(word完整版)长春市2020届高三质量监测数学理科(一)

合集下载

长春市2020年度高三质量监测数学理科

长春市2020年度高三质量监测数学理科

长春市 2020 届高三质量监测(一) 理科数学一、选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1. 已知集合{|||2}A x x =≥,2{|30}B x x x =-> ,则A B =IA. ∅B. {|3,x x >或x ≤2}-C. {|3,x x >或0}x <D. {|3,x x >或2}x ≤ 2. 复数252i +i z =的共轭复数z 在复平面上对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知31()3a =,133b =,13log 3c =,则A. a b c <<B. c b a <<C. c a b <<D. b c a << 4. 已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b = A. 3- B. 1 C. 3-或1 D.525. 2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是①公共图书馆业机构数与年份的正相关性较强 ②公共图书馆业机构数平均每年增加 13.743 个③可预测 2019 年公共图书馆业机构数约为 3192 个A. 0B. 1C. 2D. 36. 中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为A. (35)π-B. 51)πC. 51)πD. 52)π7. 已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是 ① ,a b αα⊥⊥,则//a b ② ,αγβγ⊥⊥,则αβ⊥ ③ //,//a b αα,则//a b ④//,//αγβγ,则//αβA. ① ② ③B. ② ③ ④C. ① ③D. ① ④8. 已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b = ,则11S = A. 44 B. 44- C. 88 D. 88-9. 把函数()y f x =图象上所有点的横坐标伸长到原来的2倍,得到2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则()y f x =的解析式为A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=- 10. 已知函数()y f x =是定义在R 上的奇函数,且满足(2)()0f x f x ++=,当[2,0]x ∈-时,2()2f x x x =--,则当[4,6]x ∈时,()y f x =的最小值为A. 8-B. 1-C. 0D. 111. 已知椭圆22143x y +=的右焦点F 是抛物线22(0)y px p =>的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为 A.3 B. 2 C. 3 D. 412. 已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为A. m ≤1B. m <-1C. m >-1D. m ≥1 二、填空题:本题共4小题,每小题5分. 13. 381(2)x x-展开式中常数项为___________.14.边长为2正三角形ABC 中,点P 满足1()3AP AB AC =+u u u r u u u r u u u r,则BP BC ⋅=u u r u u u r _________.15.平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C --大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为________. 16.已知数列{}n a 的前项n 和为n S ,满足112a =-,且1222n n a a n n++=+,则2n S = __________,n a =__________.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考 题,每个试题考生都必须作答. 第 22~23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.(本小题满分 12 分)△ABC 的内角,,A B C 的对边分别为,,a b c ,tan ()a b A a b => . (Ⅰ)求证:△ABC 是直角三角形;(Ⅱ)若10c =,求△ABC 的周长的取值范围. 18. (本小题满分 12 分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AD DC ⊥,22AB AD DC ===,E 为PB 中点.(Ⅰ)求证://CE 平面PAD ;(Ⅱ)若4PA =,求平面CDE 与平面ABCD 所成锐二面角的大小. 19.(本小题满分 12 分)某次数学测验共有 10 道选择题,每道题共有四个选项,且其中只有一个选项是正确 的,评分标准规定:每选对 1 道题得 5 分;不选或选错得 0 分. 某考生每道题都选并能确定其中有 6 道题能选对,其余 4 道题无法确定正确选项,但这 4 道题中有 2 道题能排除两个错误选项,另 2 道只能排除一个错误选项,于是该生做这 4 道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(Ⅰ)求该考生本次测验选择题得 50 分的概率;(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望. 20.(本小题满分 12 分)已知点(1,0),(1,0)M N -若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(3,0)Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程. 21.(本小题满分 12 分)已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x < ,证明:121ex e x +>+. (二)选考题:共 10 分,请考生在 22、23 题中任选一题作答,如果多做则按所做的第一题计分. 22.(本小题满分 10 分)选修 4-4 坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=.(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值. 23. (本小题满分 10 分)选修 4-5 不等式选讲已知函数()|3||1|f x x x =+-- . (Ⅰ)解关于x 的不等式()1f x x +≥ ;(Ⅱ)若函数()f x 的最大值为M ,设0,0a b >>,且(1)(1)a b M ++=,求a b + 的最小值.