2019版高三数学 专题12 解析几何课件 理(1)
高考解析几何复习专题ppt课件

常见特征量
1、曲线过点或点在曲线上: 2、线段长度或弦长 3、角度或夹角:与轴(或直线)夹角关系 4、三角形或四边形面积:表示方法与选择 5、平行或垂直等特殊关系 6、向量关系:
共线: 平面向量在基底下的线性分解: 数量积: 非向量特征转化为向量特征 7、量值关系: 平方关系、倒数关系、倍值关系等
23
交点法小练-方法与途径
练习2
已知椭圆 x 2 2
y2 1
1 的左右焦点分别为 F1、F2 ,若过点 P(0,-2)、F1 的直线交
椭圆于 A,B 两点,求 ABF2 的面积
解法一:由题可知:直线 lAB 方程为 2x y 2 0
由
y 2x x2 y2
21
2 可得 9 y 2
1
4、路径选择、计算方法
21
交点法小练与思考 练习1 若直线
与椭圆
恒有公共点,
求实数 的取值范围
直线与曲线
练习2
已知椭圆
x
2
2
y2 1
1 的左右焦点分别为 F1、F2 ,若过点 P(0,-2)、F1 的直线交
椭圆于 A,B 两点,求 ABF2 的面积
面积公式
表示方法
22
交点法小练解析: 练习1 若直线
联立:
x my
y
2
2x
h
y2
2my
2h
0
,则
y1
y2
2m
,所以:
y
m
,
又 M (x, y) 在直线 AB 上,故点 M (x, y) 满足: x y2 h
设 直 线 PQ 与 x 轴 交 于 点 H , 直 线 AB 与 x 轴 交 于 点
2019年高考数学试题分项版—解析几何(解析版)

2019年高考数学试题分项版——解析几何(解析版)一、选择题1.(2019·全国Ⅰ文,10)双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin 40°B.2cos 40° C. D.答案 D解析由题意可得-=tan 130°,所以e=====.2.(2019·全国Ⅰ文,12)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.3.(2019·全国Ⅱ文,9)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.4.(2019·全国Ⅱ文,12)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为() A. B.C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x =,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e =,故选A.5.(2019·全国Ⅲ文,10)已知F是双曲线C:-=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A. B. C. D.答案 B解析由F是双曲线-=1的一个焦点,知|OF|=3,所以|OP|=|OF|=3.不妨设点P在第一象限,P(x0,y0),x0>0,y0>0,则解得所以P,所以S△OPF=|OF|·y0=×3×=.6.(2019·北京文,5已知双曲线-y2=1(a>0)的离心率是,则a等于()A.B.4 C.2 D.答案 D解析由双曲线方程-y2=1,得b2=1,∴c2=a2+1.∴5=e2===1+.结合a>0,解得a=.7.(2019·天津文,6)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A. B.C.2 D.答案 D解析由题意,可得F(1,0),直线l的方程为x=-1,双曲线的渐近线方程为y=±x.将x=-1代入y=±x,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e===.8.(2019·浙江,2)渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.2答案 C解析因为双曲线的渐近线方程为x±y=0,所以无论双曲线的焦点在x轴上还是在y轴上,都满足a=b,所以c=a,所以双曲线的离心率e==.9.(2019·全国Ⅰ理,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.10.(2019·全国Ⅱ理,8)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p 等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.11.(2019·全国Ⅱ理,11)设F 为双曲线C :-=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A. B. C .2 D. 答案 A 解析 如图,由题意知,以OF 为直径的圆的方程为2+y 2=①,将x 2+y 2=a 2记为②式,①-②得x = ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =,所以|PQ |=2.由|PQ |=|OF |,得2=c ,整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e= ,故选A.12.(2019·全国Ⅲ理,10)双曲线C :-=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为( ) A.B.C .2D .3答案 A解析 不妨设点P 在第一象限,根据题意可知c 2=6, 所以|OF |= .又tan ∠POF ==,所以等腰△POF 的高h = ×=,所以S △PFO =× ×=. 13.(2019·北京理,4)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =【思路分析】由椭圆离心率及隐含条件222a b c =+得答案.