17.3勾股定理逆定理

合集下载

勾股定理第3课

勾股定理第3课

17.3勾股定理(3)学习目标:熟练掌握勾股定理的内容;会用勾股定理解决简单的实际问题;利用勾股定理,能在数轴上表示无理数的点学习重点:会在数轴上表示n(n为正整数)学习难点:会用勾股定理解决简单的实际问题学习过程:一探究新知1.勾股定理的内容2.如图,已知长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A、6cm2B、8cm2 C、10cm2 D、12cm23.13=9+4,即()213=23+﹝﹞2;若以和为直角三角形的两直角边长,则斜边长为13。

同理以和为直角三角形的两直角边长,则斜边长为174.我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示13的点吗?17的点?(尺规作图)分析:若能画出长为13的线段,就能在数轴上画出表示13的点.()2+()2=13,则若以和为直角三角形的两直角边长,则斜边长为135.如图:螺旋状图形是由若干个直角三角形所组成的,其中①是直角边长为1的等腰直角三角形。

那么OA1= ,OA2= ,OA3= ,OA4= ,OA5= ,OA6= ,OA7= ,…,OA14= , …,OA n= .思考:怎样在数轴上画出表示n(n为正整数)的点?二达标测评1.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A. 0B. 1C. 2D. 32.如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<c B. c<a<b C. c<b<a D. b<a<c3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为_______cm24.如图,等边三角形的边长是6,则高AD的长为_______,这个三角形的面积为_______5.如图,网格中每个小正方形的边长为1cm,△DEF由△ABC平移得到,则平移距离是______cm6.如图,正方形网格中,每个小正方形的边长为1,求网格上的三角形ABC的周长7.如图,正方形网格中,每个小正方形的边长为1,在网格上的三角形ABC中,求点B到AC的距离8.如图,若正方形网格中每个小方格的边长为1,试判断△ABC的形状9.①在数轴上作出表示10的点②在数轴上找出表示8和-45的点10.在Rt△ABC中,∠C=900,CD⊥BC于D,∠A=600,CD=3,求线段AB的长11.已知:如图,∠B=∠D=900,∠A=600,AB=4,CD=2,求四边形ABCD的面积12.要在街道旁修建一个奶站,向居民区A,B提供牛奶,奶站应建在什么地方,才能使从A,B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B 点的坐标为(6,5),•求从A,B两点到奶站距离之和的最小值三课堂小结。

《勾股定理的应用》--长方体表面上的最短路径问题教学设计

《勾股定理的应用》--长方体表面上的最短路径问题教学设计

17.3.勾股定理的应用---长方体表面上最短路径问题一、学生知识状况分析本节将利用勾股定理解决立体图形表面上两顶点间最短距离问题,需要学生了解空间图形、对长方体进行展开实践操作活动.学生在学习七年级下正(长)方体展开图已经有了一定的认知上,已经基本具备解决本课题问题所需的知识基础和活动经验.二、教学任务分析本节是义务教育课程标准人教版教科书八年级(下)第十七章《勾股定理的应用》延伸的课题学习,具体内容是运用勾股定理解决长方体表面两顶点间最短路径问题.在这问题的解决过程中,需要经历立体图形转化为平面图形的过程,通过操作、观察、对比,培养学生的分析、归纳应用等能力;在探究活动具体一定的难度,在突破难点时需要具有学生敢于探索、勇于思考的精神,有助于锻炼学生独立思考,力闯难关的勇气.也通过转化思想、对比方法培养学生学习数学的基本素养。

三、教学设计:(一)教学目标:知识与技能:1、熟练运用勾股定理解决实际问题;2.通过立体图形转化为平面图形,能找出最短路线;过程与方法:1.强化转化思想和对比方法,培养学生分析、归纳、解决问题的能力;2.构建直角三角形模型,回归平面几何本源;情感态度与价值观:在教学过程中培养学生动手实践、观察、分析、归纳的习惯,体会知识的形成过程和获得知识的成就感;增强学生应用数学知识解决实际问题的经验,培养学生解决问题的能力,激发学生学习的兴趣和信心。

