2017年湖北省孝感市中考数学模拟试卷及解析答案word版(一)

合集下载

湖北省孝感市数学中考一模试卷

湖北省孝感市数学中考一模试卷

湖北省孝感市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017九上·孝南期中) 下列图形是轴对称而不是中心对称图形的是()A . 平行四边形B . 等边三角形C . 菱形D . 正方形2. (2分) (2016七上·道真期末) 计算:(﹣12)+5=()A . 7B . ﹣7C . 17D . ﹣173. (2分)(2017·花都模拟) 若函数y=kx﹣3的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定4. (2分)(2013·宜宾) 对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A . ①②③④B . ①③C . ①②③D . ③④5. (2分) (2017九上·临川月考) 如图是某几何体的三视图,这个几何体是()A . 圆锥B . 长方体C . 圆柱D . 三棱柱6. (2分)某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为()A .B .C .D .7. (2分)若关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,则p、q的值分别是()A . -3,2B . 3,-2C . 2,-3D . 2,38. (2分)(2017·岳麓模拟) 如图,某数学兴趣小组将边长为6的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为()A . 12B . 14C . 16D . 369. (2分) (2015九上·盘锦期末) 将一个半径为5cm的半圆O,如图折叠,使弧AF经过点O,则折痕AF的长度为()A . 5cmB . 5 cmC . 5 cmD . 10 cm10. (2分)(2016·泰安) 如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()A . 1:B . 1:C . 1:2D . 2:3二、填空题 (共6题;共7分)11. (1分) (2017九上·鸡西期末) 黑龙江省今年粮食总产量达到1152亿斤,夺得全国粮食总产第一名,广袤的黑土地正成为保障国家粮食安全的大粮仓,1152亿斤用科学记数法表示为________斤.12. (2分)若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是________.13. (1分)(2020·重庆模拟) 从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则关于x的不等式组有解的概率是________.14. (1分) (2017八上·滕州期末) 某人沿直路行走,设此人离出发地的距离S(千米)与行走时间t(分钟)的函数关系如图,则此人在这段时间内最快的行走速度是________千米/小时.15. (1分) (2019九上·伊通期末) 如图,已知⊙P的半径为2,圆心P在抛物线y= x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为________.16. (1分)(2014·南通) 已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线________.三、解答题 (共9题;共75分)17. (5分)先化简,再求值:÷ ,其中x=2(tan45°-cos30°).18. (2分)如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.19. (5分)甲、乙两公司各为“见义勇为基金会”捐款30 000元,已知乙公司比甲公司人均多捐20元,且甲公司的人数比乙公司的人数多20%.问甲、乙两公司各有多少人?20. (11分)(2019·铁岭模拟) 为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是________人;(2)图2中α是________度,并将图1条形统计图补充完整;________(3)请估算该校九年级学生自主学习时间不少于1.5小时有________人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.21. (10分) (2019八下·北京期中) 平行四边形ABCD在平面直角坐标系中的位置如图所示,其中 A,,反比例函数的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形,请你通过计算说明点在双曲线上.22. (10分)(2017·兰州) 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣ x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求 AM+CM它的最小值.23. (2分)(2017·营口模拟) 某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x﹣h)2+k,二次函数y=a(x﹣h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为﹣16、20.(1)试确定函数关系式y=a(x﹣h)2+k;(2)分别求出前9个月公司累计获得的利润以及10月份一个月内所获得的利润;(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?24. (15分)(2017·天桥模拟) 如图,反比例函数y= (x>0)与一次函数y=kx+6 交于点C(2,4),一次函数图象与两坐标轴分别交于点A和点B,动点P从点A出发,沿AB以每秒1个单位长度的速度向点B 运动;同时,动点Q从点O出发,沿OA以相同的速度向点A运动,运动时间为t秒(0<t≤6),以点P为圆心,PA为半径的⊙P与AB交于点M,与OA交于点N,连接MN、MQ.(1)求m与k的值;(2)当t为何值时,点Q与点N重合;(3)若△MNQ的面积为S,试求S与t的函数关系式.25. (15分) (2016九上·岳池期末) 如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.如果一条直线与果圆只有一个交点,则这条直线叫做果圆的切线.已知A、B、C、D四点为果圆与坐标轴的交点,E为半圆的圆心,抛物线的解析式为y=x2﹣2x﹣3,AC为半圆的直径.(1)分别求出A、B、C、D四点的坐标;(2)求经过点D的果圆的切线DF的解析式;(3)若经过点B的果圆的切线与x轴交于点M,求△OBM的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共75分)17-1、18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。

孝感市2017年初中毕业生学业考试模拟卷数学试题(一)

孝感市2017年初中毕业生学业考试模拟卷数学试题(一)

孝感市2018年初中毕业生学业考试模拟卷数学试题(一)温馨提示:1.答题时,考试务必将自己所在学校、姓名、考号填写在答题卡上指定的位置。

2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效。

3.本试卷满分120分,考试时间120分钟。

一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中只有一项符合题目要求,请将正确的选项填写在题后的括号中) 1.下列实数中最大的数是( )A.3B.0D.4- 2. 下列图形中,是轴对称图形,不是中心对称图形的是( ) A .B .C .D .3.如图 ,BD∥AC,BE 平分∠AB D,交AC 于点E .若∠A=50°,则∠1的度数为( ) A.65° B.60° C.55° D.50°第3题图 第8题图 第9题图 第10题图 4.下列运算正确的是( )A.632a a a ÷=B.326235a a a +=C.()236a a -= D.()222a b a b +=+5. 不等式组⎪⎩⎪⎨⎧≥->+-+231223312x x x 的解集在数轴上表示正确的是( ) A.B.C.D.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.A.1.65,1.70B.1.65,1.75C.1.70,1.75D.1.70,1.70 7.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为)1,1(--A ,)2,1(B .平移线段AB ,得到线段''B A .已知点'A 的坐标为)1,3(-,则点'B 的坐标为( )A.()4,2B.()5,2C.()6,2D.()5,38.如图,△ABC 中,E 是BC 中点,AD 是∠BAC 的平分线,EF∥AD 交AC 于F .若AB=11,AC=15,则FC 的长为( )A.11B.12C.13D.149.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为( )A.2 D.1 10.如图,直线243y x =+与x 轴、y 轴分别交于点A 和点B ,点C 、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PC+PD 值最小时点P 的坐标为( ) A.()3,0-B.()6,0-C.3,02⎛⎫-⎪⎝⎭ D.5,02⎛⎫- ⎪⎝⎭二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分。

2017年湖北孝感市中考数学试卷含答案解析(Word版)

2017年湖北孝感市中考数学试卷含答案解析(Word版)