长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分) 1. B 【解析】{|||2}{|2,2}A x x x x x =≥=-或≤≥,2{|30}{|0,3}B x x x x x x =->=<>或,∴A B =I {|3,x x >或x ≤2}-2. C 【解析】252i +i 2i z ==-+,则z 2i =--,其对应点为(2,1)--,在第三象限3. C 【解析】01,1,0a b c <<><,∴c a b <<4. C 【解析】 由圆心到切线的距离等于半径,得22211=+∴|1|2b +=∴13b b ==-或5. D 【解析】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确;由回归方程,当7x =时,得估计值为3191.9≈3192,故③正确.6. A 【解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则512αβ-=,又2αβπ+=,解得(35)απ=- 7. D 【解析】①正确; ② 错误;③错误;④正确8. A 【解析】 2210661164a a a a =⨯==∴,∴664b a ==,1161144S b ==9. C 【解析】由2sin(0)1ωϕϕ⋅+=π∴=6,由112sin()0212ωπϕω⋅+==∴即2sin(2)6y x π=+,横坐标缩短到原来的12倍,得2sin(4)6y x π=+,即为()f x 解析式.10. B 【解析】由(2)()0f x f x ++=得函数的周期为4,又当[2,0]x ∈-时,2()2f x x x =--,且()f x 是定义在R 上的奇函数∴[0,2]x ∈时,2()2f x x x =-,∴当[4,6]x ∈时,22()(4)(4)2(4)1024f x f x x x x x =-=---=-+此时()f x 的最小值为(5)1f =-.[法2:由周期为4,()f x 在[0,2]上的最小值即为()f x 在[4,6]上的最小值]11. C 【解析】椭圆的右焦点为(1,0),∴12p =∴2p =,||1cos60p AF =-︒,||1cos60pBF =+︒,∴||10.53||10.5AF BF +==-. 12. C 【解析】21()(2)ex f x x -'=-∴()f x 在(1,2)上递减,在(2,)+∞上递增,当2x >时,()0f x >,又(1)1f =-,(2)1f <-,(2)0f =∵(1)1f '=-∴m >-1二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分) 13. 112【解析】由3883(8)1881(2)()2(1)rrr r r r r r r T C x C x x----+=-=-有3(8)0r r --=得6r =∴6866782(1)112T C -=-=14. 2【解析】112(())()()()333BP BC AB AC AB AC AB AC AB AC AB ⋅=+-⋅-=-⋅-u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r221248122233332AC AB AC AB =+-⋅=+-⨯⨯=u u u r u u u r u u u r u u u r15. 20π【解析】取AD,BC 的中点分别为12,O O ,过1O 作面ABD 的垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结12,O E O E ,则12O EO ∠即为二面角A BD C --的平面角,121O E O E ==,连OE ,在Rt △1O OE 中,13OO =,在Rt △1O OA 中,12O A =得5OA =,即球半径为5,所以球面积为20π.16.221n n +,1(1)(1)n n n -++【解析】由1222n n a a n n ++=+得21222(21)2(21)n n a a n n -+=-+-211(21)(21)2121n n n n ==--+-+∴2nS =1113-+1135-+…+112121n n --+1121n =-+. 由111212a =-=-⨯递推得277623a ==⨯,311111234a =-=-⨯,421212045a ==⨯,归纳可得1(1)(1)n n n -++.【法2:】122111111=()()22112n n a a n n n n n n n n ++=-=-+-+++++∴11111()[()]112n n a a n n n n +--=---+++∴11{()}1n a n n --+为首项为1-,公比为1-的等比数列,11111()=(1)=(1)+()=(1)+11(1)n n n n n a a n n n n n n ------+++∴三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10102)4L A π=++,由a b >可知,42A ππ<<2sin()14A π<+<,即2010102L <<+(12分) 18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面.(6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴, 建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-u u u r ,(2,0,2)CE =-u u u r,平面CDE 的法向量为1(1,0,1)n =u r;平面ABCD 的法向量为2(0,0,1)n =u u r;因此1212||2cos ||||2n n n n θ⋅==⋅u r u u r. 即平面CDE 与平面ABCD 所成的锐二面角为4π.(12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=. (4分)(Ⅱ)设直线l 的方程为x ty =与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得22(34)30t y +--=,即12y y+=,122334y y t -=+.AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t==+u =,则1u ≥,上式可化为26633u u u u=++, 当且仅当u =3t =±时等号成立, 因此AOB ∆l 的方程为3x y =±. (12分) 21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识.【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=.则12||||||2PA PB t t ⋅==. (10分) 23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--U .(5分)(Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2.(10分)。