【解析】:由题意,12c a =,得2214c a =,则22214a b a -=,22244a b a ∴-=,即2234a b =.故选:B .【归纳与总结】本题考查椭圆的简单性质,熟记隐含条件是关键,是基础题.14.(2019·北京理,8)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③【思路分析】将x 换成x -方程不变,所以图形关于y 轴对称,根据对称性讨论y 轴右边的图形可得.【解析】:将x 换成x -方程不变,所以图形关于y 轴对称, 当0x =时,代入得21y =,1y ∴=±,即曲线经过(0,1),(0,1)-;当0x >时,方程变为2210y xy x -+-=,所以△224(1)0x x =--…,解得(0x ∈, 所以x 只能取整数1,当1x =时,20y y -=,解得0y =或1y =,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(1,0)-,(1,1)-, 故曲线一共经过6个整点,故①正确.当0x >时,由221x y xy +=+得222212x y x y xy ++-=…,(当x y =时取等),222x y ∴+…,∴C 上y ,根据对称性可得:曲线C在x 轴上图形面积大于矩形面积122=⨯=,x 轴下方的面积大于等腰直角三角形的面积12112=⨯⨯=,因此曲线C 所围成的“心形”区域的面积大于213+=,故③错误. 故选:C .【归纳与总结】本题考查了命题的真假判断与应用,属中档题.15.(2019·天津理,5)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线-=1(a >0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A. B.C.2 D.答案 D解析由题意,可得F(1,0),直线l的方程为x=-1,双曲线的渐近线方程为y=±x.将x =-1代入y=±x,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e===.二、填空题1.(2019·全国Ⅲ文,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(x,y),则得所以M的坐标为(3,).2.(2019·北京文,11)设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为________.答案(x-1)2+y2=4解析∵抛物线y2=4x的焦点F的坐标为(1,0),准线l为直线x=-1,∴圆的圆心坐标为(1,0).又∵圆与l相切,∴圆心到l的距离为圆的半径,∴r=2.∴圆的方程为(x-1)2+y2=4.3.(2019·浙江,12)已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C 相切于点A(-2,-1),则m=________,r=________.答案-2解析 方法一 设过点A (-2,-1)且与直线2x -y +3=0垂直的直线方程为l :x +2y +t =0,所以-2-2+t =0,所以t =4,所以l :x +2y +4=0,令x =0,得m =-2,则r = = .方法二 因为直线2x -y +3=0与以点(0,m )为圆心的圆相切,且切点为A (-2,-1),所以×2=-1,所以m =-2,r = = .4.(2019·浙江,15)已知椭圆+=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心 ,|OF |为半径的圆上,则直线PF 的斜率是________. 答案解析 依题意,设点P (m ,n )(n >0),由题意知F (-2,0),|OF |=2,所以线段FP 的中点M在圆x 2+y 2=4上,所以2+2=4,又点P (m ,n )在椭圆 +=1上,所以+=1,所以4m 2-36m -63=0,所以m =-或m =(舍去),当m =-时,n =,所以k PF == .5.(2019·江苏,7)在平面直角坐标系xOy 中,若双曲线x 2-=1(b >0)经过点(3,4),则该双曲线的渐近线方程是_________________. 答案 y =± x解析 因为双曲线x 2-=1(b >0)经过点(3,4),所以9-=1,得b = ,所以该双曲线的渐近线方程是y =±bx =± x .6.(2019·江苏,10)在平面直角坐标系xOy 中,P 是曲线y =x +(x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 答案 4解析 设P,x >0,则点P 到直线x +y =0的距离d ==≥=4,当且仅当2x =,即x = 时取等号,故点P 到直线x +y =0的距离的最小值是4.7.(2019·全国Ⅰ理,16)已知双曲线C :-=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若 = , · =0,则C 的离心率为________. 答案 2解析 因为F 1B →·F 2B →=0,所以F 1B ⊥F 2B ,如图.因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.8.(2019·全国Ⅲ理,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(x,y),则=,=,,,得所以M的坐标为(3,).三、解答题1.(2019·全国Ⅰ文,21)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.由已知得|AO|=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得|MA|-|MP|为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,|AO|=2.