2017年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1﹣的绝对值是()A﹣3 B3 C D﹣【分析】根据绝对值的意义即可求出答案【解答】解:|﹣|=,故选(C)【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A4个B3个C2个D1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角即其中一个角是另一个角的余角3下列计算正确的是()A b3b3=2b3B=a2﹣4C﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键4一个几何体的三视图如图所示,则这个几何体可能是()A B C D【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查5不等式组的解集在数轴上表示正确的是()A B CD【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示6方程=的解是()A x=B x=5C x=4D x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5故选B【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验7下列说法正确的是()A调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B一组数据85,95,90,95,95,90,90,80,95,90的众数为95C“打开电视,正在播放乒乓球比赛”是必然事件D同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数8如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A(0,﹣2)B(1,﹣) C(2,0) D(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A 顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA 上是解题的关键9如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC 分别交AB,AC于点E,F已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A B CD【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF 的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:B【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键10如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形A2 B3 C4 D5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型二、填空题(本大题共6小题,每小题3分,共18分)11我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数27500用科学记数法表示为275×104【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可【解答】解:27500=275×104故答案为:275×104【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键12如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S 2,则可化简为【分析】首先表示S 1=a2﹣1,S2=(a﹣1)2,再约分化简即可【解答】解:===,故答案为:【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积13如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0)【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0)【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点14如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==故答案为:【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键15已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示∵OA=OC=AC,∴∠OAC=60°∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°故答案为:150°或30°【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键16如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点若点A的坐标为(n,1),则k的值为【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键三、解答题(本大题共8小题,共72分)17计算:﹣22++cos45°【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则18如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB ∥CD【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质19今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表等级得分x(分)频数(人)A95≤x≤1004B90≤x<95mC85≤x<90nD80≤x<8524E75≤x<808F70≤x<754请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80,表中:m=12,n=8;扇形统计图中,E等级对应扇形的圆心角α等于36度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型20如图,已知矩形ABCD(AB<AD)(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键21已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x 1,x2(1)求m的取值范围;(2)若x 1x2满足3x1=|x2|+2,求m的值【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x 1+x2=6①,x1x2=m+4②∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x 1=﹣2,x2=8(不合题意,舍去)∴符合条件的m的值为4【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x 1、x2的值22为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择(1)劲松公司2015年每套A型健身器材的售价为25万元,经过连续两年降价,2017年每套售价为16万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A 型健身器材售价为16万元,每套B型健身器材售价为15(1﹣n)万元①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=16×5%m+15×(1﹣20%)×15%×(80﹣m)=﹣01m+144结合函数图象的性质进行解答即可【解答】解:(1)依题意得:25(1﹣n)2=16,则(1﹣n)2=064,所以1﹣n=±08,所以n 1=02=20%,n2=18(不合题意,舍去)答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:16m+15×(1﹣20%)×(80﹣m)≤112,整理,得16m+96﹣12m≤12,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=16×5%m+15×(1﹣20%)×15%×(80﹣m),∴y=﹣01m+144∵﹣01<0,∴y随m的增大而减小,∴m=40时,y最小01×40+144=104(万元)∵m=40时,y最小值=﹣又∵10万元<104万元,∴该计划支出不能满足养护的需要【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案23如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD(1)由AB ,BD ,围成的曲边三角形的面积是 + ;(2)求证:DE 是⊙O 的切线; (3)求线段DE 的长【分析】(1)连接OD ,由AB 是直径知∠ACB=90°,结合CD 平分∠ACB 知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S 扇形AOD+S △BOD可得答案;(2)由∠AOD=90°,即OD ⊥AB ,根据DE ∥AB 可得OD ⊥DE ,即可得证; (3)勾股定理求得BC=8,作AF ⊥DE 知四边形AODF 是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC 知tan ∠EAF=tan ∠CBA ,即=,求得EF 的长即可得【解答】解:(1)如图,连接OD ,∵AB 是直径,且AB=10, ∴∠ACB=90°,AO=BO=DO=5, ∵CD 平分∠ACB ,∴∠ABD=∠ACD=∠ACB=45°, ∴∠AOD=90°,则曲边三角形的面积是S 扇形AOD +S △BOD =+×5×5=+,故答案为: +;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF=+5=【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键24在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a (x﹣h)+k例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x ﹣1(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为(﹣1,﹣4),伴随直线为y=x﹣3,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为(0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的右侧),与x轴交于点C,D①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴S△PBC∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x 表示出△PBC的面积是解题的关键本题考查知识点较多,综合性较强,难度适中。

湖北省孝感市中考数学一模试卷

湖北省孝感市中考数学一模试卷

湖北省孝感市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共34分)1. (3分)﹣的绝对值是()A . -3B .C . -D . 32. (2分) (2017七下·宁波月考) 如图,已知AB∥DE,∠ABC=70º,∠CDE=140º,则∠BCD的值为()A . 70ºB . 50ºC . 40ºD . 30º3. (3分)要了解某种产品的质量,从中抽取出300个产品进行检验,在这个问题中,300个产品的质量叫做()A . 总体B . 个体C . 样本D . 样本容量4. (2分)如图所示的三视图所对应的几何体是()A .B .C .D .5. (3分)下面是某同学在一次检测中的计算摘录:①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a ;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2;其中正确的个数有()A . 1个B . 2个C . 3个D . 4个6. (3分)如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是().A .B .C .D .7. (3分)观察下列4个命题:其中真命题是()(1 )三角形的外角和是180°;(2 )三角形的三个内角中至少有两个锐角;(3 )如果x2y<0,那么y<0;(4 )直线a、b、c,如果a⊥b、b⊥c,那么a⊥c.A . (1)(2)B . (2)(3)C . (2)(4)D . (3)(4)8. (3分)(2018·清江浦模拟) 某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A . 40B . 42C . 44D . 749. (3分)如果a与-3的和是0,那么a是()A .B .C . -3D . 310. (3分)(2016·长沙模拟) 如图,小山岗的斜坡AC的坡角α=45°,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,小山岗的高AB约为(结果取整数,参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50)()A . 164mB . 178mC . 200mD . 1618m11. (3分)一次函数y=2x-3的图象不经过的象限是().A . 第一象限B . 第二象限C . 第三象限D . 第四象限12. (3分)(2020·莘县模拟) 如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A . πB .C . 3+πD . 8-π二、填空题 (共5题;共14分)13. (3分)(2017·深圳模拟) 分解因式:2x²-8=________。