长春普通高中2020届高三质量检测数学文理(一)

长春普通高中2020届高三质量检测数学文理(一)

长春市普通高中2019届高三质量监测(一) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. D3. A4. B5.C6. C7. D8. B9. D 10. D 11. C12. A简答与提示:1. 【命题意图】本题考查复数的运算. 【试题解析】C (13)(3)10i i i -+-=.故选C.2. 【命题意图】本题考查集合运算. 【试题解析】D M N M =U 有N M ⊆.故选D.3. 【命题意图】本题考查三角函数的相关知识.【试题解析】A . 故选A. 4. 【命题意图】本题主要考查函数的性质. 【试题解析】B 由函数是偶函数,排除C ,在(0,)+∞上是减函数,排除A ,D.故 选B.5. 【命题意图】本题考查平面向量的相关知识.【试题解析】C 由题意知2120,cos ,2⋅-=<>=a b b a b .故选C. 6. 【命题意图】本题主要考查等差数列的相关知识.【试题解析】C 9475S S a -=.故选C 7. 【命题意图】本题考查线面成角.【试题解析】D 由题意知成角为6π.故选D. 8. 【命题意图】本题主要考查计数原理的相关知识.【试题解析】B 由题意可分两类,第一类,甲与另一人一同分到A ,有6种;第二类,甲单独在A ,有6种,共12种.故选B.9. 【命题意图】本题主要考查统计相关知识.【试题解析】D 由统计学常识可知,D 选项正确.故选D. 10. 【命题意图】本题主要考查中华传统文化.【试题解析】D 由题可知10k =.故选D. 11. 【命题意图】本题考查双曲线的相关知识.【试题解析】C 由题意可知22222223,13y x y x a a a =-=-,从而渐近线方程为 y =.故选C. 12. 【命题意图】本题是考查导数在研究函数单调性上的应用.【试题解析】A 令()(),()(()())0xxg x e f x g x e f x f x ''==+>,所以()g x 在定义域内单调递增,从而(0)(ln 2)(1)g g g <<,得(0)2(ln 2)(1)f f ef <<,即a b c <<. 故选A. 二、填空题(本大题共4小题,每小题5分,共20分)13.5214.1215. 10 16. 简答与提示:13. 【命题意图】本题考查对数运算.【试题解析】由题意可知值为52. 14. 【命题意图】本题考查椭圆的相关知识.【试题解析】12,1,2a b c e ====. 15. 【命题意图】本题考查等比数列的相关知识.【试题解析】由题意可得263396()()S S S S S -=-,得310S =. 16. 【命题意图】本题考查球的相关知识.【试题解析】由题意可知其2142S =⨯⨯=.三、解答题17. (本小题满分12分)【命题意图】本题考查解三角形的基本方法. 【试题解析】解:(1)由c C a b 21cos +=可得1sin sin cos sin 2B A C C =+,所以1cos ,23A A π== .(2)由(1)及3=⋅得6bc =,所以222222cos 6a b c bc A b c =+-=+-266bc ≥-=,当且仅当=b c 时取等号,所以a.18. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1)连接BD ,由2PA PD ==,E 是AD 的中点,得PE AD ⊥, 由平面⊥PAD 平面ABCD ,可得PE ⊥平面ABCD ,PE BE ⊥,又由于四边形 ABCD 是边长为2的菱形,ο60=∠A ,所以BE AD ⊥,从而⊥BE 平面PAD .(2)以E 为原点,,,EA EB EP 为,,x y z 轴,建立空间直角坐标系,P,(1,0,0),(A B C -,有(1,0,PA PB ==u u u r u u u r,(PC =-u u u r,令平面PAB 的法向量为n r ,由00PA n PB n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r r ,可得一个n =r ,同理可得平面PBC 的一个法向量为(0,1,1)m =u r ,所以平面PAB 与平面PBC所成锐二面角的余弦值为||5||||m n m n ⋅=u r ru r r .19. (本小题满分12分)【命题意图】本小题考查抛物线的相关知识. 【试题解析】答案:(1)设00000(,),(,0),||||,||,Q x y H x QH y OH x ==||2AB p =,从而2200||2||||QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C ,有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设1122(,),(,)M x y N x y ,由OM ON ⊥有12120x x y y +=,有1212(4)(4)0y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =.20. (本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望. 【试题解析】(1)由题意知,X 所有可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X(2200,因此只需考虑 200500n ≤≤. 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=; 若最高气温位于区间[)20,25,则()63002300412002Y n n n =⨯+--=-; 若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.4120020.480020.26400.4EY n n n n =⨯+-⨯+-⨯=-. 当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.40.480020.2160 1.2EY n n n =⨯++-⨯=+.所以n =300时,Y 的数学期望达到最大值,最大值为520元. 21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e x a '=-+,设()()x g x f x e x a '==-+,则()1x g x e '=-, 所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增, 当0x <时()0g x '<,()f x '在(),0-∞上单调递减, 所以()()01f x f a ''≥=+,因为1a >-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増.