D 是正确的.(教材习题改编)已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是( )A .空间四边形 B.矩形 C .菱形D .正方形解析:选B .如图所示,易证四边形 EFGH 为平行四边形.因为E,F分别为AB,BC的中点,所以EF∥AC.又FG∥BD,所以∠EFG或其补角为AC与BD所成的角.而AC与BD所成的角为90°,所以∠EFG=90°,故四边形EFGH为矩形.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线 B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:选C.假设c∥b,又因为c∥a,所以a∥b,这与a,b是异面直线矛盾,故c与b不可能平行.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D.A,B,C图中四点一定共面,D中四点不共面.(教材习题改编)如图,圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点,则异面直线SA与PD所成角的正切值为()A.1 B. 2C.2 D.2 2解析:选B .连接OP ,易知O 为AB 的中点,因为P 为SB 的中点,所以OP ∥SA ,且OP =12SA ,所以∠DPO 为异面直线SA 与PD 所成的角.在Rt △SOB 中,SO =OB =2,所以OP =2.在等腰三角形PCD 中,OP ⊥CD ,OD =2,所以tan ∠DPO =OD OP =22=2,故选B .平面的基本性质[学生用书P128][典例引领]如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是AB 和AA 1的中点.求证:E 、C 、D 1、F 四点共面.【证明】 如图所示, 连接CD 1、EF 、A 1B ,因为E 、F 分别是AB 和AA 1的中点, 所以EF ∥A 1B 且EF =12A 1B .又因为A 1D 1═∥BC ,所以四边形A 1BCD 1是平行四边形, 所以A 1B ∥CD 1,所以EF ∥CD 1, 所以EF 与CD 1确定一个平面α,所以E 、F 、C 、D 1∈α,即E 、C 、D 1、F 四点共面.本例条件不变,如何证明“CE ,D 1F ,DA 交于一点”? 证明:如图,由本例知EF ∥CD 1,且EF =12CD 1,所以四边形CD 1FE 是梯形,所以CE 与D 1F 必相交,设交点为P , 则P ∈CE ,且P ∈D 1F ,又CE ⊂平面ABCD ,且D 1F ⊂平面A 1ADD 1, 所以P ∈平面ABCD ,且P ∈平面A 1ADD 1. 又平面ABCD ∩平面A 1ADD 1=AD ,所以P ∈AD , 所以CE 、D 1F 、DA 三线共点.共点、共线、共面问题的证明方法(1)证明点共线问题:①公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据基本公理3证明这些点都在交线上;②同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上.(2)证明线共点问题:先证两条直线交于一点,再证明第三条直线经过该点. (3)证明点、直线共面问题:①纳入平面法:先确定一个平面,再证明有关点、线在此平面内;②辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.[通关练习]已知空间四边形ABCD (如图所示),E 、F 分别是AB 、AD 的中点,G 、H分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点. 证明:(1)连接EF 、GH ,因为E 、F 分别是AB 、AD 的中点, 所以EF ∥BD .又因为CG =13BC ,CH =13DC ,所以GH ∥BD , 所以EF ∥GH ,所以E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, 所以设FH ∩AC =M ,所以M ∈平面EFHG ,M ∈平面ABC . 又因为平面EFHG ∩平面ABC =EG , 所以M ∈EG ,所以FH 、EG 、AC 共点.空间两直线的位置关系[学生用书P128][典例引领](1)在图中,G ,N ,M ,H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有________.(填上所有正确答案的序号)(2)如图为正方体表面的一种展开图,则图中的四条线段AB ,CD ,EF ,GH 所在直线在原正方体中互为异面的对数为________对.【解析】 (1)图①中,直线GH ∥MN ;图②中,G,H,N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.(2)平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH相交,CD与EF平行.故互为异面的直线有且只有3对.【答案】(1)②④(2)3[通关练习]1.若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交解析:选D.由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l 相交.2.如图,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线AM 与DD 1是异面直线.其中正确的结论为________(把你认为正确的结论的序号都填上).解析:直线AM 与CC 1是异面直线,直线AM 与BN 也是异面直线,故①②错误. 答案:③④异面直线所成的角[学生用书P129][典例引领]如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.【解析】 如图,将原图补成正方体ABCD -QGHP ,连接AG ,GP ,则GP ∥BD ,所以∠APG 为异面直线AP 与BD 所成的角,在△AGP 中,AG =GP =AP , 所以∠APG =π3.【答案】 π3在本例条件下,若E ,F ,M 分别是AB ,BC ,PQ 的中点,异面直线EM 与AF 所成的角为θ,求cos θ的值.解:设N 为BF 的中点,连接EN ,MN ,则∠MEN 是异面直线EM 与AF 所成的角或其补角.不妨设正方形ABCD 和ADPQ 的边长为4, 则EN =5,EM =26,MN =33. 在△MEN 中,由余弦定理得 cos ∠MEN =EM 2+EN 2-MN 22EM ·EN=24+5-332×26×5=-130=-3030.即cos θ=3030.用平移法求异面直线所成的角的步骤(1)一作:根据定义作平行线,作出异面直线所成的角; (2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.[通关练习]已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .16 B.36 C .13 D .33解析:选B .