2017年湖北省孝感市中考数学模拟试卷 附解析及答案

2017年湖北省孝感市中考数学模拟试卷   附解析及答案

2017年湖北省孝感市中考数学模拟试卷一、精心选一选(本大题共10个小题,每小题3分,满分30分)01.一元二次方程x2+x-1=0 的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根02.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.03.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.则下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物04.若反比例函数y=在各自象限内,y随x的增大而减小,则m的取值范围是()A.m<0 B.m>0 C.m<-1 D.m>-105.若圆锥的底面半径为4,母线长为12,则圆锥的侧面展开图的圆心角为()A.60°B.90°C.120°D.216°06.抛物线y=2x2-3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上07.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.208.若从2、3、4、5中任选两个数分别记作a、b,则点(a,b)在函数y=图象上的概率是()A.B.C.D.09.如图,在△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB的中点,FD、FE分别交AC、BC于点D、E.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),以下结论中始终正确的有()①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.A.①②③B.②③④C.①③④D.①②④10.如图,抛物线y=ax2+bx+c与y轴正半轴相交,其顶点坐标为(),下列结论中正确的有()①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.A.1个B.2个C.3个D.4个二、细心填一填(本大题共6个小题,每小题3分,满分18分)11.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为.12.三张完全相同的卡片上分别写有函数y=-2x-3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x的增大而增大的概率是.13.如图,某小区规划在一个长为16m、宽为9m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分的总面积为112m2,求小路的宽度是多少.设小路的宽度为xm,则x满足的方程为.14.如图,将Rt△ABC绕直角顶点C顺时针方向旋转90°得到△A1B1C,连结AA1,若∠AA1B1=15°,则∠B的度数是.15.设函数y=x+5与y=的图象的两个交点的横坐标分别为a、b,则的值是.16.已知抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和点(-2,0)之间,其部分图象如图所示,则以下结论中正确的有(填序号).①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.三、用心做一做(本大题共8个小题,满分72分)17.(6分)解下列方程:⑴2x2-x=1;⑵x2+4x+2=0.18.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-1,1),C(-3,3).将△ABC绕点B顺时针旋转90°后得到△A1BC1.⑴画出△A1BC1,写出点A1、C1的坐标;⑵计算线段BA扫过的面积.19.(8分)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.⑴求袋中黄球的个数;⑵第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.20.(9分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC于点P.⑴作出△ABC的外接圆⊙O;(保留作图痕迹,不写作法)⑵点D在⊙O上吗?说明理由;⑶试说明:AC平分∠BAD.21.(9分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(1,4),B(4,n)两点.⑴求反比例函数的解析式;⑵求一次函数的解析式;⑶确定使PA+PB最小的x轴上的动点P的位置并求出点P的坐标.22.(10分)已知关于x的方程x2-2(m+1)x+m2+5=0有两个不相等的实数根.⑴求m的取值范围;⑵若原方程的两个实数根x1、x2满足x12+x22=|x1|+|x2|+2x1x2,求m的值.23.(10分)如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.⑴试判断DE与⊙O的位置关系,并证明你的结论;⑵若∠E=60°,⊙O的半径为5,求AB的长.24.(12分)如图,抛物线y=-x2+bx+c与直线y=-x+4分别交y轴、x轴于点A、B.⑴求这个抛物线的解析式;⑵设P(x,y)是抛物线在第一象限内的一个动点,过点P作直线PH⊥x轴于点H,交直线AB于点M.①求当x取何值时,PM有最大值?最大值是多少?②当PM取最大值时,以A、P、M、N为顶点恰好可以构造一个平行四边形,求第四个顶点N的坐标.2017年湖北省孝感市中考数学模拟试卷参考答案与试题解析一、精心选一选(本大题共10个小题,每小题3分,满分30分)01.一元二次方程x2+x-1=0 的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】根据根的判别式可以求得一元二次方程x2+x-1=0的根的情况,从而可以解答本题.【解答】∵△=12-4×1×(-1)=5>0,∴一元二次方程x2+x-1=0有两个不相等的实数根,故选A.【点评】本题考查根的判别式,解题的关键是由根的判别式可以判断一元二次方程根的情况.02.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.03.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.则下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.则下列事件是必然事件的是乙抽到一件礼物,故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.04.若反比例函数y=在各自象限内,y随x的增大而减小,则m的取值范围是()A.m<0 B.m>0 C.m<-1 D.m>-1【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】∵反比例函数y=的图象在所在象限内,y随x的增大而减小,∴m+1>0,∴m>-1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.05.若圆锥的底面半径为4,母线长为12,则圆锥的侧面展开图的圆心角为()A.60°B.90°C.120°D.216°【分析】根据弧长=圆锥底面周长=4π,圆心角=弧长×180÷母线长÷π计算.【解答】由题意知:弧长=圆锥底面周长=2×4π=8πcm,扇形的圆心角=弧长×180÷母线长÷π=8π×180÷12π=60°.故选A.【点评】本题考查了圆锥的计算,解题的关键是了解:弧长=圆锥底面周长及弧长与圆心角的关系.06.抛物线y=2x2-3的顶点在()A.第一象限B.第二象限C.x轴上D.y轴上【分析】已知抛物线解析式为顶点式,根据顶点坐标的特点,直接写出顶点坐标,再判断顶点位置.【解答】由y=2x2-3得抛物线的顶点坐标为(0,-3),∴抛物线y=2x2-3的顶点在y轴上,故选D.【点评】主要考查了求抛物线的顶点坐标与对称轴的方法.07.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8 C.2D.2【分析】先根据垂径定理求出AC的长,设⊙O的半径为r,则OC=r-2,由勾股定理即可得出r的值,故可得出AE的长,连接BE,由圆周角定理可知∠ABE=90°,在Rt△BCE中,根据勾股定理即可求出CE的长.【解答】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=4,设⊙O的半径为r,则OC=r-2,∵在Rt△AOC中,AC=4,OC=r-2,∴OA2=AC2+OC2,即r2=42+(r-2)2,解得r=5,∴AE=2r=10,连接BE,∵AE是⊙O的直径,∴∠ABE=90°,∵在Rt△ABE中,AE=10,AB=8,∴BE===6,∵在Rt△BCE中,BE=6,BC=4,∴CE===2.故选:D.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键08.若从2、3、4、5中任选两个数分别记作a、b,则点(a,b)在函数y=图象上的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(a,b)在函数y=图象上的情况,再利用概率公式即可求得答案.【解答】画树状图得∵共有12种等可能的结果,点(a,b)在函数y=图象上的有(3,4),(4,3);∴点(a,b)在函数y=图象上的概率是=.故选D.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.09.如图,在△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB的中点,FD、FE分别交AC、BC于点D、E.当∠DFE在△ABC内绕顶点F旋转时(点D不与A、C重合),以下结论中始终正确的有()①CD=BE;②四边形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四边形CDFE=S△ABC.A.①②③B.②③④C.①③④D.①②④【分析】首先连接CF,由等腰直角三角形的性质可得∠A=∠B=45°,CF⊥AB,∠ACF=∠ACB=45°,AF=BF=CF=AB,证得∠DCF=∠B,∠DFC=∠EFB,然后证得△DCF≌△EBF,由全等三角形的性质证得CD=BE,DF=EF,也可证得S四边形CDFE=S△ABC.【解答】连接CF,∵AC=BC,∠ACB=90°,点F是AB中点,∴∠A=∠B=45°,CF⊥AB,∠ACF=∠ACB=45°,CF=AF=BF=AB,∴∠DCF=∠B=45°,∵∠DFE=90°,∴∠DFC+∠CFE=∠CFE+∠EFB=90°,∴∠DFC=∠EFB,∴△DCF≌△EBF,∴CD=BE,故①正确;∴DF=EF,∴△DFE是等腰直角三角形,故③正确;∴S△DCF=S△BEF,∴S四边形CDFE=S△CDF+S△CEF=S△EBF+S△CEF=S△CBF=S△ABC,故④正确.若EF⊥BC,则四边形CDFE是矩形,∵DF=EF,∴四边形CDFE是正方形,故②错误.∴结论中始终正确的有①③④.故选C.【点评】此题考查了全等三角形的判定与性质,等腰直角三角形的性质,正方形的判定等知识.题目综合性很强,但难度不大,注意数形结合思想的应用.10.如图,抛物线y=ax2+bx+c与y轴正半轴相交,其顶点坐标为(),下列结论中正确的有()①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.A.1个B.2个C.3个D.4个【分析】根据二次函数图象反映出的数量关系,逐一判断正确性.【解答】根据图象知a<0,c>0,∴ac<0,①正确;∵顶点坐标横坐标为,∴=,∴a+b=0,②正确;∵顶点坐标纵坐标为1,∴=1;∴4ac-b2=4a,③正确;当x=1时,y=a+b+c>0,④错误.正确的有3个.故选C.【点评】本题主要考查了二次函数的性质,会根据图象获取所需要的信息.掌握函数性质灵活运用.二、细心填一填(本大题共6个小题,每小题3分,满分18分)11.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为.【分析】根据勾股定理的逆定理推出∠C=90°,连接OE、OQ,根据圆O是三角形ABC的内切圆,得到AE =AF,BQ=BF,∠OEC=∠OQC=90°,OE=OQ,推出正方形OECQ,设OE=CE=CQ=OQ=a,得到方程12-a+5-a=13,求解方程即可.【解答】∵AC2+BC2=25+144=169,AB2=169,∴AC2+BC2=AB2,∴∠C=90°,连接OE、OQ,∵圆O是三角形ABC的内切圆,∴AE=AF,BQ=BF,∠OEC=∠OQC=∠C=90°,OE=OQ,∴四边形OECQ是正方形,∴设OE=CE=CQ=OQ=a,∵AF+BF=13,∴12-a+5-a=13,∴a=2,故答案为:2.