(4分) (2)由(1)知()f x '在[)1,+∞上单调递増,因为 1a e <-,所以()1 10f e a '=-+<, 所以存在()1,t ∈+∞,使得()0f t '=,即0t e t a -+=,即t a t e =-, 所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増,所以当[)1,x ∈+∞时,()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+.令()()2111,2x h x e x x x =-+>,则()1()0x x x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122t e t t -+<,即当[)1,x ∈+∞时()min 12f x <,故函数()f x 在[)1,+∞上的最小值小于12. (8分)(3)()212x f x e bx ax =-+,()x f x e bx a '=-+由()f x 为R 上的单调函数,可知()f x 一定为单调增函数因此()0x f x e bx a '=-+≥,令()()xg x f x e bx a '==-+,()x g x e b '=-当0b =时,0ab =;当0b <时,()0xg x e b '=->,()y g x =在R 上为增函数 x →-∞时,()g x →-∞与()0g x ≥矛盾当0b >时,()0ln ,()0ln g x x b g x x b ''>⇔><⇔<当ln x b =时,min ()ln 0g x b b b a =-+≥,22ln (0)ab b b b b - >≥令22()ln (0)F x x x x x =->,则()(2ln 1)F x x x '=-()0()00F x x F x x ''>⇔><⇔<<当x =,min ()2e F x =-,ab 的最小值为2e-.(12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】 (1)圆C 的直角坐标方程为222410x y x y +--+=.(2)将直线l 的参数方程代入到圆C 的直角坐标方程中,有24sin 0t t α-=,由32=AB 得sin α=,所以3πα=或23πα=. 23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容. 本小题重点考查化归与转化思想.【试题解析】(1)2221()22a b a b +≥+=.(2)2212133(2()22224a b b a a b a b a b +++=⨯+=++≥+=,12≥+. 长春市普通高中2019届高三质量监测(一)数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. D3. A4. B5.C6. C7. D8. B9. D 10. D 11. C12. A简答与提示:17. 【命题意图】本题考查复数的运算. 【试题解析】C (13)(3)10i i i -+-=.故选C. 18. 【命题意图】本题考查集合运算. 【试题解析】D M N M =U 有N M ⊆.故选D. 19. 【命题意图】本题考查三角函数的相关知识.【试题解析】A . 故选A. 20. 【命题意图】本题主要考查函数的性质. 【试题解析】B 由函数是偶函数,排除C ,在(0,)+∞上是减函数,排除A ,D.故 选B.21. 【命题意图】本题考查平面向量的相关知识.【试题解析】C 由题意知2120,cos ,2⋅-=<>=a b b a b .故选C. 22. 【命题意图】本题主要考查等差数列的相关知识.【试题解析】C 9475S S a -=.故选C 23. 【命题意图】本题考查线面成角.【试题解析】D 由题意知成角为6π.故选D. 24. 【命题意图】本题主要考查计数原理的相关知识.【试题解析】B 由题意可分两类,第一类,甲与另一人一同分到A ,有6种;第二类,甲单独在A ,有6种,共12种.故选B.25. 【命题意图】本题主要考查统计相关知识.【试题解析】D 由统计学常识可知,D 选项正确.故选D. 26. 【命题意图】本题主要考查中华传统文化.【试题解析】D 由题可知10k =.故选D. 27. 【命题意图】本题考查双曲线的相关知识.【试题解析】C 由题意可知22222223,13y x y x a a a =-=-,从而渐近线方程为 y =.故选C. 28. 【命题意图】本题是考查导数在研究函数单调性上的应用.【试题解析】A 令()(),()(()())0xxg x e f x g x e f x f x ''==+>,所以()g x 在定义域内单调递增,从而(0)(ln 2)(1)g g g <<,得(0)2(ln 2)(1)f f ef <<,即a b c <<. 故选A. 二、填空题(本大题共4小题,每小题5分,共20分)13.5214.1215. 10 16. 简答与提示:29. 【命题意图】本题考查对数运算.【试题解析】由题意可知值为52. 30. 【命题意图】本题考查椭圆的相关知识.【试题解析】12,1,2a b c e ====.31. 【命题意图】本题考查等比数列的相关知识.【试题解析】由题意可得263396()()S S S S S -=-,得310S =. 32. 【命题意图】本题考查球的相关知识.【试题解析】由题意可知其21422S =⨯⨯⨯=. 三、解答题24. (本小题满分12分)【命题意图】本题考查解三角形的基本方法. 【试题解析】解:(1)由c C a b 21cos +=可得1sin sin cos sin 2B A C C =+,所以1cos ,23A A π== .(2)由(1)及3=⋅AC AB 得6bc =,所以222222cos 6a b c bc A b c =+-=+-266bc ≥-=,当且仅当=b c 时取等号,所以a.25. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1)连接BD ,由2PA PD ==,E 是AD 的中点,得PE AD ⊥, 由平面⊥PAD 平面ABCD ,可得PE ⊥平面ABCD ,PE BE ⊥,又由于四边形 ABCD 是边长为2的菱形,ο60=∠A ,所以BE AD ⊥,从而⊥BE 平面PAD .(2)以E 为原点,,,EA EB EP 为,,x y z 轴,建立空间直角坐标系,P,(1,0,0),(A B C -,有(1,0,PA PB ==u u u r u u u r,(PC =-u u u r,令平面PAB 的法向量为n r ,由0PA n PB n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur r ,可得一个n =r ,同理可得平面PBC 的一个法向量为(0,1,1)m =u r ,所以平面PAB 与平面PBC所成锐二面角的余弦值为||5||||m n m n ⋅=u r ru r r .26. (本小题满分12分)【命题意图】本小题考查抛物线的相关知识. 