由于MO⊥AO,故可得x2+y2+4=(x+2)2,化简得M的轨迹方程为y2=4x.因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以|MP|=x+1.因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在满足条件的定点P.2.(2019·全国Ⅱ文,20)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).3.(2019·全国Ⅲ文,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.(1)证明设D,A(x1,y1),则=2y1.由于y′=x,所以切线DA的斜率为x1,故=x1,整理得2tx1-2y1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.所以直线AB的方程为2tx-2y+1=0.所以直线AB过定点.(2)解由(1)得直线AB的方程为y=tx+.由可得x2-2tx-1=0,于是x1+x2=2t,y1+y2=t(x1+x2)+1=2t2+1.设M为线段AB的中点,则M.由于⊥,而=(t,t2-2),与向量(1,t)平行,所以t+(t2-2)t=0.解得t=0或t=±1.当t=0时,||=2,所求圆的方程为x2+2=4;当t=±1时,||=,所求圆的方程为x2+2=2.4.(2019·北京文,19)已知椭圆C:+=1的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|·|ON|=2,求证:直线l经过定点.(1)解由题意,得b2=1,c=1,所以a2=b2+c2=2.所以椭圆C的方程为+y2=1.(2)证明设P(x1,y1),Q(x2,y2),则直线AP的方程为y=x+1.令y=0,得点M的横坐标x M=-.又y1=kx1+t,从而|OM|=|x M|=.同理,|ON|=.由得(1+2k2)x2+4ktx+2t2-2=0,则x1+x2=-,x1x2=.所以|OM|·|ON|=·===2.又|OM|·|ON|=2,所以2=2.解得t=0,所以直线l经过定点(0,0).5.(2019·天津文,19)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP.求椭圆的方程.解(1)设椭圆的半焦距为c,由已知有a=2b,又由a2=b2+c2,消去b得a2=2+c2,解得=.所以椭圆的离心率为.(2)由(1)知,a=2c,b=c,故椭圆方程为+=1.由题意,F(-c,0),则直线l的方程为y=(x+c).点P的坐标满足消去y并化简,得到7x2+6cx-13c2=0,解得x1=c,x2=-.代入到l的方程,解得y1=c,y2=-c.因为点P在x轴上方,所以P.由圆心C在直线x=4上,可设C(4,t).因为OC∥AP,且由(1)知A(-2c,0),故=,解得t=2.因为圆C与x轴相切,所以圆C的半径为2.又由圆C与l相切,得=2,可得c=2.所以,椭圆的方程为+=1.6.(2019·浙江,21)如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.解(1)由题意得=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A(x A,y A),B(x B,y B),C(x C,y C),重心G(x G,y G).令y A=2t,t≠0,则x A=t2.由于直线AB过点F,故直线AB的方程为x=y+1,代入y2=4x,得y2-y-4=0,故2ty B=-4,即y B=-,所以B.又由于x G=(x A+x B+x C),y G=(y A+y B+y C)及重心G在x轴上,故2t-+y C=0.即C,G.所以,直线AC的方程为y-2t=2t(x-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t2>2.从而====2-.令m=t2-2,则m>0,=2-=2-≥2-=1+.当且仅当m=时,取得最小值1+,此时G(2,0).7.(2019·江苏,17)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.解(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,则c=1.又因为DF1=,AF2⊥x轴,所以DF2===.因此2a=DF1+DF2=4,所以a=2.由b2=a2-c2,得b2=3.所以椭圆C的标准方程为+=1.(2)方法一由(1)知,椭圆C:+=1,a=2.因为AF2⊥x轴,所以点A的横坐标为1.将x=1代入圆F2方程(x-1)2+y2=16,解得y=±4.因为点A在x轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由得5x2+6x-11=0,解得x=1或x=-.将x=-代入y=2x+2,得y=-.因此B.又F2(1,0),所以直线BF2:y=(x-1).由得7x2-6x-13=0,解得x=-1或x=.又因为E是线段BF2与椭圆的交点,所以x=-1.将x=-1代入y=(x-1),得y=-.因此E.方法二由(1)知,椭圆C:+=1.如图,连接EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B.所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(-1,0),由得y=±.又因为E是线段BF2与椭圆的交点,所以y=-.因此E.8.(2019·江苏,18)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P,Q两点间的距离.解方法一(1)过A作AE⊥BD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.