(二)教学重难点:1、教学重点:知识形成过程,并有效运用勾股定理解决实际问题。

2、教学难点:通过转化思想把立体图形转化为平面图形,构建直角三角形模型,并分情况讨论,得出结论的探究的过程。

(三)课前准备:课件、长方体盒子、线、两颗螺丝。

(四)教法、学法:引导---探究---归纳演示操作,引发思考,分类讨论,对比分析,达成结论。

(五)教学过程分析本节课设计了八个环节.第一环节:复习巩固;第二环节:问题呈现;第三环节:探索新知;第四环节:解决问题;第五环节:课堂练习;第六环节:课堂小结;第七环节:课后作业.第八环节:课后反思。

数学八年级上册知识点第一章

数学八年级上册知识点第一章

数学八年级上册知识点第一章数学八年级上册知识点第一章1.勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。

注:勾最短的边、股较长的直角边、弦斜边。

勾股定理又叫毕达哥拉斯定理2.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

3.勾股数:满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。

4.勾股定理常常用来算线段长度,对于初中阶段的线段的计算起到很大的作用例题精讲:练习:例1:若一个直角三角形三边的.长分别是三个连续的自然数,则这个三角形的周长为解析:可知三边长度为3,4,5,因此周长为12(变式)一个直角三角形的三边为三个连续偶数,则它的三边长分别为解析:可知三边长度为6,8,10,则周长为24例2:已知直角三角形的两边长分别为3、4,求第三边长.解析:第一种情况:当直角边为3和4时,则斜边为5第二种情况:当斜边长度为4时,一条直角边为3,则另一边为根号7例3:一个直角三角形中,两直角边长分别为3和4,以下说法正确的是( )A.斜边长为25B.三角形周长为25C.斜边长为5D.三角形面积为20解析:根据勾股定理,可知斜边长度为5,选择C数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的知识点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理)及各种证明方法

勾股定理(毕达哥拉斯定理)勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

勾股定理是余弦定理的一个特例。

勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。

“勾三股四弦五”是勾股定理最基本的公式。

勾股数组方程a ² + b ²= c ²的正整数组(a ,b ,c )。

(3,4,5)就是勾股数。

也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么a ²+b ²=c ² ,即直角三角形两直角边的平方和等于斜边的平方。

勾股定理命题1 如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么。

勾股定理的逆定理命题2 如果三角形的三边长a ,b ,c 满足,那么这个三角形是直角三角形。

【证法1】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于21ab. 把这四个直角三角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE,∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a ,∠HEF = 90º. ∴ EFGH 是一个边长为b―a 的正方形,它的面积等于.∴ ∴.【证法2】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等.即, 整理得 .【证法3】(1876年美国总统Garfield证明)以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴ .∴.【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。

17.3 第2课时 勾股定理的应用 大赛获奖教学课件

17.3 第2课时 勾股定理的应用 大赛获奖教学课件

典例精析
例1 如图,为了测得湖边上点A和点C间的距离,一观测者在
点B设立了一根标杆,使∠ACB=90°.测得AB=200m,
BC=160m.根据测量结果,求点A和点C间的距离.
解:在△ABC中,∵∠ACB=90°.
C
∴AC2+BC2=AB2(勾股定理).
∵AB=200m,BC=160m,
AC AB2 BC 2
别是对应角.
知识要点
比较归纳
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有的特 殊形状
两个全等图形的特殊 的位置关系
1.都是沿着某条直线折叠后能重合. 2.可以互相转化.
想一想 (1)根据全等的意义,△ABC和△A'B'C'全等吗? 对应线段有怎样的数量关系?对应角呢?
△ABC≌△A'B'C' 对应线段相等 对应角相等
轴对称图形和对称轴 一般地,如果一个图形沿某条直线对折后,直线两旁的部
分能够完全重合,那么这个图形就叫做轴对称图形,这条直 线叫做对称轴.
练一练 下列图形是轴对称图形吗?