【试题解析】答案:(1)设00000(,),(,0),||||,||,Q x y H x QH y OH x ==||2AB p =,从而2200||2||||QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C , 有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设1122(,),(,)M x y N x y ,由OM ON ⊥有12120x x y y +=,有1212(4)(4)0y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =.27. (本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望. 【试题解析】(1)由题意知,X 所有可能取值为200,300,500,由表格数据知()2162000.290P X +===,()363000.490P X ===,()25745000.490P X ++===. 因此X(2200,因此只需考虑 200500n ≤≤. 当300500n ≤≤时,若最高气温不低于25,则642Y n n n =-=; 若最高气温位于区间[)20,25,则()63002300412002Y n n n =⨯+--=-; 若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.4120020.480020.26400.4EY n n n n =⨯+-⨯+-⨯=-.当200300n <≤时,若最高气温不低于20,则642Y n n n =-=;若最高气温低于20,则()6200220048002Y n n n =⨯+--=-; 因此()()20.40.480020.2160 1.2EY n n n =⨯++-⨯=+.所以n =300时,Y 的数学期望达到最大值,最大值为520元. 28. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e x a '=-+,设()()x g x f x e x a '==-+,则()1x g x e '=-, 所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增, 当0x <时()0g x '<,()f x '在(),0-∞上单调递减, 所以()()01f x f a ''≥=+,因为1a >-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増.(4分) (2)由(1)知()f x '在[)1,+∞上单调递増,因为 1a e <-,所以()1 10f e a '=-+<, 所以存在()1,t ∈+∞,使得()0f t '=,即0t e t a -+=,即t a t e =-, 所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増,所以当[)1,x ∈+∞时,()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+.令()()2111,2x h x e x x x =-+>,则()1()0x x x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122t e t t -+<,即当[)1,x ∈+∞时()min 12f x <,故函数()f x 在[)1,+∞上的最小值小于12. (8分)(3)()212x f x e bx ax =-+,()x f x e bx a '=-+由()f x 为R 上的单调函数,可知()f x 一定为单调增函数因此()0x f x e bx a '=-+≥,令()()xg x f x e bx a '==-+,()x g x e b '=-当0b =时,0ab =;当0b <时,()0xg x e b '=->,()y g x =在R 上为增函数 x →-∞时,()g x →-∞与()0g x ≥矛盾当0b >时,()0ln ,()0ln g x x b g x x b ''>⇔><⇔<当ln x b =时,min ()ln 0g x b b b a =-+≥,22ln (0)ab b b b b - >≥令22()ln (0)F x x x x x =->,则()(2ln 1)F x x x '=-()0()00F x x F x x ''>⇔><⇔<<当x =,min ()2e F x =-,ab 的最小值为2e-.(12分)29. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】 (1)圆C 的直角坐标方程为222410x y x y +--+=.(2)将直线l 的参数方程代入到圆C 的直角坐标方程中,有24sin 0t t α-=,由32=AB 得sin 2α=,所以3πα=或23πα=. 30. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容. 本小题重点考查化归与转化思想.【试题解析】(1)2221()22a b a b +≥+=.(2)2212133(2()22224a b b a a b a b a b +++=⨯+=++≥+=,1≥+.长春市2019高三第一次质量检测题【数学文科】2018-9-12长春市普通高中2019届高三质量监测(一)数学(文科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分)1. C2. D3. C4. B5.C6. A7. B8. A9. D 10. D 11. C12. D简答与提示:33. 【命题意图】本题考查复数的运算.【试题解析】C (13)(3)10i i i -+-=.故选C.34. 【命题意图】本题考查集合运算.【试题解析】D M N M =U 有N M ⊆.故选D.35. 【命题意图】本题考查三角函数的相关知识.【试题解析】C 由题意可知函数最大值为故选C.36. 【命题意图】本题主要考查函数的性质.【试题解析】B 由函数是偶函数,排除C ,在(0,)+∞上是减函数,排除A ,D.故选B. 37. 【命题意图】本题考查平面向量的相关知识.【试题解析】C 由题意知2120,cos ,2⋅-=<>=a b b a b .故选C. 38. 【命题意图】本题主要考查等比数列的相关知识.【试题解析】A 由条件可知,所求算式等于13.故选A 39. 【命题意图】本题考查线面成角.【试题解析】B 由题意知成角为3π,余弦值为12.故选B. 40. 【命题意图】本题主要考查解三角形的相关知识. 【试题解析】A 由正弦定理可知1cos ,602A A ==︒.故选A. 41. 【命题意图】本题主要考查统计相关知识.【试题解析】D 由统计学常识可知,D 选项正确.故选D.42. 【命题意图】本题主要考查中华传统文化.【试题解析】D 由题可知10k =.故选D.43. 【命题意图】本题考查双曲线的相关知识.【试题解析】C 由题意可知22222223,13y x y x a a a=-=-,从而渐近线方程为 y =.