画出正四面体ABCD 的直观图,如图所示.设其棱长为2,取AD 的中点F , 连接EF ,设EF 的中点为O ,连接CO ,则EF ∥BD , 则∠FEC 就是异面直线CE 与BD 所成的角.△ABC 为等边三角形,则CE ⊥AB ,易得CE =3,同理可得CF =3,故CE =CF . 因为OE =OF ,所以CO ⊥EF .又EO =12EF =14BD =12,所以cos ∠FEC =EO CE =123=36.共点、共线、共面问题的证明(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A 与平面内一点B的连线和平面内不经过点B 的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面. 异面直线所成角的求法及注意事项(1)求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想.(2)两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.[学生用书P301(单独成册)]1.四条线段顺次首尾相连,它们最多可确定的平面个数有( ) A .4个 B.3个 C .2个D .1个解析:选A .首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.已知A ,B ,C ,D 是空间四点,命题甲:A ,B ,C ,D 四点不共面,命题乙:直线AC 和BD 不相交,则甲是乙成立的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交;若直线AC和BD不相交,若直线AC和BD平行时,A,B,C,D四点共面,所以甲是乙成立的充分不必要条件.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P∈α,P∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.4.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交 B.异面C.平行D.垂直解析:选A.由BC═∥AD,AD═∥A1D1知,BC═∥A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,则A1B与EF相交.5.下列命题中,真命题的个数为()①如果两个平面有三个不在一条直线上的公共点,那么这两个平面重合;②两条直线可以确定一个平面;③空间中,相交于同一点的三条直线在同一平面内;④若M∈α,M∈β,α∩β=l,则M∈l.A.1 B.2C.3 D.4解析:选B.根据公理2,可判断①是真命题;两条异面直线不能确定一个平面,故②是假命题;在空间,相交于同一点的三条直线不一定共面(如墙角),故③是假命题;根据平面的性质可知④是真命题.综上,真命题的个数为2.6.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中正确的命题是________(写出所有正确命题的序号).解析:由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错.答案:①7.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.解析:取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.答案: 28.如图,平行六面体ABCD-A1B1C1D1中既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:59.如图,在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1、H、O三点共线.证明:如图,连接BD,B1D1,则BD∩AC=O,因为BB1═∥DD1,所以四边形BB1D1D为平行四边形,又H∈B1D,B1D⊂平面BB1D1D,则H∈平面BB1D1D,因为平面ACD1∩平面BB1D1D=OD1,所以H∈OD1.即D1、H、O三点共线.10.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.解:(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.1.已知l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3 B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3 C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面 D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面解析:选B .在空间中,垂直于同一直线的两条直线不一定平行,故A 错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B 正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C 错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D 错.2.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定 解析:选D .如图,在长方体ABCD -A 1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA ,若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排除选项A 和C .若l 4=DC 1,也满足条件,可以排除选项B .故选D .3.在三棱柱ABC -A 1B 1C 1中,E 、F 分别为棱AA 1、CC 1的中点,则在空间中与直线A 1B 1、EF 、BC 都相交的直线( )A .不存在 B.有且只有两条 C .有且只有三条D .有无数条解析:选D .在EF 上任意取一点M ,直线A 1B 1与M 确定一个平面,这个平面与BC 有且仅有1个交点N ,当M 的位置不同时确定不同的平面,从而与BC 有不同的交点N ,而直线MN 与A 1B 1、EF 、BC 分别有交点P 、M 、N ,如图,故有无数条直线与直线A 1B 1、EF 、BC 都相交.4.如图所示,在空间四边形ABCD 中,点E 、H 分别是边AB 、AD 的中点,点F 、G 分别是边BC 、CD 上的点,且CF CB =CG CD =23,则下列说法正确的是________.①EF 与GH 平行; ②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.解析:连接EH ,FG (图略),依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E 、F 、G 、H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH必相交,设交点为M .