×
二 轴对称图形的对称轴
对称轴图形是指一个图形的轴对称性,两个图形之间往往 也具有这种对称性.
如图中的两个图形,沿图中的虚线对折后,这两个图形完 全重合
课堂小结
轴对称
定义
轴对称 性质
定义
轴对称 图形
性质
轴对称与 轴对称图形
联系 区别
课后作业
见《学练优》本课时练习
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取 扫描二维码获取更多资源

17.3.2 勾股定理的逆定理(课件)冀教版数学八年级上册

17.3.2 勾股定理的逆定理(课件)冀教版数学八年级上册
逆定理就是验证两个较短边长的平方和与最长边的平方是
否相等.


易 ∴a2+b2≠c2,∴ 三角形不是直角三角形.

[错因]c 不是三角形的最长边.


第二课时 勾股定理的逆定理
返回目录
易错警示 三角形三边长用 a,b,c 表示时,易把 c


2+b2=c2”.
当作最长边,直接套用逆定理中的“a


领悟提能 勾股定理的逆定理的实质是两直角边的平方


和等于斜边长的平方,斜边为最长边,故运用勾股定理的


分 ,试判断该三角形是不是直角三角形.

第二课时 勾股定理的逆定理
返回目录
[解析]利用勾股定理的逆定理进行判定即可.



[答案] 解:∵a2=( 6)2=6,b2=1,c2=( 5)2=5,

分 ∴a2=b2+c2,∴ 三角形是直角三角形.

第二课时 勾股定理的逆定理
返回目录
[易错]解:∵a2=( 6)2=6,b2=1,c2=( )2=5,
7,24,25;8,15,17;9,12,15 等
第二课时 勾股定理的逆定理