故选C. 44. 【命题意图】本题是考查函数图象的对称性.【试题解析】D 函数()()g x f x ,的图象关于(2,1)点对称,则()0F x =共有8个零点,其和为16. 故选D.二、填空题(本大题共4小题,每小题5分,共20分) 13. 52 14. 12 15. 21y x =- 16. 13简答与提示:45. 【命题意图】本题考查对数运算.【试题解析】由题意可知值为52. 46. 【命题意图】本题考查椭圆的相关知识.【试题解析】12,1,2a b c e ====. 47. 【命题意图】本题考查导数的几何意义的相关知识.【试题解析】由题意可得1()1,(1)2,(1)1,21f x f f y x x''=+===-.48. 【命题意图】本题考查三棱锥的相关知识.【试题解析】由题意可知其211132233V =⨯⨯⨯=. 三、解答题31. (本小题满分12分)【命题意图】本题考查数列的相关知识.【试题解析】解:(1)由1127,3327a d a d +=+=,解得111,2a d ==-,可得132n a n =-.(2)由(1)2n b n =,111111()4(1)41n n b b n n n n +==-++,所求式等于 1223341111111(1)41n n b b b b b b b b n ++++⋅⋅⋅+=-+. 32. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)连接BD ,由2PA PD ==,E 是AD 的中点,得PE AD ⊥, 由平面⊥PAD 平面ABCD ,可得PE ⊥平面ABCD ,PE BE ⊥,又由于四边形 ABCD 是边长为2的菱形,ο60=∠A ,所以BE AD ⊥,从而⊥BE 平面PAD .(2)在PAB ∆中,2,PAB PA AB PB S ∆====,1111322P ABE V -=⨯=,所以点E 到平面PAB的距离为5. 33. (本小题满分12分)【命题意图】本小题考查抛物线的相关知识.【试题解析】答案:(1)设00000(,),(,0),||||,||,Q x y H x QH y OH x ==||2AB p =,从而2200||2||||QH y px AB OH ===.(2)由条件可知,:4MN y x =-+,联立直线MN 和抛物线C ,有242y x y px=-+⎧⎨=⎩,有2280y py p +-=,设1122(,),(,)M x y N x y ,由OM ON ⊥有12120x x y y +=,有1212(4)(4)0y y y y --+=,由韦达定理可求得2p =,所以抛物线2:4C y x =.34. (本小题满分12分)【命题意图】本题考查离散型随机变量的分布列及数学期望.【试题解析】(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=, 所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. (2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6450-4450=900;若最高气温位于区间 [20,25),则Y =6300+2(450-300)-4450=300;若最高气温低于20,则Y =6200+2(450-200)-4450= -100.所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为0.8.35. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】解:(1)由题可得()x f x e x a '=-+,设()()x g x f x e x a '==-+,则()1x g x e '=-,所以当0x >时()0g x '>,()f x '在()0,+∞上单调递增,当0x <时()0g x '<,()f x '在(),0-∞上单调递减,所以()()01f x f a ''≥=+,因为1a >-,所以10a +>,即()0f x '>,所以函数()f x 在R 上单调递増. (6分)(2)由(1)知()f x '在[)1,+∞上单调递増,因为 1a e <-,所以()1 10f e a '=-+<,所以存在()1,t ∈+∞,使得()0f t '=,即0t e t a -+=,即t a t e =-, 所以函数()f x 在[)1,t 上单调递减,在(),t +∞上单调递増,所以当[)1,x ∈+∞时()()()()222min 1111222t t t t f x f t e t at e t t t e e t t ==-+=-+-=-+, 令()()2111,2x h x e x x x =-+>,则()1()0x x x h e =-<'恒成立,所以函数()h x 在()1,+∞上单调递减,所以()()21111122h x e <-+⨯=,所以()211122t e t t -+<,即当[)1,x ∈+∞时()min 12f x <, 故函数()f x 在[)1,+∞上的最小值小于12. (12分)36. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识.【试题解析】 (1)圆C 的直角坐标方程为222410x y x y +--+=.(2)将直线l 的参数方程代入到圆C 的直角坐标方程中,有24sin 0t t α-=,由32=AB 得sin α=,所以3πα=或23πα=. 37. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到基本不等式等内容. 本小题重点考查化归与转化思想.【试题解析】(1)2221()22a b a b +≥+=.(2)212133()2222a b b a a b a b a b ++=⨯+=++≥+= 12≥+.。

2020届吉林省长春市高三质量监测数学文试题word版含解析

2020届吉林省长春市高三质量监测数学文试题word版含解析

2020届吉林省长春市高三质量监测数学文试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数22cossin33z i ππ=+在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 已知集合{|(2)(3)0}A x x x =+-<,则A N (N 为自然数集)为( )A .(,2)(3,)-∞-+∞ B .(2,3) C .{0,1,2} D .{1,2}3.已知向量(0,1)a =,(2,1)b =-,则|2|a b +=( )A .B .2 D .44. 我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约( ) A .164石 B .178石 C .189石 D .196石5. 命题:“00x ∃>,使002()1xx a ->”,这个命题的否定是( ) A .0x ∀>,使2()1xx a -> B .0x ∀>,使2()1xx a -≤ C .0x ∀≤,使2()1xx a -≤ D .0x ∀≤,使2()1xx a ->6. 