因为点M 在EF 上,故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④ 5.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ═∥12AD ,BE ═∥12F A ,G ,H 分别为F A ,FD 的中点. (1)求证:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么? 解:(1)证明:由题设知,FG =GA ,FH =HD , 所以GH ═∥12AD .又BC ═∥12AD , 故GH ═∥BC .所以四边形BCHG 是平行四边形. (2)C ,D ,F ,E 四点共面.理由如下: 由BE ═∥12F A ,G 是F A 的中点知,BE ═∥GF , 所以EF ═∥BG . 由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面. 又点D 在直线FH 上, 所以C ,D ,F ,E 四点共面.6.如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB=2,AC =23,P A =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解:(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2, cos ∠ADE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.。
高三数学总复习 8.3空间点、直线、平面之间的位置关系

河北省抚宁县第六中学高三数学总复习 8.3空间点、直线、平面之间的位置关系选用教材高中总复习优化设计知识模块立体几何课型复习教学目标知识与技能理解空间直线、平面位置关系的定义过程与方法了解四个公理和等角定理,并能以此作为推理的依据情感态度价值观建立立体感重点理解空间直线、平面位置关系的定义难点了解四个公理和等角定理,并能以此作为推理的依据关键对组成空间的基本元素:点、线、面之间的位置关系要掌握教学方法及课前准备学生自主探究讲练结合教学流程多媒体辅助教学内容一、平面的基本性质【例1】定线段AB所在的直线与定平面α相交,P为直线AB外一点,且P不在α内,若直线AP,BP 与α分别交于C,D点,求证:不论P在什么位置,直线CD必过一定点.证明:设定线段AB所在直线为l,与平面α交于O点,即l∩α=O.由题意可知,AP∩α=C,BP∩α=D,∴C∈α,D∈α.又∵AP∩BP=P,∴AP,BP可确定一平面β,且C∈β,D∈β.∴CD=α∩β.∵A∈β,B∈β,∴lβ.∴O∈β.∴O∈α∩β,即O∈CD.∴不论P在什么位置,直线CD必过一定点.方法提炼证明三点共线通常有两种方法:一是首先找出两个平面,然后证明这三点都是这两个平面的公共点,于是可得这三点都在这两个平面的交线上,即三点共线;二是选择其中两点确定一条直线,然后证明另一点也在这条直线上,从而得出三点共线.二、空间中两条直线的位置关系【例2】在正方体ABCDA1B1C1D1中,E是CD的中点,连接AE并延长与BC的延长线交于点F,连接BE并延长交AD的延长线于点G,连接FG.求证:直线FG平面ABCD,且直线FG∥直线A1B1.【例2】证明:已知E是CD的中点,在正方体ABCDA1B1C1D1中,有A∈平面ABCD,E∈平面ABCD,所以AE平面ABCD.又因为AE∩BC=F,所以F∈AE.从而F∈平面ABCD.同理G∈平面ABCD,所以FG平面ABCD.因为EC 12 AB,故在Rt△FBA中,CF=B C,同理DG=AD.又在正方形ABCD中,BC AD,所以CF DG.所以四边形CFGD是平行四边形.所以FG∥CD.又CD∥AB,AB∥A1B1,所以直线FG∥直线A1B1.方法提炼1.证明或判断空间两直线平行最常用的方法是公理4.平行线的传递性即若a∥b,b∥c,则a∥c. 2.判断两直线为异面直线的常用方法.过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线,如图.【典例】 已知正方体ABCD A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为__________.解析:设正方体的棱长为a.连接A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角,在△AEA 1中,cos ∠AEA 12222235a a a a a ⎛⎫⎛⎫+++- ⎪ ⎪=. 答案:35答题指导:1.(1)在用平行平移的方法将异面直线所成的角转化为三角形内角时,忽视对三角形内角“即为两异面直线所成角或其补角”的叙述.(2)通过解三角形得到某一内角的余弦值为负值后,忽视角的范围,不知将其转化为正值来处理.2.求异面直线所成角一般用平移法:①一作:即找或作平行线,作出异面直线所成的角.②二证:即证明作出的角是异面直线所成的角.③三求:解三角形,求出所作的角,注意为锐角或直角.1.关于直线m ,n 与平面α,β,有以下四个命题:①若m ∥α,n ∥β且α∥β,则m ∥n m ∥n ⊥β且α⊥β,则m ∥n ;③若m ⊥α,n ∥β且α∥β,则m ⊥n ;④若m ⊥α,n ⊥β且α其中真命题有( )..若,BBCAD若四面体ABCDCAD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3节 空间点、直线、平面之间的位置关系最新考纲 1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.知 识 梳 理1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行关系图形语言符号语言 a ∥ba ∥αα∥β相交关系图形语言符号语言 a ∩b =Aa ∩α=Aα∩β=l独有关系图形语言符号语言a ,b 是异面直线a ⊂α平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 4.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角). (2)范围:⎝ ⎛⎦⎥⎤0,π2.[微点提醒]1.空间中两个角的两边分别对应平行,则这两个角相等或互补.2.异面直线的判定:经过平面内一点的直线与平面内不经过该点的直线互为异面直线.3.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()(2)两两相交的三条直线最多可以确定三个平面.()(3)如果两个平面有三个公共点,则这两个平面重合.()(4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.()2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°3.(必修2P45例2改编)已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是()A.