【点评】本题主要考查对三角形的内切圆与内心,切线长定理,切线的性质,正方形的性质和判定,勾股定理的逆定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.题型较好,综合性强.12.三张完全相同的卡片上分别写有函数y=-2x-3,y=,y=x2+1,从中随机抽取一张,则所得函数的图象在第一象限内y随x的增大而增大的概率是.【分析】先求出函数的图象在第一象限内y随x的增大而增大的函数的个数,再根据概率公式得出答案.【解答】∵函数y=-2x-3,y=,y=x2+1中,在第一象限内y随x的增大而增大的只有y=x2+1,∴所得函数的图象在第一象限内y随x的增大而增大的概率是;故答案为:.【点评】此题考查了概率公式,掌握一次函数、反比例函数和二次函数的性质是本题的关键,用到的知识点是概率=所求情况数与总情况数之比.13.如图,某小区规划在一个长为16m、宽为9m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分的总面积为112m2,求小路的宽度是多少.设小路的宽度为xm,则x满足的方程为.【分析】设小路的宽度为xm,则草坪的总长度和总宽度应该为16-2x,9-x;根据题意即可得出方程.【解答】设小路的宽度为xm,则草坪的总长度和总宽度分别为16-2x,9-x;根据题意即可得出方程为(16-2x)(9-x)=112,故答案为:(16-2x)(9-x)=112.【点评】本题考查一元二次方程的运用,弄清“草坪的总长度和总宽度”是解题关键.14.如图,将Rt△ABC绕直角顶点C顺时针方向旋转90°得到△A1B1C,连结AA1,若∠AA1B1=15°,则∠B的度数是.【分析】根据旋转的性质可得AC=A1C,然后判断出△ACA1是等腰直角三角形,根据等腰直角三角形的性质得∠CAA1=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A1B1C,然后根据旋转的性质得∠B=∠A1B1C.【解答】∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A1B1C,∴AC=A1C,∴△ACA1是等腰直角三角形,∴∠CAA1=15°,∴∠A1B1C=∠1+∠CAA1=15°+45°=60°,由旋转性质得∠B=∠A1B1C=60°,故答案为60°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.15.设函数y=x+5与y=的图象的两个交点的横坐标分别为a、b,则的值是.【分析】图象的两个交点的横坐标为a、b,则a、b是方程x+5=的解,把方程化成一元二次方程,利用根与系数的关系求解即可.【解答】根据题意得x+5=,则x2+5x-3=0,则a+b=-5,ab=-3,则===.故答案是:.【点评】本题考查了反比例函数与一次函数的交点以及一元二次方程根与系数的关系,理解a、b是方程x+5=的解是关键.16.已知抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和点(-2,0)之间,其部分图象如图所示,则以下结论中正确的有(填序号).①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.【分析】由抛物线与x轴有两个交点得到b2-4ac>0;由抛物线顶点坐标得到抛物线的对称轴为直线x=-1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(-1,2)得a-b+c=2,由抛物线的对称轴为直线x=-=-1得b=2a,所以c-a=2;根据二次函数的最大值问题,当x=-1时,二次函数有最大值为2,即只有x=-1时,ax2+bx+c=2,所以说方程ax2+bx+c-2=0有两个相等的实数根.【解答】∵抛物线与x轴有两个交点,∴b2-4ac>0,①错误;∵顶点为D(-1,2),∴抛物线的对称轴为直线x=-1,∵抛物线与x轴的一个交点A在点(-3,0)和(-2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,②正确;∵抛物线的顶点为D(-1,2),∴a-b+c=2,∵抛物线的对称轴为直线x=-=-1,∴b=2a,∴a-2a+c=2,即c-a=2,③正确;∵当x=-1时,二次函数有最大值为2,即只有x=-1时ax2+bx+c=2,∴方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故答案为②③④.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.三、用心做一做(本大题共8个小题,满分72分)17.(6分)解下列方程:⑴2x2-x=1;⑵x2+4x+2=0.【分析】⑴先把方程化为一般式,然后利用因式分解法解方程;⑵利用求根公式法解方程.【解答】⑴2x2-x-1=0,(2x+1)(x-1)=0,2x+1=0或x-1=0,x1=-,x2=1;⑵△=42-4×2=8,x==-2±,x1=-2+,x2=-2-.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.18.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-1,1),C(-3,3).将△ABC绕点B顺时针旋转90°后得到△A1BC1.⑴画出△A1BC1,写出点A1、C1的坐标;⑵计算线段BA扫过的面积.【分析】⑴利用网格特点和旋转的性质画出点A、C的对应点A1、C1,从而得到△A1BC1;⑵先计算出BA的长,然后根据弧长公式求解.【解答】⑴如图,△A1BC1,A1(-2,6),C1(1,3);⑵∵BA==,∴线段BA扫过的面积==π.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.19.(8分)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.⑴求袋中黄球的个数;⑵第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.【分析】⑴袋中黄球的个数为x个,根据概率公式得到=,然后利用比例性质求出x即可;⑵先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.【解答】⑴设袋中黄球的个数为x个,根据题意得=,解得x=1,∴袋中黄球的个数为1个;⑵画树状图为,共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,∴两次摸出的都是红球的概率==.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.20.(9分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,BD⊥AC于点P.⑴作出△ABC的外接圆⊙O;(保留作图痕迹,不写作法)⑵点D在⊙O上吗?说明理由;⑶试说明:AC平分∠BAD.【分析】⑴作AB和BC的垂直平分线,两垂直平分线相交于点O,以OB为半径作⊙O即可;⑵连结OD,先判断AC是⊙O的直径,而∠ADB=90°,根据直角三角形斜边上的中线性质得OD=AC,即OD=OA,于是根据点与圆的位置关系可判断点D在⊙O上;⑶由于AC是⊙O的直径,BD⊥AC,根据垂径定理得BC=CD,则=,然后根据圆周角定理可得∠BAC=∠DAC.【解答】⑴如图,⊙O为所作;⑵点D在⊙O上.理由如下:连结OD,∵∠ABC=90°,∴AC是⊙O的直径,∵∠ADB=90°,∴OD=AC,即OD=OA,∴点D在⊙O上;⑶∵AC是⊙O的直径,BD⊥AC,∴BC=CD,∴=∴∠BAC=∠DAC,∴AC平分∠BAD.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了三角形的外心.21.(9分)如图,一次函数y=ax+c的图象与反比例函数y=的图象交于A(1,4),B(4,n)两点.⑴求反比例函数的解析式;⑵求一次函数的解析式;⑶确定使PA+PB最小的x轴上的动点P的位置,并求出点P的坐标.【分析】⑴将A代入反比例函数即可求出m的值.⑵将B代入反比例函数即可求出n的值,求出点A的关于x轴的对称点坐标C,然后将BC的解析式求出,令y=0代入AC的解析式即可求出P的坐标.【解答】⑴将A(1,4)代入y=,∴m=4,∴反比例函数的解析式为y=,⑵将B(4,n)代入y=,∴n=1,设C与A关于x轴对称,∴C(1,-4),设直线BC的解析式为y=kx+b,将C(1,-4)和B(4,1)代入y=kx+b,∴解得∴一次函数的解析式为y=x-,令y=0代入y=x-,∴x=,∴P(,0)【点评】本题考查一次函数与反比例函数的综合问题,解题的关键是用代入待定系数求出m、n的值,本题属于中等题型.22.(10分)已知关于x的方程x2-2(m+1)x+m2+5=0有两个不相等的实数根.⑴求m的取值范围;⑵若原方程的两个实数根x1、x2满足x12+x22=|x1|+|x2|+2x1x2,求m的值.【分析】⑴由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围;⑵根据根与系数的关系即可得出x1+x2=2(m+1)、x1•x2=m2+5,结合m的取值范围即可得出x1>0、x2>0,再由x12+x22=|x1|+|x2|+2x1x2即可得出6m-18=0,解之即得m的值.【解答】⑴∵方程x2-2(m+1)x+m2+5=0有两个不相等的实数根,∴△=[-2(m+1)]2-4(m2+5)=8m-16>0,解得m>2.⑵∵原方程的两个实数根为x1、x2,∴x1+x2=2(m+1),x1•x2=m2+5.∵m>2,∴x1+x2=2(m+1)>0,x1•x2=m2+5>0,∴x1>0、x2>0.∵x12+x22=(x1+x2)2-2x1•x2=|x1|+|x2|+2x1•x2,∴4(m+1)2-2(m2+5)=2(m+1)+2(m2+5),即6m-18=0,解得m=3.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:⑴根据方程有两个不相等的实数根找出△=8m-16>0;⑵根据根与系数的关系结合x12+x22=|x1|+|x2|+2x1x2得出6m-18=0.23.(10分)如图,△ABC内接于⊙O,AD平分∠BAC交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.⑴试判断DE与⊙O的位置关系,并证明你的结论;⑵若∠E=60°,⊙O的半径为5,求AB的长.【分析】⑴利用垂径定理的推论结合平行线的性质得出∠EDO=90°,进而得出答案;⑵结合已知利用圆周角定理以及勾股定理得出AB的长.【解答】⑴DE与⊙O相切,理由如下:连接DO并延长到圆上一点N,交BC于点F,∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠DAC,∴=,∴DO⊥BC,∵DE∥BC,∴∠EDO=90°,∴DE与⊙O相切;⑵连接AO并延长到圆上一点M,连接BM,∵BC∥DE,∴∠ACB=∠E=60°,∴∠M=60°,∵⊙O的半径为5,∴AM=10,∴BM=5,则AB==5.【点评】此题主要考查了切线的判定以及勾股定理、垂径定理推论等知识,正确作出辅助线是解题关键.24.(12分)如图,抛物线y=-x2+bx+c与直线y=-x+4分别交y轴、x轴于点A、B.⑴求这个抛物线的解析式;⑵设P(x,y)是抛物线在第一象限内的一个动点,过点P作直线PH⊥x轴于点H,交直线AB于点M.①求当x取何值时,PM有最大值?最大值是多少?②当PM取最大值时,以A、P、M、N为顶点恰好可以构造一个平行四边形,求第四个顶点N的坐标.【分析】⑴由直线解析式可求得A、B的坐标,再利用待定系数法可求得抛物线的解析式;⑵①可利用x表示出点M的坐标,构建二次函数即可解决问题.②画出图形,满足条件的点N有三个.【解答】⑴∵一次函数y=-x+4分别交y轴、x轴于A、B两点,∴A(0,4),B(4,0),把A(0,4),B(4,0)代入y=-x2+bx+c可得,解得,∴抛物线的解析式为y=-x2+x+4.⑵①如图1中,设P(x,-x2+x+4),则M(x,-x+4).∴PM=-x2+m+4-(-x+4)=-x2+2x=-(x-2)2+2,∵-<0,∴x=2时,pM的值最大,最大值为2.②由①可知P(2,4),M(2,2),当以A、P、M、N为顶点的四边形为平行四边形时,N1(0,6),N2(4,2),N3(0,2).【点评】本题考查二次函数综合题、一次函数的性质、平行四边形的判定和性质等知识,解题的关键是学会构建二次函数解决最值问题,注意一题多解,不能漏解.属于中考常考题型.。