按照如图的程序框图执行,若输出结果为31,则M 处条件可以是( ) A .32k > B .16k ≥ C .32k ≥ D .16k <7.已知n S 是等差数列{}n a 的前n 项和,12a =,145a a a +=,若32n S >,则n 的最小值为( ) A .3 B .4 C .5 D .68. 某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的体积是( ) A .342π+B .63π+C .362π+D .3122π+9.已知圆22(1)(1)4x y -+-=上到直线y x b =+的距离等于1的点有且仅有2个,则b 的取值范围是( )A .((0,2)B .(-C .((2,32)-D .((2,32]-10. “龟兔赛跑”是一则经典故事:兔子与乌龟在赛道上赛跑,跑了一段后,兔子领先太多就躺在道边睡着了,当他醒来后看到乌龟已经领先了,因此他用更快的速度去追,结果还是乌龟先到了终点,请根据故事选出符合的路程一时间图象( )11. 双曲线2221y x b-=的左右焦点分别为12,F F ,P 为右支上一点,且1||8PF =,120PF PF ∙=,则双曲线的离心率为( )A .3B .5 C.5412.已知函数222(0)()2(0)x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,函数()|()|1g x f x =-,若2(2)()g a g a ->,则实数a 的取值范围是( )A .(2,1)-B .(,2)(2,)-∞-+∞ C .(2,2)- D .(,2)(1,1)(2,)-∞--+∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.抛物线24y x =的焦点坐标为 .14.函数()f x =的定义域为 .15. 动点(,)P x y 满足20030x y y x y -≥⎧⎪≥⎨⎪+-≥⎩,则2z x y =+的最小值为 .16. 已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知2()cos sin f x x x x =(1)求()f x 的单调增区间;(2)在ABC ∆中,A为锐角且()f A =,D 为BC 中点,3AD =,AB =AC 的长.18. (本小题满分12分)某人种植一种经济作物,根据以往的年产量数据,得到年产量频率分布直方图如图所示,以各区间中点值作为该区间的年产量,得到平均年产量为455kg ,已知当年产量低于350kg 时,单位售价为20元/kg ,若当年产量不低于350kg 而低于550时,单位售价为15元/kg ,当年产量不低于550kg 时,单位售价为10元/kg .(1)求图中,a b 的值;(2)试估计年销售额大于5000元小于6000元的概率?19. (本小题满分12分)已知四棱锥P ABCD -中,底面为矩形,PA ⊥底面ABCD ,1PA BC ==,2AB =,M 为PC 上一点,M 为PC 的中点.(1)在图中作出平面ADM 与PB 的交点N ,并指出点N 所在位置(不要求给出理由); (2)求平面ADM 将四棱锥P ABCD -分成上下两部分的体积比.20. (本小题满分12分)已知函数2()23f x x x =+-,ln ()k xg x x=,且函数()f x 与()g x 的图象在1x =处的切线相同. (1)求k 的值; (2)令|()|(1)()()(1)f x x F x g x x ≤⎧=⎨>⎩,若函数()y F x m =-存在3个零点,求实数m 的取值范围.21. (本小题满分12分)以边长为4的等边三角形ABC 的顶点A 以及BC 边的中点D 为左、右焦点的椭圆过,B C 两点. (1)求该椭圆的标准方程;(2)过点D 且与x 轴不垂直的直线l 交椭圆于,M N 两点,求证直线BM 与CN 的交点在一条直线上.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立坐标系,曲线1C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩(θ为参数). (1)求曲线1C 的直角坐标方程; (2)曲线2C 的极坐标方程为()6R πθρ=∈,求1C 与2C 的公共点的极坐标.23. (本小题满分10分)选修4-5:不等式选讲 已知函数()|1|2|1|f x x x =--+的最大值为k . (1)求k 的值;(2)若,,a b c R ∈,2222a cb k ++=,求()b ac +的最大值.2020届吉林省长春市高三质量监测数学文试题参考答案一、选择题(本大题共12小题,每小题5分,共60分)1. B2. C3. B4. C5. B6. C7. D 8. C9. C10. A 11. B 12. D简答与提示:1. 【命题意图】本题考查复数的实部和虚部运算与复数与平面内点的对应关系.【试题解析】B 题意可知,21cos 32π=-,2sin 32π=,则1z 22=-+,对应的点在第二象限. 故选B.2. 【命题意图】本题考查集合中元素的计算与交集的运算.【试题解析】C 由已知{}|23A x x =-<<,则{}0,1,2AN =,故选C.3. 【命题意图】本题考查平面向量的几何表示中的加、数乘、求模等运算.【试题解析】B 2(2,1)a +b =,故2|a +b |=. 故选B.4. 【命题意图】本题主要抽样中的用样本去估计总体.【试题解析】C 由已知,抽得样本中含谷27粒,占样本的比例为271=2168,则由此估计总体中谷的含量约为11512=1898⨯石. 故选C.5. 【命题意图】本题是对逻辑问题中的特称命题的否定进行考察.【试题解析】B 由已知,命题的否定为0x ∀>,2(1xx a ⋅-≤使),故选B. 6. 【命题意图】本题考查直到型循环结构程序框图运算.【试题解析】C 有已知,1,0k s ==,1,2s s k k =+==,3,4s k ==,7,8s k ==,15,16s k ==,31,32s k ==,符合条件输出,故选C.7. 【命题意图】本题考查等差数列基本量的求取,以及等差数列求和.【试题解析】D 由已知12a =且145a a a +=,可得2d =,因此532S =,即632S >,故选D. 8. 【命题意图】本题主要考查三视图的还原,还涉及体积的求取.【试题解析】C 由题意,此模型为柱体,底面大小等于主视图面积大小,即几何体体积为211(122)322V π=⋅+⨯⨯⨯,故选C.9. 【命题意图】本题主要考查直线与圆的位置关系,点到直线距离等相关知识.【试题解析】C 由已知,圆的半径为2,可知圆心到直线的距离属于(1,3)时,满足只有两个圆上的点到直线l 的距离为1,根据点到直线的距离公式可得13<<,因此(2)(,32)b ∈. 故选C.10. 【命题意图】本题背景基于经典国学故事,考查图像对函数特点的描述.【试题解析】A 由故事内容不难看出,最终由乌龟先到达终点,故选A. 11. 【命题意图】本题考查双曲线的定义及渐近线的相关知识.