归纳总结
判断一个三角形是不是直角三角形的步骤
返回目录
第二课时 勾股定理的逆定理
返回目录
对点典例剖析


典例
将下列各组数据作为三角形的边长,能够组成直



解 角三角形的是(

A. 2,2,3
B. 1.5,2,2.5

相似三角形模块知识点及题型整理

相似三角形模块知识点及题型整理

特殊三角形和相似一、章节目录二、地位和作用构成三角形的是边和角, 全等三角形涉及的是等边等角的三角形, 相似三角形涉及的则是等角的三角形. 全等是相似的特殊情况, 相似是对全等关系条件放宽, 按照相似关系将三角形进行分类,同一类三角形只有大小不一样,但保留了边与边之间的比值关系(形状). 因此本模块内容主要是两部分, 一是相似的基本概念,性质与判定; 二是特殊三角形(每一类特殊三角形都是相似关系)和三角函数(在相似的关系下一个角的三角函数是不变量) 考点上,相似三角形和全等在分布和难度上都类似, 选择题和填空题主要考察基本概念,判定以及性质; 大题综合考察, 也会与函数结合, 需要总结方法和思路; 特殊三角形单独考察一般是小题, 更多的是结合在其他证明题中作为条件出现, 需要对特殊三角形的性质烂熟于心; 解直角三角形会有一道大题, 主要是勾股定理应用, 方程法等等.三、知识点总结(一)特殊三角形1、等腰三角形(1)概念:有两条边相等的三角形叫做等腰三角形.(2)性质:等腰三角形的两个底角相等.(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高重合(“三线合一”)等腰三角形关于顶角中线对称.(3)如果一个三角形有两个角相等,那么这个三角形是等腰三角形,其中,两个等角所对的边相等.2、等边三角形(1)概念:三边都相等的三角形叫做等边三角形.等边三角形是特殊的等腰三角形. (2)性质:等边三角形具有等腰三角形的一切性质等边三角形的三个角都相等,并且每一个角都等于60°.(3)等边三角形的判定定理三个角都相等的三角形是等边三角形.有一个角等于60°的等腰三角形是等边三角形.3、直角三角形(1)性质:直角三角形的两个锐角互余.(2)判定:有两个角互余的三角形是直角三角形.(3)三角形斜边的中线性质:三角形斜边上的中线是斜边的一半.证明:倍长中线构造全等.(4)两个特殊直角三角形:30°,60°,90°:30°所对直角边是斜边的一半.45°,45°,90°:等腰直角三角形,顶角中线把三角形又分为两个等腰直角三角形4、勾股定理(1)定理内容:在直角三角形中,两个直角边的平方和等于斜边的平方. (a2+b2=c2).(2)勾股定理的逆定理:如果三角形中有两个边的平方和等于第三边的平方,那这个三角形是直角三角形.5、直角三角形全等判定:斜边和一条直角边对应相等的两个直角三角形全等.6、反证法证明一个命题是真命题:①假设命题的结论不成立;②从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,已证明的定理、性质或题设条件相矛盾的结果.③由矛盾的结果,知假设不能成立,从而说明命题的结论是正确的.讲反证法这类逻辑上的内容,可以多结合生活中的例子,从现实中体会其核心思想.(二)图形的相似1、比例线段(1)四条线段之间的关系:在四条线段a,b,c,d 中, 如果线段a 与b 的比等于线段c 与d 的比, 即a b=c d, 就称这四条线段为成比例线段, 简称比例线段, 我们也称这四条线段成比例.(2)比例线段的基本性质①如果ab=c d, 那么ad =bc .②如果ad=bc , 那么ab=cd(b,d =≠0)(3)黄金分割C 是线段AB 上的一个点,如果有ACAB =BCAC ,那么称点C 为线段AB 的黄金分割点,ACAB称为黄金分割比.黄金分割比即:全线段:较长边=较长边:较短边. 黄金分割比为常数√5−12, 约为0.618.2、平行线分线段成比例(1)基本事实:两条直线被一组平行线所截,截得的线段成比例. 如图所示l1//l2//l3, 则AB:BC=DE:EF.将这个事实应用于三角形后:(2)推论:平行于三角形的一边截其他两边(或两边延长线),所得的对应线段成比例.(ADAB =AEEC)平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形与原三角形对应边成比例.(ADAB =AEAC=DEBC,第三边证明方法是过D作AC平行线.)3、相似三角形(1)概念:对应角相等,对应边成比例的两个三角形叫做相似三角形. 相似三角形对应边的比叫做相似比. 若△ABC与△DEF相似,记作△ABC∼△DEF, A和D,B和E,C和F是对应点.(2)相似三角形的判定定理①平行于三角形一边的直线与另外两边构成的三角形与原三角形相似.思路指导:遇平行找相似.②三条边分别成比例③两边成比例且夹角相等的两个三角形相似.