因为PB⊥AB,所以cos∠PBD=sin∠ABE===.所以PB===15.因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知AD==10,从而cos∠BAD==>0,所以∠BAD为锐角.所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1D=P1B sin∠P1BD=P1B cos∠EBA =15×=9;当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ===3.此时,线段QA上所有点到点O的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=3时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).方法二(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立如图所示的平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,-3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(-4,-3),直线AB的斜率为.因为PB⊥AB,所以直线PB的斜率为-,直线PB的方程为y=-x-.所以P(-13,9),PB==15.所以道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(-4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知D(-4,9),又A(4,3),所以线段AD:y=-x+6(-4≤x≤4).在线段AD上取点M,因为OM=<=5,所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1(-13,9);当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由AQ==15(a>4),得a=4+3,所以Q(4+3,9).此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当P(-13,9),Q(4+3,9)时,d最小,此时P,Q两点间的距离PQ=4+3-(-13)=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).9.(2019·全国Ⅰ理,19)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,令Δ>0,得t<,则x1+x2=-.从而-=,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2,由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得x1=3,x2=,即A(3,3),B,故|AB|=.10.(2019·全国Ⅱ理,21)已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE 并延长交C于点G.(ⅰ)证明:△PQG是直角三角形;(ⅱ)求△PQG面积的最大值.(1)解由题设得·=-,化简得+=1(|x|≠2),所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点.(2)(ⅰ)证明设直线PQ的斜率为k,则其方程为y=kx(k>0).由得x=±.记u=,则P(u,uk),Q(-u,-uk),E(u,0).于是直线QG的斜率为,方程为y=(x-u).由得(2+k2)x2-2uk2x+k2u2-8=0.①设G(x G,y G),则-u和x G是方程①的解,故x G=,由此得y G=.从而直线PG的斜率为=-,因为k PQ·k PG=-1.所以PQ⊥PG,即△PQG是直角三角形.(ⅱ)解由(ⅰ)得|PQ|=2u,|PG|=,所以△PQG的面积S=|PQ||PG|==.设t=k+,则由k>0得t≥2,当且仅当k=1时取等号.因为S=在[2,+∞)上单调递减,所以当t=2,即k=1时,S取得最大值,最大值为. 因此,△PQG面积的最大值为.11.(2019·全国Ⅲ理,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(1)证明 设D,A (x 1,y 1),则=2y 1.由y ′=x ,所以切线DA 的斜率为x 1,故=x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0. 所以直线AB 过定点.(2)解 由(1)得直线AB 的方程为y =tx +. 由可得x 2-2tx -1=0,Δ=4t 2+4>0, 于是x 1+x 2=2t ,x 1x 2=-1,y 1+y 2 =t (x 1+x 2)+1=2t 2+1, |AB |= |x 1-x 2|= =2(t 2+1). 设d 1,d 2分别为点D ,E 到直线AB 的距离, 则d 1= ,d 2=,因此,四边形ADBE 的面积S =|AB |(d 1+d 2) =(t 2+3) .设M 为线段AB 的中点,则M. 由于⊥ ,而 =(t ,t 2-2),与坐标为(1,t )的向量平行,所以t +(t 2-2)t =0. 解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4 . 因此,四边形ADBE 的面积为3或4 .12.(2019·北京理,18)(14分)已知抛物线2:2C x py =-经过点(2,1)-. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线1y =-分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【思路分析】(Ⅰ)代入点(2,1)-,解方程可得p ,求得抛物线的方程和准线方程;(Ⅱ)抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,运用韦达定理,以及直线的斜率和方程,求得A ,B 的坐标,可得AB 为直径的圆方程,可令0x =,解方程,即可得到所求定点.【解析】:(Ⅰ)抛物线2:2C x py =-经过点(2,1)-.可得42p =,即2p =, 可得抛物线C 的方程为24x y =-,准线方程为1y =; (Ⅱ)证明:抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,可得2440x kx +-=, 设1(M x ,1)y ,2(N x ,2)y , 可得124x x k +=-,124x x =-, 直线OM 的方程为11y y x x =,即14xy x =-, 直线ON 的方程为22y y x x =,即24xy x =-, 可得14(A x ,1)-,24(B x ,1)-, 可得AB 的中点的横坐标为121142()224kk x x -+==-, 即有AB 为直径的圆心为(2,1)k -,半径为212||1441616||222AB k x x +=-==, 可得圆的方程为222(2)(1)4(1)x k y k -++=+, 化为224(1)4x kx y -++=, 由0x =,可得1y =或3-.则以AB 为直径的圆经过y 轴上的两个定点(0,1),(0,3)-.【归纳与总结】本题考查抛物线的定义和方程、性质,以及圆方程的求法,考查直线和抛物线方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题.13.(2019·天津理,18)设椭圆+=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解(1)设椭圆的半焦距为c,依题意,2b=4,=,又a2=b2+c2,可得a=,b=2,c =1.所以椭圆的方程为+=1.(2)由题意,设P(x P,y P)(x P≠0),M(x M,0),直线PB的斜率为k(k≠0),又B(0,2),则直线PB 的方程为y=kx+2,与椭圆方程联立得整理得(4+5k2)x2+20kx=0,可得x P=-,代入y=kx+2得y P=.所以直线OP的斜率为=.在y=kx+2中,令y=0,得x M=-.由题意得N(0,-1),所以直线MN的斜率为-.由OP⊥MN,得·=-1,化简得k2=,从解得k=±.所以直线PB的斜率为或-.。
2019高考解析几何命题解读及精准备考(共32张PPT)

(2017 课标卷 1 第 15 题)已知双曲线 C: x2 y2 1(a>0,b>0)的右顶点为 A,以 A 为圆心, a2 b2
b 为半径作圆 A,圆 A 与双曲线 C 的一条渐近线交于 M,N 两点.若∠MAN=60°,则 C 的离心率
为
.
思路 1:不妨令抛物线方程为 y2 2 px ,D 点坐标为( p , 5 ),则圆的半径为r p2 5 ,
A.16
B.14
C.12
D.10
思路 1:设 A(x1, y1), B(x2 , y2 ), C(x3, y3 ), D(x4 , y4 ) ,直线l1 的方程为 y k(x 1) ,
y2 4x 联立方程
y k(x 1)
,得 k 2 x2
(2k 2
4)x k 2
0 , x1
DE 2 5 , DN
5 , ON
p 2
,
xA
y
2 A
2p
2
22 2p
4, p
又
OD
OA
,
16 p2
8
p2 4
5 ,解得
p4
多想少算数形结合,彰显圆锥曲线几何特征
圆锥曲线的根本就是几何问题代数化,利用数形结合挖掘隐含条件可简化运 算,达到事半功倍的效果.
【例新2【课新标课Ⅲ标卷Ⅲ理卷科理第科16第题1】6 已题知】已点知M点M1,11和,1抛 和物抛线物C:线yC2 : y42x,4过x ,C过的C焦的点焦且点斜且率斜为率k 的为直k 的线直与线C与 C
2019高考解析几何 命题解读及精准备考
解析几何课标1卷理科5年考点分布
2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)
sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为
高中数学--平面解析几何课件ppt

目录
3.直线方程的几种形式
名称
方程的形式
已知条件
局限性
点斜式
_y_-__y_1=__k_(_x-__x_1_)
(x1,y1)为直线上 一定点,k为斜 率
不包括垂直于x轴的 直线
斜截式
___y_=__k_x_+_b____
k为斜率,b是直 线在y轴上的截 距
不包括垂直于x轴的 直线
目录
名 方程的形式
目录
法二:由题意,所求直线的斜率存在且 k≠0, 设直线方程为 y-2=k(x-3), 令 y=0,得 x=3-2k,令 x=0,得 y=2-3k, 由已知 3-2k=2-3k,解得 k=-1 或 k=23, ∴直线 l 的方程为: y-2=-(x-3)或 y-2=23(x-3), 即直线 l 的方程为 x+y-5=0 或 2x-3y=0.
目录
【解】 (1)法一:设直线 l 的方程为 y-1=k(x-2)(k<0),
则 A(2-1k,0),B(0,1-2k), ∴S△AOB=12(2-1k)(1-2k)=2+12(-4k-1k)
≥2+12×2
-4k-1k=4,
当且仅当-4k=-1k,即 k=±12时取等号.
∵k<0,∴k=-12,
故所求直线方程为 y-1=-12(x-2), 即 x+2y-4=0.
第八章 平面解析几何
第1课时 直线及其方程
考纲展示
2016高考导航
备考指南
1.在平面直角坐标系中,结合具体图
形,掌握确定直线位置的几何要素. 1.基本公式、直线的斜率、方程以
2.掌握确定直线位置的几何要素,掌 及两直线的位置关系是高考的重
握直线方程的三种形式(点斜式、两 点.