2017年湖北省孝感市中考数学试卷

2017年湖北省孝感市中考数学试卷

2017年湖北省孝感市中考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30.0分) 1.-13的绝对值是( ) A.-3 B.3 C.13 D.-132.如图,直线a ∥b ,直线c 与直线a ,b 分别交于点D ,E ,射线DF⊥直线c ,则图中与∠1互余的角有( )A.4个B.3个C.2个D.1个3.下列计算正确的是( )A.b 3•b 3=2b 3B.(a +2)(a -2)=a 2-4C.(ab 2)3=ab 6D.(8a -7b )-(4a -5b )=4a -12b4.一个几何体的三视图如图所示,则这个几何体可能是( ) A. B. C. D.5.不等式组{2x +4>03−x≥0的解集在数轴上表示正确的是( )A. B.C. D.6.方程2x+3=1x−1的解是( )A.x =53B.x =5C.x =4D.x =-57.下列说法正确的是( )A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为128.如图,在平面直角坐标系中,点A 的坐标为(-1,√3),以原点O为中心,将点A 顺时针旋转150°得到点A′,则点A′的坐标为( )A.(0,-2)B.(1,-√3)C.(2,0)D.(√3,-1)9.如图,在△ABC 中,点O 是△ABC 的内心,连接OB ,OC ,过点O作EF∥BC 分别交AB ,AC 于点E ,F .已知△ABC 的周长为8,BC=x ,△AEF 的周长为y ,则表示y 与x 的函数图象大致是( )A. B. C. D.10.如图,六边形ABCDEF 的内角都相等,∠DAB=60°,AB=DE ,则下列结论成立的个数是( )①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 既是中心对称图形,又是轴对称图形.A.2B.3C.4D.5二、填空题(本大题共6小题,共18.0分)11.我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m 3,应节约用水,数27500用科学记数法表示为 ______ .12.如图所示,图1是一个边长为a 的正方形剪去一个边长为1的小正方形,图2是一个边长为(a -1)的正方形,记图1,图2中阴影部分的面积分别为S 1,S 2,则S 1S 2可化简为 ______ . 13.如图,将直线y =-x 沿y 轴向下平移后的直线恰好经过点A (2,-4),且与y 轴交于点B ,在x 轴上存在一点P 使得PA+PB 的值最小,则点P 的坐标为 ______ .14.如图,四边形ABCD 是菱形,AC=24,BD=10,DH⊥AB 于点H ,则线段BH的长为 ______ .15.已知半径为2的⊙O 中,弦AC=2,弦AD=2√2,则∠COD 的度数为 ______ .16.如图,在平面直角坐标系中,OA=AB ,∠OAB=90°,反比例函数y =kx (x >0)的图象经过A ,B 两点.若点A 的坐标为(n ,1),则k 的值为______ .三、解答题(本大题共8小题,共72.0分)17.计算:-22+√−83+√2•cos 45°.18.如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.19.今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95≤x≤1004B90≤x<95mC85≤x<90nD80≤x<8524E75≤x<808F70≤x<754请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为 ______ ,表中:m= ______ ,n= ______ ;扇形统计图中,E等级对应扇形的圆心角α等于 ______ 度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为 ______ .21.已知关于x的一元二次方程x2-6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1•x2满足3x1=|x2|+2,求m的值.22.为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1-n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,A^D围成的曲边三角形的面积是______ ;(2)求证:DE是⊙O的切线;(3)求线段DE的长.24.在平面直角坐标系x O y中,规定:抛物线y=a(x-h)2+k的伴随直线为y=a(x-h)+k.例如:抛物线y=2(x+1)2-3的伴随直线为y=2(x+1)-3,即y=2x-1.(1)在上面规定下,抛物线y=(x+1)2-4的顶点坐标为 ______ ,伴随直线为______ ,抛物线y=(x+1)2-4与其伴随直线的交点坐标为 ______ 和 ______ ;(2)如图,顶点在第一象限的抛物线y=m(x-1)2-4m与其伴随直线相交于点A,B (点A在点B的右侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S 取得最大值27时,求m的值.4(注:可编辑下载,若有不当之处,请指正,谢谢!)。

2017年湖北省孝感市中考数学模拟试卷和解析word版(一)

2017年湖北省孝感市中考数学模拟试卷和解析word版(一)