④两组角对应相等的两三角形相似.注意课本中后四个判定的证明方法,判定①是最简单、基本的那个,后三个相似判定都是通过转化为①的情况加以证明的,由平行构造出的相似三角形也是最简单的相似模型.(“A”字形和“8”字形)(3)相似三角形的性质①对应角相等,对应边成比例.②对应的中线、高线、角平分线之比为相似比,周长之比也为相似比.③面积比为相似比的平方.(4)相似模型:①“A”字形相似和“8”字形相似.(一组等角和两条邻边判定.)A字形相似是由直线截得的相似,在已知一个三角形的情况下,用一条直线截这个三角形,使得直线与三角形边的夹角等于已知三角形的一个角,进而通过两个角对应相等判定截得的三角形与原三角形相似.8字形也是由直线截得的,与A字形不同的是,在这里直线截的是△ABC的两条边所在的直线,最终截得的图如下:②射影定理(三个直角三角形三组相似)如图所示△ABC是直角三角形,CD⊥AB, 则三个直角三角形两两相似,根据相似关系可得:AC2=AD⋅ABCB2=BD⋅BACD2=AD⋅DB③共线三等角(两组角对应相等)共线三等角是如图给出的相似,由∠ACB+∠DCE=180○−α=∠ACB+∠A,得∠A=∠DCE, 从而△ABC∼△CED.④旋转相似如上图,△AED,△ACB是任意三角形,ED//CB,将△AED经过旋转至图2后,形成的△ACE∼△ABD.旋转相似是前面全等三角形手拉手模型的推广,可以看到,当AC=AB时,相似比为1,也就是两个三角形全等.4、相似三角形的应用:间接测量(测旗杆)利用△ABO∼△CBD,测量BD,BO得相似比,通过CD求得OA.(测河宽)由C作AB平行线构造相似.(三)解直角三角形1、锐角三角函数锐角三角函数:在相似的意义下,三角形自身边的比值是一个不变量,因此定义一个研究这类比值的量,就是三角函数.(1)概念在直角三角形中,A是其中一个锐角:)①正弦函数sin ∠A:∠A的对边与斜边的比.(sin∠A=ac②余弦函数cos ∠A:∠A的邻边与斜边的比.(cos∠A=b)c)③正切函数tan∠A: ∠A的对边与邻边的比.(tan∠A=ab注意:2sin∠A2=sin(∠A2),sin2∠A=(sin∠A)(2)锐角三角函数的值当锐角A确定,所有以A为一个锐角的直角三角形都是相似的关系,因此他们三边之间的比值都是相等的, 因此A的角度唯一决定了三角函数的值. 即sin∠A,cos∠A,tan∠A都是A的函数.(3)锐角三角函数的性质设∠A与∠B互余,放在同一个直角三角形内,由它们各自三角函数的定义可得:①sin∠A=cos∠B②tan∠A ⋅tan∠B=1同角的三角函数有两个常用性质:①tan∠A=sin∠Acos∠A②sin2∠A+cos2∠A=1(4)几个特殊角度的三角函数值.2、锐角三角函数的计算这里涉及到计算的考点主要是上面特殊角的三角函数值,与正常的实数计算没有区别,把其中的三角函数换成对应的值就是一个普通的计算题了.3、解三角形直角三角形中,三条边和两个锐角共五个元素,知道其中两个(至少一个是边,一边一角或两边就可以确定这个直角三角形)就可以求出另外三个元素. 求解的过程就叫做解三角形.(1)斜三角形内作高构造直角三角形向外高构造直角三角形(2)俯仰角、方位角、坡度仰角:进行测量时,向上看时视线与水平线夹角α.俯角:向下看时视线与水平线夹角β.方位角:指的是南或北方向线与目标方向线所成的锐角.名称如图所示.坡度(坡比):坡面的垂直高度(h)和水平宽度(l)的比叫坡度,以i表示.坡角:坡面与水平面的夹角(α)i=tanα四、常考题型(一)特殊三角形1、等腰三角形和等边三角形出题方向:填空题或者选择题,一般为图形计算,等腰作为条件出现,需要利用等腰所具有的性质进行计算. 或者在证明题中作为条件, 利用等腰三角形的性质构造辅助线.A若等腰三角形的周长为10cm, 其中一边长为2cm,则该等腰三角形的底边长为:_____ 考点:等腰三角形;分类讨论;三边关系.如图,在ΔABC中,AB=AC,∠A=36○, BD平分∠ABC交AC于点D.求证:AD=BC考点: 等腰三角形的性质,以及判定. 顶角为36°的等腰三角形也是常考的一个图形.AB的长为半径画圆,两弧如图,已知AB=AC,AB=5,BC=3, 以A,B两点为圆心, 大于12相交于M,N,连接MN与AC相交于点D,则ΔBDC的周长为:_____.考点:等腰三角形的性质; 尺规作图. 在计算ΔBDC周长时,需要通过分析转化为求AC与BC的和, 这也是在三角形计算中经常会考到的一个思想.如图,已知AD⊥BC于点D, AE⊥CE于E, ∠ACE =∠B, AD=AE,求证: D是BC的中点.考点: 结合全等等腰三角形判定; 三线合一性质如图,点D、E在Δ ABC的BC边上, AB=AC,AD=AE,求证BD=CE.