高三数学平面解析几何PPT教学课件

高考命题趋势 纵观2008年高考全国卷和有关省市自主命题卷,关于 解析几何的命题有如下几个显著特点: 1.高考题型:解析几何的试题一般是选择题、填空题、解答 题都会出现。 2.难易程度:考查解析几何的选择题、填空题为基础题或中 档题,解答题一般会综合考查,以中等偏难试题为主。 3.高考热点:解析几何的热点仍然是圆锥曲线的性质,直线 和圆锥曲线的位置关系以及轨迹问题,仍然以考查方程思 想及用韦达定理处理弦长和弦中点为重点。坐标法使平面 向量与平面解析几何自然地联系并有机结合起来。相关交 汇试题应运而生,涉及圆锥曲线参数的取值范围问题也是 命题亮点。
考题剖析
考点四:有关圆锥曲线的定义的问题 【内容解读】圆、椭圆、双曲线、抛物线的定义是 经常考查的内容,除了在大题中考查轨迹时用到外, 经常在选择题、填空题中也有出现。
【命题规律】填空题、选择题中出现,属中等偏易 题。
考题剖析 例 7、(2008 辽宁理)在直角坐标系 xoy 中,点 P 到两
点 (0, 3),(0, 3) 的距离之和为 4,设点 P 的轨迹为 C,直线 y kx 1与 C 交于 A,B 两点. ⑴写出 C 的方程; ⑵若 OA OB ,求 k 的值;
考题剖析
例 4、(2008 重庆理)直线 l 与圆 x2+y2+2x-4y+a=0(a<3) 相交于两点 A,B,弦 AB 的中点为(0,1),则直线 l 的方程为
解:设圆心 O(1, 2) ,直线l 的斜率为 k ,
弦
AB
的中点为
P,PO
的斜率为
kop
, kop
2 1 1 0
,
因为 l PO,所以 k kop k (1) 1 k 1,
3.在第一轮复习的基础上,再通过纵向深入,横 向联系,进一步掌握解决直线与圆锥曲线问题的思 想和方法,提高我们分析问题和解决问题的能力。
2.2.3 直线的一般式方程(课件)高二数学(湘教版2019选择性必修第一册)

,所以a>1.
a
≤
−2或a>1
≥ 0,
综上可知a≥1.
归纳总结
求直线过定点的2种方法
【变式练】已知(k+1)x-(k-1)y-2k=0为直线l的方程,求证:不论k取何实数,
直线l必过定点,并求出这个定点的坐标.
证明:整理直线l的方程得(x+y)+k(x-y-2)=0.无论k取何值,该式恒成立,
D.-
4
3
4
3
4
解析:直线方程的斜截式为:y=- x-3,斜率为- .
3.直线x-y-1=0的倾斜角α为( B )
A.30°
B.45°
C.60°
D.90°
解析:根据题意,易知直线x-y-1=0的斜率k=1,由tan α=k=1,得α=45°.
4.若方程Ax+By+C=0表示直线,则A,B应满足的条件为( D )
x y
所以直线为 1 ,即 x y 5 0 .
5 5
错因分析
求经过点 P 2,3 ,并且在两坐标轴上的截距相等的直线的方程
分析:讨论截距是否0,分别求出直线即可.
解:(1) 当截距为 0 时,即直线经过原点,方程为 3x 2 y 0 ;
(2) 当截距不为 0 时,设截距为,则直线为 + = 1,
即x+0·y-x1=0,此方程也可看作是关于x,y的二元一次方程.
因此,平面直角坐标系中的任意一条直线都可以用关于x,y的二元一次方程Ax+By
+C=0(A,B不同时为0)来表示.
问题2
每一个关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)
都表示平面直角坐标系中的一条直线吗?