2017年湖北省孝感市中考数学模拟试卷(一)一、精心选一选,相信自己的判断(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,请将正确的选项填写在题后的括号中)1.(3分)2017的倒数是()A.B.﹣C.2017 D.﹣20172.(3分)某地区轨道交通线于2016年12月1日全线开通,交通线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米B.3.283×104米C.3.283×105米D.3.283×103米3.(3分)下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣24.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.5.(3分)下列说法正确的是()A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D.为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式6.(3分)在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国7.(3分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<08.(3分)如图,▱ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG=cm,则EF的长为()A.2cm B.cm C.1cm D.cm9.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6 B.7 C.8 D.910.(3分)如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,以此类推,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=()A.4πB.3πC.2πD.π二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在相应位置上)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2=.13.(3分)袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是.14.(3分)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.15.(3分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D 为OB的中点,若△ADE的面积为3,则k的值为.16.(3分)小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:(1)a+b+c>0;(2)b+2c<0;(3)2a﹣3b=0;(4)a﹣2b+4c<0;(5)b2﹣4ac>0.你认为其中正确的信息是(只填序号)三、用心做一做,显显自己的能力!(本大题共10小题,满分72分)17.(3分)计算:()﹣1﹣|﹣2|+﹣(+1)0.18.(3分)化简:+.19.(3分)解分式方程:+=3.20.(3分)解不等式组:.21.(8分)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x l﹣2x2)=成立?若存在,求出k的值;若不存在,请说明理由.(2)求使的值为整数的实数k的整数值.22.(10分)成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出“足球”在扇形的圆心角是多少度;(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.23.(10分)(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E 在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=°;②请直接写出点D到PC的距离为.24.(10分)为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x还车数借车数存量y7:00﹣8:00175158:00﹣9:00287n……………根据所给图表信息,解决下列问题:(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.25.(12分)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC 于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若tan∠C=2;①求的值;②若半径r=13,求OF的长.26.(10分)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.2017年湖北省孝感市中考数学模拟试卷(一)参考答案与试题解析一、精心选一选,相信自己的判断(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,请将正确的选项填写在题后的括号中)1.(3分)2017的倒数是()A.B.﹣C.2017 D.﹣2017【解答】解:2017的倒数是.故选:A.2.(3分)某地区轨道交通线于2016年12月1日全线开通,交通线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米B.3.283×104米C.3.283×105米D.3.283×103米【解答】解:将32.83千米用科学记数法表示为3.283×104米.故选B.3.(3分)下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣2【解答】解:A、不是同类项,不能合并,故本选项错误;B、不是同底数幂的除法,不能次数相减,故本选项错误;C、去括号时,括号里的每一项都变号,应为a﹣(a﹣b)=b,故本选项错误;D、(a﹣1)(a+2)=a2+a﹣2,正确.故选D.4.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.5.(3分)下列说法正确的是()A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D.为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式【解答】解:A、根据方差的意义知方差越大越不稳定,故本选项错误;B、随机抽取可能是两男生或两女生,故本选项错误;C、降水概率大下雨的可能性就大,故本选项正确;D、学校范围较大,可以采用抽样调查的方法,故本选项错误;故选:C.6.(3分)在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国【解答】解:正方体的平面展开图,共有六个面,其中面“国”与面“市”相对,面“文”与面“城”相对,“全”与面“明”相对.故选:B.7.(3分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【解答】解:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.8.(3分)如图,▱ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG=cm,则EF的长为()A.2cm B.cm C.1cm D.cm【解答】解:∵在▱ABCD中,∠ADC的平分线DE交BC于点E,∴∠ADE=∠EDC,∠ADE=∠DEC,AB=DC,∴∠CDE=∠CED,∵AB=3cm,AD=6cm,∴DC=EC=3cm,∵CG⊥DE,DG=cm,∴EG=cm,∴DE=3cm,∵AD∥BC,∴△AFD∽△CFE,∴,则,解得:EF=.故选:B.9.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6 B.7 C.8 D.9【解答】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、7作为三角形,则三边长为7、5、7,能构成三角形,此时两个螺丝间的最长距离为7;②选5+4、7、3作为三角形,则三边长为9、7、3,能构成三角形,此时两个螺丝间的最大距离为9;③选5+7、3、4作为三角形,则三边长为12、4、3;4+3<12,不能构成三角形,此种情况不成立;④选7+3、5、4作为三角形,则三边长为10、5、4;而5+4<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为9.故选:D.10.(3分)如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,以此类推,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=()A.4πB.3πC.2πD.π【解答】解:图1,过点O做OE⊥AC,OF⊥BC,垂足为E、F,则∠OEC=∠OFC=90°∵∠C=90°∴四边形OECF为矩形∵OE=OF∴矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD=AE=3﹣r,BD=4﹣r∴3﹣r+4﹣r=5,r==1∴S1=π×12=π=×3×4=×5×CD图2,由S△ABC∴CD= 由勾股定理得:AD==,BD=5﹣=,由(1)得:⊙O的半径==,⊙E的半径==,∴S1+S2=π×()2+π×()2=π.=××=×4×MD图3,由S△CDB∴MD=,由勾股定理得:CM==,MB=4﹣=,由(1)得:⊙O的半径=,:⊙E的半径==,∴⊙F的半径==,∴S1+S2+S3=π×()2+π×()2+π×()2=π…观察规律可知S1+S2+S3+…+S6=π.故选D.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在相应位置上)11.(3分)若二次根式有意义,则x的取值范围是x≥1.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.12.(3分)如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2=28°.【解答】解:∵图中是正五边形.∴∠3=108°.∵太阳光线互相平行,∠1=44°,∴∠2=180°﹣∠1﹣∠3=180°﹣44°﹣108°=28°.故答案为:28°.13.(3分)袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是.【解答】解:∵袋子中装有3个红球、5个黄球、2个白球,一共3+5+2=10个球,∴摸到这个球是红球的概率是3÷10=.故答案为.14.(3分)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为4.【解答】解:∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴S△A1BA=×4×2=4,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=4.故答案为:4.15.(3分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.【解答】解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S=S△ABD+S△ADC+S△ODC,梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.(3分)小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:(1)a+b+c>0;(2)b+2c<0;(3)2a﹣3b=0;(4)a﹣2b+4c<0;(5)b2﹣4ac>0.你认为其中正确的信息是(3)(5)(只填序号)【解答】解:由图象知,当x=1时,y=a+b+c<0,故(1)错误;∵抛物线的对称轴x=﹣=﹣,∴a=b,即2a﹣3b=0,故(3)正确;当x=﹣1时,y=a﹣b+c>0,即b﹣b+c>0,整理,得:b+2c>0,故(2)错误;由图象知,x=﹣时,y=a﹣b+c>0,整理,得:a﹣2b+4c>0,故(4)错误;由函数图象与x轴有两个交点知b2﹣4ac>0,故(5)正确;综上,正确的信息有(3)(5),故答案为:(3)(5).三、用心做一做,显显自己的能力!(本大题共10小题,满分72分)17.(3分)计算:()﹣1﹣|﹣2|+﹣(+1)0.【解答】解:原式=3﹣2+4﹣1=4.18.(3分)化简:+.【解答】解:原式===a19.(3分)解分式方程:+=3.【解答】解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.20.(3分)解不等式组:.【解答】解:,由①得,x>﹣3,由②得,x<5,故此不等式组的解集为:﹣3<x<5.21.(8分)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x l﹣2x2)=成立?若存在,求出k的值;若不存在,请说明理由.(2)求使的值为整数的实数k的整数值.【解答】解:(1)根据题意,得△=(﹣4k)2﹣4×4k(k+1)=﹣16k≥0.解得k≤0.又∵k≠0,∴k<0.由(2x1﹣x2)(x l﹣2x2)=得2(x12+x22)﹣5x1x2=﹣1.5.2(x1+x2)2﹣9x1x2=﹣1.5.2﹣9×=﹣1.518k+18=28k,解得k=1.8.经检验k=1.8是方程2﹣9×=﹣1.5的解.∵k<0,∴不存在实数k.(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5.22.(10分)成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出“足球”在扇形的圆心角是多少度;(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【解答】解:(1)∵C有12人,占24%,∴该班的总人数有:12÷24%=50(人),∴E有:50×10%=5(人),A有50﹣7﹣12﹣9﹣5=17(人),补全频数分布直方图为:(2)“足球”在扇形的圆心角是:360°×=50.4°;(3)画树状图得:∵共有12种等可能的结果,选出的2人恰好1人选修篮球,1人选修足球的有4种情况,∴选出的2人恰好1人选修篮球,1人选修足球的概率为:=.23.(10分)(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为120°;②线段AE、BD之间的数量关系为AE=BD.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E 在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=45°°;②请直接写出点D到PC的距离为.【解答】解:(1)①∵△ABC和△DCE都是等边三角形,∴CE=CD,CA=CB,∠ECA=60°﹣∠ACD,∠DCB=60°﹣∠ACD,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=∠CED+∠CDE=60°+60°=120°,故答案为:120°;②∵△ECA≌△DCB,∴AE=BD,故答案为:AE=BD;(2)∵△ABC和△DCE都是等腰直角三角形,∴∠ECA=90°﹣∠ACD,∠DCB=90°﹣∠ACD,∴∠ECA=∠DCB,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=135°,BD=AE,∴∠AEB=∠AEC﹣∠BEC=135°﹣45°=90°,∵△DCE都是等腰直角三角形,CM为△DCE中DE边上的高,∴CM=MD,∵BM=BD+DM,∴BM=AE+CM;(3)①四边形ABCD为正方形,点P在以AC为直径的半圆上,∴∠APC+∠ADC=90°+90°=180°,∴A,P,C,D四点共圆,∴∠DPC=∠DAC=45°,故答案为:45°;②过点D作DM⊥PC,垂足为M,∵在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,∴AC=2,PC===,∵∠DPC=45°,∴DM=PM,设DM=PM=x,则MC=﹣x,在Rt△DMC中,DM2+MC2=DC2,则x2+(﹣x)2=22,整理得:2x2﹣2x+3=0,解得;x1=,x2=(不合题意舍去),即点D到PC的距离为:.故答案为:.24.(10分)为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.时段x还车数借车数存量y7:00﹣8:00175158:00﹣9:00287n……………根据所给图表信息,解决下列问题:(1)m=13,解释m的实际意义:7:00时自行车的存量;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.【解答】解:(1)m=15+5﹣7=13,m的实际意义:7:00时自行车的存量.故答案为;13;7:00时自行车的存量.(2)由题意可得:n=15+8﹣7=16.设二次函数关系式为y=ax2+bx+c,∵二次函数图象过点(0,13)(1,15)(2,16),∴,∴a=﹣,b=,c=13.∴二次函数关系式为y=﹣x2+x+13.(3)将x=3,x=4代入得:y3=16,y4=15.设还车数为x,则借车数为+2.根据题意得:y4=y3﹣(+2)+x,即15=16﹣(+2)+x解得x=2,则.答:10:00﹣11:00这个时段的借车数为3辆.25.(12分)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若tan∠C=2;①求的值;②若半径r=13,求OF的长.【解答】解:(1)如图1,连接BD,OD,OE.∵AB是直径,∴∠ADB=∠CDB=90°.∵E是BC中点,∴DE=EC=EB.在△ODE和△OBE中,∴△ODE≌△OBE(SSS).∴∠ODE=∠OBE=90°,∴OD⊥DP,∴PD是⊙O的切线.(2)∵OB=BP,∠ODP=90°,∴DB=OB=BP,即DB=OB=OD.∴△ODB是等边三角形.∴∠DOB=60°.∴∠A=30°.又∵∠ABC=90°,∴∠C=60°.∴∠CBD=30°.∴CD=BC,BC=AC,设CD=x,BC=2x,∵AD=6,∴2x=(6+x),∴x=2,∴BC=4.(3)①如图2,连接BD,OE.∵tan∠C=2,∠CDB=90°,∴=2,∴=2.设CD=a,BD=2a,AD=4a,∴AC=5a.∵O是AB中点,E是BC中点,∴EO∥AC,OE=AC=a.∴=,∴==.②根据半径r=13,可得OD=13,∵EO∥AC,∴==,∴OF=OD=5,即OF的长为5.26.(10分)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).。

2017中考真题卷2017年湖北省孝感市中考试卷(带答案)

2017中考真题卷2017年湖北省孝感市中考试卷(带答案)

可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Mg 24 Al 27 S 32 Cl 35.5 Ca 40 Fe 56 Zn 65一、选择题(本题共10小题,每小题给出的A、B、C、D四个选项中只有一个正确答案。

每小题2分,共20分)1.小华同学为母亲过生日,下列庆祝活动中发生了化学变化的是A.编制花环B.榨取果汁C.点燃蜡烛D.切分蛋糕2.下列实验操作正确的是A.检验气密性 B.添加酒精 C.闻气体气味 D.加固体药品3.化学知识有助于我们正确认识、理智选择、科学生活。

下列说法不正确的是A.共享单车为人们绿色出行提供了便利B.常用“加铁酱油”有助于预防缺铁性贫血C.用化学材料刚装修好的房子,会释放出甲醛等物质,不宜立即入住D.钛合金因抗腐蚀性强,被应用于“蛟龙号”潜水器上。