考点:三线合一,利用中线性质作辅助线进行证明. 不需要证明全等.在等腰三角形中三线合一,因此顶角中线(高线/角平分线)是一条重要的辅助线.如图:RtΔABC中, ∠BAC=90○, AB=AC, D是BC的中点,AE=BF.求证:DE=DF.考点:全等三角形证明;其中等腰是条件,需要想到作出高线构造全等.如图:已知ABC是等边三角形,点B、C、D、E在同一条直线上,且CG=CD,DF=DE,则∠E=_____度.考点:等边三角形和等腰三角形的性质;外角性质.B如图, 在ΔABC中,AB=AC, AD,CE是两条中线,P是AD上的一个动点, 则BP+EP的最小值是:_____.考点: 三角形顶角中线的性质(对称性), 与将军饮马模型结合.如图,ΔABC是等边三角形, 延长BC到D, 使CD=AC,连接AD.AB=2,则AD的长为_____.考点:等腰、等边三角形; 特殊三角形已知2是关于x的方程x2−2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A. 10B.14C.10或14D.8或10.考点:等腰三角形和方程结合;分类讨论;三边关系.AC, 则等腰ΔABC底角的度数等腰ΔABC中, BD⊥AC, 垂足为点D, 且BD=12为:_____.考点:等腰三角形;分类讨论;特殊三角形等腰三角形中分类讨论的特点: ①没有图. ②若给出三角形的两个边,则这两个边都可以作为腰, 因此分类讨论; 又同时必须满足三边关系, 得出结果也要进行取舍.如图,已知点O是∠APB内的一点,M、N分别是点O关于P A、PB的对称点,连接MN,与P A,PB分别相交于点E、F,已知MN=6cm.(1)求△OEF的周长;(2)连接PM、PN,若∠APB=α, 求∠MPN(用含α的代数式表示)(3)在(2)的条件下,若α=30°,判定△PMN的形状,并说明理由.考点:几何证明大题,其中涉及了等边三角形的判定. 也是一类动点题的经典考法.如图,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE, AD与CE交于点F.(1)求证AD=CE(2)求∠DFC的度数考点: 正多边形中的“弦图”,利用的是正多边形中心旋转对称性.2、直角三角形A如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2=_____.考点:涉及到直角三角形的简单计算题.已知:在△ABC中,AD⊥BC,∠1=∠B, 求证:△ABC是直角三角形.考点:直角三角形判定如图,在△ABC中,∠ACB=90○,∠ABC=60○,BD平分∠ABC,P是BD的中点,若AD=6,则CP的长为_____.考点:直角三角形中线的性质.如图所示,△ABC中,AB=AC,E为AB的中点,BD ⊥ AC,若∠DBC=20○,则∠BED 为______考点:应用直角三角形中线的性质,连接中线后构造出等腰三角形.B如图所示的网格是正方形网格,则∠PAB+∠PBA=_____°(点A,B,P是网格线交点)考点:直角三角形判定;外角性质. 作法是加倍延长AP后连接终点与B,构造出的三角形是等腰直角三角形.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A’与点A重合,点C’落在边AB上,连接B′C. 若∠ACB=∠AC′B′=90○,AC=BC=3,则B′C的长为_____.考点:主要是勾股定理的应用.如图,在四边形ABCD中,∠ABC=90○,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)若∠BAD=60○,AC平分∠BAD,AC=2,求BN的长.考点:直角三角形中线性质;中位线性质;等腰直角三角形性质.如图,在Rt△ABC中, ∠A=90○,AB=AC,BC=√2+1,点M、N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B, 使点B的对应点B’始终落在边AC上. 若△MB′C为直角三角形,则BM的长为:_____.考点:动点问题,一般有两个特征:一是列代数式,列方程的思想; 二是分类讨论.本题还与折叠问题相结合.看似M、N都是动点,实际上N是随M取定而确定的.3、勾股定理勾股定理在三角形的计算中起着非常重要的作用,前面给出的部分例题也有涉及,勾股定理最常见的是作为一个方法与直角三角形相关的问题紧密结合.在一个直角三角形中,如果其中两条边分别是6和10,那么第三条边的长度是:_____.考点:直角三角形的勾股定理已知a、b、c是△ABC的三边长,且满足关系式√c2−a2−b2+|a−b|=0,则△ABC 的形状为_____.