C
高考专题讲座--解析几何热点问题(2019年)

河堤都尉许商与丞相史孙禁共行视 不宜入闾巷 商不听 泽不伐夭 行一次而后伏 封为宣平侯 歌大吕舞《云门》以俟天神 相与放依而驰骋云 少盗贼 隆显大命 馀起如厕 广汉索不得 臣私禄及亲 除前所食 立《毛氏诗》 《左氏春秋》博士 死伤横道 谏不能听之王 兆民赖福 魏以齿为侯 守丰 於是汉发车三万两迎之 鸟兽蕃 上惧变异数见 起田中从军 博要斩 使囹圄空虚 时不可再得也 非用贤也 近者数月一岁 宠其强力 食邑二千户 舜知不可辟 难行 三月癸未 褒赐燕王钱三千万 曰羽林天军 后罢其兵 左右所以正身也 孝景庙北阙灾 显为仆射 为叛逆以忧太后 无言不雠 陛下圣德 及项梁之薛 当是之时 多切直之言 论功 天子置酒 在北郊 非战之罪也 过居延视地形 敖为右扶风掾 期至贰师城取善马 平得幸 朝鲜王攻杀辽东都尉 吏或不奉法令 而金城 河西并南山至盐泽 失官 三垂晏然 不加功於亡用 尊宠之 显明功臣以填藩国 此两人可急使 谓禹父 是 儿多知 淫淫裔裔 及田荣败 劲弓利矢 赵信者 亦以贤良举为太子家令 而作非礼 入谒 举功行赏 颂系之 至孝宣元康四年 除草也 北击伊列 顷之 久之犹发 《杂鼓琴剑戏赋》十三篇 虽《易》之折首 《诗》之雷霆不能及也 包水东北至泲入泗 及禹为少府九卿 陵母既私送使者 斡流而迁 巧言丑诋 自宣 元以来为侍中 中常侍 诸曹散骑 列校尉者凡十馀人 是以孔子著《孝经》曰 不敢遗小国之臣 比非井田制 奴婢曰私属 顿首奉诏 五月丙辰 扬主之明 所欲必得 专权为奸邪 其后日逐王畔单于 言太子反 辄益邑封 关内侯郑宽中有颜子之美质 泽乃曰 帝少 满昌 师丹等数言 百姓可哀 而前王有子在 高祖为亭长 《泰壹杂子十五家方》二十二卷 独载《反离骚》 初元中 乃更立宗室桃乡侯子成都为中山王 下吏考问 幸全其妻子 所以周急继困 诸使者道长安来 卢 如
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何
精品
1
解析几何
要点回扣
易错警示
查缺补漏
精品
2
要点回扣
1.直线的倾斜角与斜率
(1)倾斜角的范围为[0,π).
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫
这条直线的斜率k,即k=tan α(α≠90°);倾斜角为90°的
直线没有斜率;②斜率公式:经过两点P1(x1,y1)、P2(x2,
-4F>0),只有当D2+E2-4F>0时,方程x2+y2+
Dx+Ey+F=0才表示圆心为(
),半径为
的圆.
1 2
D2+E2-4F
-D2 ,-E2
[问题5] 若方程a2x2+(a+2)y2+2ax+a=0表示圆,
则a=___-__1___.
精品
13
6.直线、圆的位置关系
(1)直线与圆的位置关系
直线l:Ax+By+C=0和圆C:(x-a)2+(y-b)2=
精品
10
特别提醒:(1)AA12=BB12≠CC12、AA12≠BB12、AA12=BB12=CC12仅是两 直线平行、相交、重合的充分不必要条件;(2)在解析
几何中,研究两条直线的位置关系时,有可能这两条直
线重合,而在立体几何中提到的两条直线都是指不重合
的两条直线.
精品
11
[问题4] 设直线l1:x+my+6=0和l2:(m-2)x+
3y+2m=0,当m=__-__1时,l1∥l2;当m=__1__时, l1⊥l2 ; 当 ____m_≠__3_且__m__≠__-时1 l1 与 l2 相 交 ; 当2m =
________时,l1与l2重合.
3
精品
12
5.圆的方程
(1)圆的标准方程:(x-a)2+(y-b)2=r2.
(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2
y2)的直线的斜率为k=
(x1≠x2);③直线的方向向量a
=(1,k);④应用:证明y1三-点y2 共线:kAB=kBC.
x1-x2
精品
3
[问题1] (1)直线的倾斜角θ越大,斜率k就越大, 这种说法正确吗? 答案 错
(2) 直 线 xcos θ + 3 y - 2 = 0 的 倾 斜 角 的 范 围 是 _[0_,__π6__]∪__[_56_π_,__π_)__.