梯形B.矩形C.菱形D.正方形4.(2019·贵阳调研)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行5.(一题多解)(2017·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()6.(2018·西安调研)在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.考点一平面的基本性质及应用【例1】如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.规律方法 1.证明点或线共面问题的两种方法:(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;(2)将所有条件分为两部分,然后分别确定平面,再证两平面重合.2.证明点共线问题的两种方法:(1)先由两点确定一条直线,再证其他各点都在这条直线上;(2)直接证明这些点都在同一条特定直线(如某两个平面的交线)上.3.证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点. 【训练1】如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.考点二判断空间直线的位置关系【例2】(1)(一题多解)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)将图(1)中的等腰直角三角形ABC沿斜边BC的中线AD折起得到空间四面体ABCD,如图(2),则在空间四面体ABCD中,AD与BC的位置关系是()A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直规律方法 1.异面直线的判定方法:(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.(2)定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.2.点、线、面位置关系的判定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.【训练2】(1)(2019·湘潭调研)下图中,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有()A.①③B.②③C.②④D.②③④(2)已知空间三条直线l,m,n,若l与m异面,且l与n异面,则()A.m与n异面B.m与n相交C.m与n平行D.m与n异面、相交、平行均有可能考点三异面直线所成的角多维探究角度1求异面直线所成的角或其三角函数值【例3-1】(一题多解)(2018·全国Ⅱ卷)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15 B.56 C.55 D.22角度2由异面直线所成角求其他量【例3-2】在四面体ABCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=1,则EF的长为________.规律方法用平移法求异面直线所成角的一般步骤:(1)作角——用平移法找(或作)出符合题意的角;(2)求角——转化为求一个三角形的内角,通过解三角形,求出角的大小.【训练3】(2019·永州模拟)三棱锥A-BCD的所有棱长都相等,M,N分别是棱AD,BC 的中点,则异面直线BM与AN所成角的余弦值为()A.13 B.24 C.33 D.23[思维升华]1.主要题型的解题方法(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上.2.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不过点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想.[易错防范]1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.2.直线与平面的位置关系在判断时最易忽视“线在面内”.基础巩固题组(建议用时:40分钟)一、选择题1.给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是()A.①B.①④C.②③D.③④2.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线3.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A.12对B.24对C.36对D.48对4.下列命题中正确的个数为()①若△ABC在平面α外,它的三条边所在的直线分别交α于P,Q,R,则P,Q,R三点共线.②若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,则这四条直线共面;③空间中不共面五个点一定能确定10个平面.A.0B.1C.2D.35.如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为()A.15 B.25 C.35 D.45二、填空题6.给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是________.7.(2019·西安模拟)如图,四边形ABCD和四边形ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.8.如图,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(填序号).三、解答题9.在正方体ABCD-A1B1C1D1中,(1)求直线AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求直线A1C1与EF所成角的大小.10.如图,在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.能力提升题组(建议用时:20分钟)11.(2018·长春质检)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定12. 我国古代数学名著《九章算术》中记载:“今有羡除”.刘徽注:“羡除,隧道也.其所穿地,上平下邪.”小明仿制羡除裁剪出如图所示的纸片,在等腰梯形ABCD中,AB=10,BC=CD=DA=8,在等腰梯形ABEF中,EF=6,AF=BE=6.将等腰梯形ABCD沿AB折起,使DF=CE=26,则五面体ABCDEF中异面直线AC与DE所成角的余弦值为()A.0B.24 C.-24 D.2213.正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________(填序号).①AC⊥BE;②B1E∥平面ABCD;③三棱锥E-ABC的体积为定值;④B1E⊥BC1.14.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值.。