考点:勾股定理的逆定理,判定直角三角形如图,△BCD中,AB=4,AD=3, BC=13, CD=12, 且∠BAD=90○, 求△BCD的面积.考点:勾股定理的逆定理. 首先求出BD,得出△BDC是直角三角形.(二)相似三角形1、几类经典的相似模型(1)A字形相似和8字形相似如图,在△ABC中,AB=9,AC=6,BC=12,点M在边AB上,AM=3,过点M作直线MN与边AC交于点N,使截得的三角形与原三角形ABC相似,则MN的长为:_____.注意是“截得”的三角形,那么对应前面的总结,应当考虑的是截线与边的夹角∠AMN 与∠B 或∠C对应,要分类讨论,两种情况下对应关系不同,就能求出两个结果.如图,已知在△ABC中,AB=20,BC=12,D是AC上一点,过点D作DE//BC交AB于E,作DF//AB交BC于F,设四边形BEDF为菱形.①求菱形的边长②求菱形BEDF面积与△ABC的面积之比.如图1,在平行四边形ABCD中,点E是BC的中点,点F在线段AE上,BF的延长线交射线CD于点G,若AFEF =3,求CDCG的值.①尝试探究:在图1中,过点E作EH//AB交BG于点H,则易求ABEH 的值是:_____,CGEH的值是:_____, CDCG的值是:_____.②类比延伸:如图2,在原题的条件下,若AFEF =m(m>0), 则CDCG的值是:_____(用含m的代数式表示),写出解答过程;③拓展迁移:如图3,在梯形ABCD中,DC//AB,点E是BC延长线上一点,AE和BD相交于点F,若ABCD =a,BCBE=b(a>0,b>0),则AFEF的值是:_____(用含a、b的代数式表示.)写出解答过程构造相似,其思路是结合已知条件(线段的比),使之称为相似三角形中的对应边.(2)射影定理已知CD是△ABC的高,DE⊥CA,DF⊥CB,如图,求证:△CEF∼△CBA.如图,在△ABC中,∠ACB=90○,AD为边BC上的中线,CP⊥AD于点P,求证:AD⋅PB=AB⋅BD.3、共线三等角(1)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60○,则AE的长为:_____.将条件标上,应该就能找到相似模型了.(2)△ABC中,∠C=90°, AC=3, BC=4,O是AB上的一个点,且AOAB =25,点P是AC上的一个动点,PQ⊥OP交线段BC于点Q(不与B、C重合),已知AP=2,求CQ的长.思路是由O作垂线构造三等角模型.4、旋转相似(1)如图,在平行四边形ABCD中,AC=CD,E、F分别为BC、CD上的点,且∠EAF=∠CAD.证明:①△ACE∼△ADF②EA=EF.(2)1)如图①,正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);2)将图①中的正方形AEGH绕点A旋转一定角度,如图②,求HD:GC:EB;3)把图②中的正方形都换成矩形,如图③,且已知DA:AB=HA:AE=m:n,此时HD:GC:EB 的值与2)中结果相比有变化吗?如果有,写出变化后的结果.(三)解三角形1、锐角三角函数(1)如图所示小正方形网格中,点A,B,C都在小正方形的顶点上,则cosA的值为:_____.(2)在△ABC中,∠C=90°,AB=√6,BC=√3,则∠A的度数为:_____.(3)计算题在△ABC中,若,∠A、∠B都是锐角,求∠C的度数.2、解三角形(1)如图,在△ABC中,AB=2,AC=4,∠A=120°,求BC的长.解三角形的一个重要方法是作高线构造直角三角形,然后利用勾股定理..求BC和AC的长.(2)如图,在△ABC中,∠B=45°,AB=2√2,tanC=23(3)为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面水平放置一个平面镜E,使得B,E,D处在同一水平线上,如图所示. 该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED),在F处观测旗杆顶A 的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米?(结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3○≈10.02)(4)如图,一艘船由A港沿北偏东65°方向航行30√2km至B港,然后沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为:_____(5)如图,水坝的横断面是梯形ABCD,背水坡AB的坡角∠BAD=60°,坡长AB=20米,为增强水坝强度,将坡底从A处向后水平延伸到E处,使新的背水坡的坡度为1:2,求AE 的长度.(结果精确到1米,参考数据:√2≈1.414,√3≈1.732).。