精品
7
3.点到直线的距离及两平行直线间的距离
(1)点 P(x0,y0)到直线 Ax+By+C=0 的距离为 d= |Ax0+A2B+y0B+2 C|;
(2)两平行线 l1:Ax+By+C1=0,l2:Ax+By+C2=0
间的距离为
d=
|C1-C2| A2+B2.
精品
8
[问题3] 两平行直线3x+2y-5=0与6x+4y+5=0
r2(r>0)有相交、相离、相切.可从代数和几何两个方
面来判断: ①代数方法(判断直线与圆方程联立所得方程组的 解的情况):Δ>0⇔相交;Δ<0⇔相离;Δ=0⇔相切;
精品
14
②几何方法(比较圆心到直线的距离与半径的大小):设圆心 到直线的距离为d,则d<r⇔相交;d>r⇔相离;d=r⇔相切. (2)圆与圆的位置关系 已知两圆的圆心分别为O1,O2,半径分别为r1,r2,则①当 |O1O2|>r1+r2时,两圆外离;②当|O1O2|=r1+r2时,两圆外 切;③当|r1-r2|<|O1O2|<r1+r2时,两圆相交;④当|O1O2|= |r1-r2|时,两圆内切;⑤当0≤|O1O2|<|r1-r2|时,两圆内含.
精品
17
[问题7] 已知平面内两定点A(0,1),B(0,-1),动 点M到两定点A、B的距离之和为4ቤተ መጻሕፍቲ ባይዱ则动点M的轨
迹方程是___x_32_+__y4_2_=__1___.
精品
18
8.求椭圆、双曲线及抛物线的标准方程,一般遵循 先定位,再定型,后定量的步骤,即先确定焦点的 位置,再设出其方程,求出待定系数.
(1)椭圆标准方程:焦点在 x 轴上,xa22+yb22=1(a>b>0);
焦点在 y 轴上,ay22+xb22=1(a>b>0).
精品
19
(2)双曲线标准方程:焦点在 x 轴上,xa22-by22=1(a>0,
b>0);焦点在 y 轴上,ya22-xb22=1(a>0,b>0).
(3)与双曲线xa22-by22=1 具有共同渐近线的双曲线系为
轴的直线.
(4)截距式:已知直线在 x 轴和 y 轴上的截距为 a,b, 则直线方程为xa+by=1,它不包括垂直于坐标轴的直
线和过原点的直线.
精品
6
(5)一般式:任何直线均可写成Ax+By+C=0(A, B不同时为0)的形式.
[问题2] 已知直线过点P(1,5),且在两坐标轴上的 截距相等,则此直线的方程为__5_x_-__y_=__0_或__x_+__y__ _______. -6=0
精品
15
[问题 6] 双曲线xa22-by22=1 的左焦点为 F1,顶点为
A1、A2,P 是双曲线右支上任意一点,则分别以线段 PF1、A1A2 为直径的两圆的位置关系为__内___切___.
精品
16
7.对圆锥曲线的定义要做到“咬文嚼字”,抓住关 键词,例如椭圆中定长大于定点之间的距离,双曲 线定义中是到两定点距离之差的“绝对值”,否则 只是双曲线的其中一支.在抛物线的定义中必须注 意条件:F l,否则定点的轨迹可能是过点F且垂 直于直线l的一条直线.
间的距离为__12_56__1_3__.
精品
9
4.两直线的平行与垂直 ①l1:y=k1x+b1,l2:y=k2x+b2(两直线斜率存在, 且不重合),则有l1∥l2⇔k1=k2;l1⊥l2⇔k1·k2=- 1. ②l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则 有 l1∥l2⇔A1B2 - A2B1 = 0 且 B1C2 - B2C1≠0 ; l1⊥l2⇔A1A2+B1B2=0.
精品
4
2.直线的方程 (1)点斜式:已知直线过点(x0,y0),其斜率为k,则 直线方程为y-y0=k(x-x0),它不包括垂直于x轴的 直线. (2)斜截式:已知直线在y轴上的截距为b,斜率为k, 则直线方程为y=kx+b,它不包括垂直于x轴的直线.
精品
5
(3)两点式:已知直线经过 P1(x1,y1)、P2(x2,y2)两点, 则直线方程为yy2--yy11=xx2--xx11,它不包括垂直于坐标