钛合金属于有机合成材料4.下列化学用语,说法正确的是①2N ②Mg2+ ③,④H2 ⑤A.①表示两个氮分子B.②与⑤均表示镁离子C.③表示一氧化碳中碳元素的化合价为+2 D.④表示2个氢原子5.推理是研究和学习化学的重要方法.以下推理正确的是A.若某雨水的pH<7,则该雨水一定呈酸性B.过率可以除去水中不溶性杂质,因此过滤后的水一定是软水C.一氧化碳和二氧化碳的组成元素相同,所以它们的化学性质相同D.可燃物燃烧时温度需要达到着火点,所以温度达到着火点时,可燃物就一定能燃烧6.甲、乙两种固体物质(均不含结晶水)的溶解度曲线如右图所示。

下列说法正确的是A. t1℃时,甲的溶解度大于乙的溶解度B.t2℃时,乙的饱和溶液升温或降温均会析出晶体C.乙溶液从t3℃降温到t1℃,乙溶液中的溶质质量分数会发生改变D. t3℃时,50g水中加入40g的甲物质充分溶解可得到90g甲的饱和溶液7.在一定条件下,甲和乙反应生成丙和丁的微观示意图如下。

下列说法正确的是A.该反应前后分子个数不变 B. 该反应前后元素种类发生了改变C.保持丁物质化学性质的最小微粒为水分子 D. 丙物质由6个原子构成8.下列实验方案不能达到实验目的的是9.下列图像不能正确反映对应变化关系的是A.向等质量的氧化钙、氢氧化钙中分别加入等质量分数的稀盐酸至过量B.向一定质量氯化亚铁和氯化铝的混合溶液中加入镁粉至过量C.向盐酸和氯化钙的混合溶液中逐滴加入纯碱溶液至过量D.向等质量的镁、铝中分别加入等质量分数的稀硫酸至过童10.碳酸锌与碳酸钙其有相似的化学性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年湖北省孝感市中考数学模拟试卷(一)一、精心选一选,相信自己的判断(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,请将正确的选项填写在题后的括号中)1.(3分)2017的倒数是()A.B.﹣C.2017 D.﹣20172.(3分)某地区轨道交通线于2016年12月1日全线开通,交通线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米B.3.283×104米C.3.283×105米D.3.283×103米3.(3分)下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣24.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.5.(3分)下列说法正确的是()A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D.为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式6.(3分)在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<08.(3分)如图,▱ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG=cm,则EF的长为()A.2cm B.cm C.1cm D.cm9.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6 B.7 C.8 D.910.(3分)如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,以此类推,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=()A.4πB.3πC.2πD.π二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在相应位置上)11.(3分)若二次根式有意义,则x的取值范围是.12.(3分)如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2=.13.(3分)袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是.14.(3分)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为.15.(3分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D 为OB的中点,若△ADE的面积为3,则k的值为.16.(3分)小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:(1)a+b+c>0;(2)b+2c<0;(3)2a﹣3b=0;(4)a﹣2b+4c<0;(5)b2﹣4ac>0.你认为其中正确的信息是(只填序号)三、用心做一做,显显自己的能力!(本大题共10小题,满分72分)17.(3分)计算:()﹣1﹣|﹣2|+﹣(+1)0.18.(3分)化简:+.19.(3分)解分式方程:+=3.20.(3分)解不等式组:.21.(8分)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x l﹣2x2)=成立?若存在,求出k的值;若不存在,请说明理由.(2)求使的值为整数的实数k的整数值.22.(10分)成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出“足球”在扇形的圆心角是多少度;(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.23.(10分)(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E 在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=°;②请直接写出点D到PC的距离为.24.(10分)为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.根据所给图表信息,解决下列问题:(1)m=,解释m的实际意义:;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.25.(12分)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC 于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若tan∠C=2;①求的值;②若半径r=13,求OF的长.26.(10分)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.2017年湖北省孝感市中考数学模拟试卷(一)参考答案与试题解析一、精心选一选,相信自己的判断(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,请将正确的选项填写在题后的括号中)1.(3分)2017的倒数是()A.B.﹣C.2017 D.﹣2017【解答】解:2017的倒数是.故选:A.2.(3分)某地区轨道交通线于2016年12月1日全线开通,交通线全长32.83千米,32.83千米用科学记数法表示为()A.3.283×104米B.3.283×104米C.3.283×105米D.3.283×103米【解答】解:将32.83千米用科学记数法表示为3.283×104米.故选B.3.(3分)下列运算正确的是()A.2x+3y=5xy B.a3﹣a2=aC.a﹣(a﹣b)=﹣b D.(a﹣1)(a+2)=a2+a﹣2【解答】解:A、不是同类项,不能合并,故本选项错误;B、不是同底数幂的除法,不能次数相减,故本选项错误;C、去括号时,括号里的每一项都变号,应为a﹣(a﹣b)=b,故本选项错误;D、(a﹣1)(a+2)=a2+a﹣2,正确.故选D.4.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.5.(3分)下列说法正确的是()A.两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定B.某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C.学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D.为了解我是学校“阳光体育”活动开展情况,必须采用普查的方式【解答】解:A、根据方差的意义知方差越大越不稳定,故本选项错误;B、随机抽取可能是两男生或两女生,故本选项错误;C、降水概率大下雨的可能性就大,故本选项正确;D、学校范围较大,可以采用抽样调查的方法,故本选项错误;故选:C.6.(3分)在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A.文B.明C.城D.国【解答】解:正方体的平面展开图,共有六个面,其中面“国”与面“市”相对,面“文”与面“城”相对,“全”与面“明”相对.故选:B.7.(3分)如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n,3),那么一定有()A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0【解答】解:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.8.(3分)如图,▱ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG=cm,则EF的长为()A.2cm B.cm C.1cm D.cm【解答】解:∵在▱ABCD中,∠ADC的平分线DE交BC于点E,∴∠ADE=∠EDC,∠ADE=∠DEC,AB=DC,∴∠CDE=∠CED,∵AB=3cm,AD=6cm,∴DC=EC=3cm,∵CG⊥DE,DG=cm,∴EG=cm,∴DE=3cm,∵AD∥BC,∴△AFD∽△CFE,∴,则,解得:EF=.故选:B.9.(3分)如图,用四个螺丝将四条不可弯曲的木条围成一个木框(形状不限),不计螺丝大小,其中相邻两螺丝的距离依次为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值为()A.6 B.7 C.8 D.9【解答】解:已知4条木棍的四边长为3、4、5、7;①选3+4、5、7作为三角形,则三边长为7、5、7,能构成三角形,此时两个螺丝间的最长距离为7;②选5+4、7、3作为三角形,则三边长为9、7、3,能构成三角形,此时两个螺丝间的最大距离为9;③选5+7、3、4作为三角形,则三边长为12、4、3;4+3<12,不能构成三角形,此种情况不成立;④选7+3、5、4作为三角形,则三边长为10、5、4;而5+4<10,不能构成三角形,此种情况不成立;综上所述,任两螺丝的距离之最大值为9.故选:D.10.(3分)如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,以此类推,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=()A.4πB.3πC.2πD.