17.3勾股定理 教学课件

17.3勾股定理 教学课件

C
A
B
图1-4
SA+SB=SC
即:以两条直角边为边的两正方形面积之 和,等于以斜边为边的正方形的面积.
议一议
C (1)你能 A 用三个正方形 围成的直角三 B C 角形的边长分 A 图1-3 别表示三个正 B 方形面积的关 图1-4 系吗? (2)你能发现直角三角形三边之间 存在什么关系吗?
1 a 2 b
图1-2
(图中每个小方格代表一个单位面积)
(单位面积)
分割成四个直角边为整数的直角三角形.
C A B C 图1-1 A B
S正方形c
1 2 6 4 3 2
2
(单位面积) 18
图1-2
(图中每个小方格代表一个单位面积)
把C看成边长为6的正方形减去四个直角边 分别为3的等腰直角三角形.
A
B
图1-4
分割成四个直角边为整数的直角三角形 和一个正方形.
S正方形c
2
A
C
1 7 4 3 4 2
25
B
图1-3
C
A
B
图1-4
(单位面积)
把C看成边长为7的正方形减去四个直角边 分别为3和4直角三角形.
(2)三个 正方形A, B,C的面 积之间有什 么关系?
A
C
B
图1-3
B
C 解:如图,根据题意 得
Rt △ABC中,∠B=90° AC=100米, BC=80米, 由勾股定理 得 ∵AB2+BC2 =AC2 ∴AB2 =AC2-BC2 =1002 - 802=602 ∴AB=60(米) 答:A、B两点间的距离是60米.
A
生 活 中 勾 股 定 理 的 应 用
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、四边形ABCD中,已知AB=3,BC=4,CD=12,,DA=13,且∠ABC=900,求这个四边形的面积。
满足a2+b2=c2的三个正整数,称为勾股数。如3,4,5;5,12,13
学后收获
三、例题讲解
1、判断由线段a,b,c组成的三角形是不是直角三角形
(1)a=15, b=8, c=17
(2) a=13, b=14,c=15
2、如图,是一个机器零件示意图,∠ACD=90°是这种零件合格的一项指标。现测得AB=4cm,BC=3cm,CD=12cm,AD=13cm,∠ABC=90°,根据这些条件,能否知道∠ACD等于90°?
滦平七中学案活页
学科
数学
课题
17.3勾股定理逆定理
编号
032
姓名
班级
使用时间
2016.12.3
学习重点、难点
重点:探索并掌握直角三角形的判别条件。准确
难点:运用直角三角形判别条件解题。
学习流程
具体内容
学法指导
课前检测、
自主学习、
合作探究、
展示提升、
达标测评
一、知识回顾
1、什么是勾股定理?
2、直角三角形的判定
(2)三角形的三边分别是a,b,c,且满足等式(a+b)2-c2=2ab,则此三角形是: ( )
A.直角三角形; B.是锐角三角形;
A.是钝角三角形;D.是等腰直角三角形.
(3)已知∆ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形, ______是最大角.
(4)以∆ABC的三条边为边长向外作正方形,依次得到的面积是25, 144 , 169,则这个三角形是______三角形.
二、合作交流
1.拿出准备好的12根火柴棒,任意摆出一个三角形,看你能摆出几种不同性质的三角形。
思考:如果火柴的长度为1,那么
(1)图中哪个三角形的三边具有“两边的平方和等于第三边的平方”的关系?
(2)其中哪个三角形是直角三角形?
(3)请你用量角器进行度量,验证你的判断。
2.活动:
(1)画一个三角形,使它的边长分别为5cm,12cm,13cm。
(2)边长5,12,13之间有怎样的关系?
(3)用量角器度量这个三角形内角,它是什么三角形?
思考:通过以上我们的试验,我们可否知道怎样由边的关系识别一个三角形为直角三角形呢?
结论:如果三角形的三边长a、b、c满足,那么这个三角形是直角三角形。
3练ห้องสมุดไป่ตู้(1).△ABC中,∠C=90°,∠B=30°,AC=1,以BC为边的正方形面积为
相关文档
最新文档