π【解答】解:图1,过点O做OE⊥AC,OF⊥BC,垂足为E、F,则∠OEC=∠OFC=90°∵∠C=90°∴四边形OECF为矩形∵OE=OF∴矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD=AE=3﹣r,BD=4﹣r∴3﹣r+4﹣r=5,r==1∴S1=π×12=π=×3×4=×5×CD图2,由S△ABC∴CD= 由勾股定理得:AD==,BD=5﹣=,由(1)得:⊙O的半径==,⊙E的半径==,∴S1+S2=π×()2+π×()2=π.=××=×4×MD图3,由S△CDB∴MD=,由勾股定理得:CM==,MB=4﹣=,由(1)得:⊙O的半径=,:⊙E的半径==,∴⊙F的半径==,∴S1+S2+S3=π×()2+π×()2+π×()2=π…观察规律可知S1+S2+S3+…+S6=π.故选D.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在相应位置上)11.(3分)若二次根式有意义,则x的取值范围是x≥1.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.12.(3分)如图,一束平行太阳光照射到正五边形上,若∠1=44°,则∠2=28°.【解答】解:∵图中是正五边形.∴∠3=108°.∵太阳光线互相平行,∠1=44°,∴∠2=180°﹣∠1﹣∠3=180°﹣44°﹣108°=28°.故答案为:28°.13.(3分)袋子中装有3个红球、5个黄球、2个白球,这些球的形状、大小、质地等完全相同,随机地从袋子中摸出一个红球的概率是.【解答】解:∵袋子中装有3个红球、5个黄球、2个白球,一共3+5+2=10个球,∴摸到这个球是红球的概率是3÷10=.故答案为.14.(3分)如图,在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分的面积为4.【解答】解:∵在△ABC中,AB=4,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=4,∴△A1BA是等腰三角形,∠A1BA=30°,∴S△A1BA=×4×2=4,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,S△A1BC1=S△ABC,∴S阴影=S△A1BA=4.故答案为:4.15.(3分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.【解答】解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,=S△ABD+S△ADC+S△ODC,∵S梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.16.(3分)小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:(1)a+b+c>0;(2)b+2c<0;(3)2a﹣3b=0;(4)a﹣2b+4c<0;(5)b2﹣4ac>0.你认为其中正确的信息是(3)(5)(只填序号)【解答】解:由图象知,当x=1时,y=a+b+c<0,故(1)错误;∵抛物线的对称轴x=﹣=﹣,∴a=b,即2a﹣3b=0,故(3)正确;当x=﹣1时,y=a﹣b+c>0,即b﹣b+c>0,整理,得:b+2c>0,故(2)错误;由图象知,x=﹣时,y=a﹣b+c>0,整理,得:a﹣2b+4c>0,故(4)错误;由函数图象与x轴有两个交点知b2﹣4ac>0,故(5)正确;综上,正确的信息有(3)(5),故答案为:(3)(5).三、用心做一做,显显自己的能力!(本大题共10小题,满分72分)17.(3分)计算:()﹣1﹣|﹣2|+﹣(+1)0.【解答】解:原式=3﹣2+4﹣1=4.18.(3分)化简:+.【解答】解:原式===a19.(3分)解分式方程:+=3.【解答】解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.20.(3分)解不等式组:.【解答】解:,由①得,x>﹣3,由②得,x<5,故此不等式组的解集为:﹣3<x<5.21.(8分)已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x l﹣2x2)=成立?若存在,求出k的值;若不存在,请说明理由.(2)求使的值为整数的实数k的整数值.【解答】解:(1)根据题意,得△=(﹣4k)2﹣4×4k(k+1)=﹣16k≥0.解得k≤0.又∵k≠0,∴k<0.由(2x1﹣x2)(x l﹣2x2)=得2(x12+x22)﹣5x1x2=﹣1.5.2(x1+x2)2﹣9x1x2=﹣1.5.2﹣9×=﹣1.518k+18=28k,解得k=1.8.经检验k=1.8是方程2﹣9×=﹣1.5的解.∵k<0,∴不存在实数k.(2)原式=﹣2=﹣2=﹣4=﹣,∴k+1=1或﹣1,或2,或﹣2,或4,或﹣4解得k=0或﹣2,1,﹣3,3,﹣5.∵k<0.∴k=﹣2,﹣3或﹣5.22.(10分)成都市某校在推进新课改的过程中,开设的体育选修课有:A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校王老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)求出该班的总人数,并补全频数分布直方图;(2)求出“足球”在扇形的圆心角是多少度;(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【解答】解:(1)∵C有12人,占24%,∴该班的总人数有:12÷24%=50(人),∴E有:50×10%=5(人),A有50﹣7﹣12﹣9﹣5=17(人),补全频数分布直方图为:(2)“足球”在扇形的圆心角是:360°×=50.4°;(3)画树状图得:∵共有12种等可能的结果,选出的2人恰好1人选修篮球,1人选修足球的有4种情况,∴选出的2人恰好1人选修篮球,1人选修足球的概率为:=.23.(10分)(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为120°;②线段AE、BD之间的数量关系为AE=BD.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E 在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=45°°;②请直接写出点D到PC的距离为.【解答】解:(1)①∵△ABC和△DCE都是等边三角形,∴CE=CD,CA=CB,∠ECA=60°﹣∠ACD,∠DCB=60°﹣∠ACD,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=∠CED+∠CDE=60°+60°=120°,故答案为:120°;②∵△ECA≌△DCB,∴AE=BD,故答案为:AE=BD;(2)∵△ABC和△DCE都是等腰直角三角形,∴∠ECA=90°﹣∠ACD,∠DCB=90°﹣∠ACD,∴∠ECA=∠DCB,在△ECA与△DCB中,,∴△ECA≌△DCB,∴∠AEC=∠BDC=135°,BD=AE,∴∠AEB=∠AEC﹣∠BEC=135°﹣45°=90°,∵△DCE都是等腰直角三角形,CM为△DCE中DE边上的高,∴CM=MD,∵BM=BD+DM,∴BM=AE+CM;(3)①四边形ABCD为正方形,点P在以AC为直径的半圆上,∴∠APC+∠ADC=90°+90°=180°,∴A,P,C,D四点共圆,∴∠DPC=∠DAC=45°,故答案为:45°;②过点D作DM⊥PC,垂足为M,∵在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,∴AC=2,PC===,∵∠DPC=45°,∴DM=PM,设DM=PM=x,则MC=﹣x,在Rt△DMC中,DM2+MC2=DC2,则x2+(﹣x)2=22,整理得:2x2﹣2x+3=0,解得;x1=,x2=(不合题意舍去),即点D到PC的距离为:.故答案为:.24.(10分)为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.根据所给图表信息,解决下列问题:(1)m=13,解释m的实际意义:7:00时自行车的存量;(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.【解答】解:(1)m=15+5﹣7=13,m的实际意义:7:00时自行车的存量.故答案为;13;7:00时自行车的存量.(2)由题意可得:n=15+8﹣7=16.设二次函数关系式为y=ax2+bx+c,∵二次函数图象过点(0,13)(1,15)(2,16),∴,∴a=﹣,b=,c=13.∴二次函数关系式为y=﹣x2+x+13.(3)将x=3,x=4代入得:y3=16,y4=15.设还车数为x,则借车数为+2.根据题意得:y4=y3﹣(+2)+x,即15=16﹣(+2)+x解得x=2,则.答:10:00﹣11:00这个时段的借车数为3辆.25.(12分)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC 于点D,取CB的中点E,DE的延长线与AB的延长线交于点P.(1)求证:PD是⊙O的切线;(2)若OB=BP,AD=6,求BC的长;(3)如图2,连接OD,AE相交于点F,若tan∠C=2;①求的值;②若半径r=13,求OF的长.【解答】解:(1)如图1,连接BD,OD,OE.∵AB是直径,∴∠ADB=∠CDB=90°.∵E是BC中点,∴DE=EC=EB.在△ODE和△OBE中,∴△ODE≌△OBE(SSS).∴∠ODE=∠OBE=90°,∴OD⊥DP,∴PD是⊙O的切线.(2)∵OB=BP,∠ODP=90°,∴DB=OB=BP,即DB=OB=OD.∴△ODB是等边三角形.∴∠DOB=60°.∴∠A=30°.又∵∠ABC=90°,∴∠C=60°.∴∠CBD=30°.∴CD=BC,BC=AC,设CD=x,BC=2x,∵AD=6,∴2x=(6+x),∴x=2,∴BC=4.(3)①如图2,连接BD,OE.∵tan∠C=2,∠CDB=90°,∴=2,∴=2.设CD=a,BD=2a,AD=4a,∴AC=5a.∵O是AB中点,E是BC中点,∴EO∥AC,OE=AC=a.∴=,∴==.②根据半径r=13,可得OD=13,∵EO∥AC,∴==,∴OF=OD=5,即OF的长为5.26.(10分)如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标.【解答】解:(1)∵四边形ABCD是矩形,B(10,8),∴A(10,0),又抛物线经过A、E、O三点,把点的坐标代入抛物线解析式可得,解得,∴抛物线的解析式为y=﹣x2+x;(2)由题意可知:AD=DE,BE=10﹣6=4,AB=8,设AD=x,则ED=x,BD=AB﹣AD=8﹣x,在Rt△BDE中,由勾股定理可知ED2=EB2+BD2,即x2=42+(8﹣x)2,解得x=5,∴AD=5;(3)∵y=﹣x2+x,∴其对称轴为x=5,∵A、O两点关于对称轴对称,∴PA=PO,当P、O、D三点在一条直线上时,PA+PD=PO+PD=OD,此时△PAD的周长最小,如图,连接OD交对称轴于点P,则该点即为满足条件的点P,由(2)可知D点的坐标为(10,5),设直线OD解析式为y=kx,把D点坐标代入可得5=10k,解得k=,∴直线OD解析式为y=x,令x=5,可得y=,∴P点坐标为(5,).赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。

相关文档
最新文档