【试题解析】B 由已知1a =,18PF =,则26PF =.又因为120PF PF ⋅=,则1210F F =,即5c =. 则双曲线离心率为5,故选B.12. 【命题意图】本题是考查分段函数的性质以及函数的图像,本题还涉及到不等式的求解等内容.【试题解析】D 由题可知,()f x 为单调递增的奇函数,则()g x 为偶函数,又2(2)()g a g a ->,因此2|2|||a a ->,即222(2)a a ->,利用换元法解得a 的取值范围是(,2)(1,1)(2,)-∞--+∞. 故选D.二、填空题(本大题共4小题,每小题5分,共20分)13. 1(0,)1614. {|0x x =或1}x ≥ 15. 3简答与提示:13. 【命题意图】本题考查抛物线的概念.【试题解析】已知抛物线24y x =,可化为214x y =,故焦点坐标应为1(0,)16.14. 【命题意图】本题考查函数定义域的求法,即列不等式组合解不等式组.【试题解析】由函数的符号可以确定x 必须满足约束:0(1)0x x x ⎧⎨-⎩≥≥,解得{|0x x =或1}x ≥.15. 【命题意图】本题考查线性可行域的画法及线性目标函数的最值求法.【试题解析】由已知可得,线性可行域如图所示,则线性目标函数在点3,0()取最小值3.16. 【命题意图】本题考查三棱锥的外接球问题,特别涉及到了三棱锥和长方体的外接球之间的关系.【试题解析】由已知,可将三棱锥S ABC -放入正方体中,其长宽高分别为2,则到面ABC 距离最大的点应该在过球心且和面ABC 垂直的直径上,因为正方体的外接球直径和正方体的体对角线长相等,则2r =则到面ABC 距离的最大值为222)333r ==(.三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的化简以及恒等变换公式的应用,还有解三角形的内容,如正弦定理等.【试题解析】(1) 由题可知1()sin 2(1cos 2)222f x x x =-++sin(2)3x π=-, 令222232k x k πππππ--+≤≤,k ∈Z ,即函数()f x 的单调递增区间为5[,]1212k k ππππ-+,k ∈Z . (6分)(2) 由()2f A =,所以sin(2)32A π-=,解得3A π=或2A π=(舍) 又因为D 为BC 中点,以AB 、AC 为邻边作平行四边形ABEC ,因为3AD =,所以6AE =,在△ABE 中,AB =120ABE ∠=.由余弦定理可知2cos ABE ∠=2AC BE ==.(12分)18. (本小题满分12分)【命题意图】本小题主要考查学生对概率知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】解:(1) 由已知,⎩⎨⎧=⨯+⨯+⨯+⨯=+++45515.06001005004.04001003001)0040.0015.0(100b a b a ,即⎩⎨⎧=+=+05.250030045.0)(100b a b a ,有⎩⎨⎧==0035.0001.0b a .(6分)(2) 由(1)结合直方图可知,当年产量大于250kg 而低于300kg ,或年产量大于350kg 而低于400kg ,或年产量大于550kg 而低于600kg 时,其年销售额为大于5000而低于6000元,所以其概率为50(0.0010.0040.0015)0.325⨯++=. (12分)19. (本小题满分12分)【命题意图】本小题以四棱锥为载体,考查学生的空间想象能力、推理论证能力和运算求解能力. 【试题解析】解:(1) N 为PB 中点,截面如图所示.(4分)ABCDPMN(2)因为MN 是PBC ∆的中位线,1BC =,所以1,22MN AN ==,且AN AD ⊥, 所以梯形ADMN 的面积为11(1)2228+⨯=, P 点到截面ADMN 的距离为P 到直线AN 的距离d =所以四棱锥P ADMN -的体积11134V ==, 而四棱锥P ABCD -的体积122133V =⨯⨯=, 所以四棱锥被截下部分体积212153412V V V =-=-=,故上,下两部分体积比1235V V =.(12分) 20. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函数的单调性等,以及函数图像的判定,考查学生解决问题的综合能力. 【试题解析】(1) 已知2()23f x x x =+-()22f x x '=+,则(1)4f '=,又(1)0f =,所以()f x 在1x =处的切线方程为44y x =-,又因为()f x 和()g x 的图像在1x =处的切线相同,2(1ln )()k x g x x -'=所以(1)4g k '==. (4分)当1x >时,4ln ()x F x x =,244ln ()x F x x -'=,可得函数()F x 在x e =处取得极大值4e, 当x →+∞时,图像趋近于x 轴.函数()F x 的大致图像如图所示, 可知函数()y F x m =-存在3个零点时,m 的取值范围是4(,4)e(12分)21. (本小题满分12分)【命题意图】本小题考查椭圆的几何意义以及标准方程,直线和椭圆的位置关系及定值的求法,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1)由题意可知两焦点为(与,且26a =,因此椭圆的方程为22196x y +=. (4分)(2) ① 当MN 不与x 轴重合时,设MN的方程为x my =+B,2)C -联立椭圆与直线MN 2223180x y x my ⎧+-=⎪⎨=⎪⎩消去x可得22(23)120m y ++-=,即12y y +=,1221223y y m -=+ 设11(,)M x y ,22(,)N x y则BM:2y x -=- ① CN:2y x += ② ②-①得4(x =-1221212(2)(2)4(my y my y x m y y +--=1212224(y y x my y +=-2234(1223m x mm +=-+4x =则x =x =.②当MN 与x 轴重合时,即MN 的方程为0x =,即(3,0)M ,(3,0)N -.即BM:2y x -= ① CN:2y x += ② 联立①和②消去y可得x =.综上BM 与CN的交点在直线x =上.(12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到参数方程与平面直角坐标方程的互化、把曲线的参数方程和曲线的极坐标方程联立求交点等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (1) 曲线1C 的普通方程为22(2)1x y -+=(5分) (2) 由已知2:()6C R πθρ=∈,即x y 33=, 因为⎪⎩⎪⎨⎧=+-=1)2(3322y x x y ,有034342=+-x x ,则23,23==y x , 故交点的极坐标为)6,3(π (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查考生的化归与转化思想.【试题解析】 (1) 由于3,(1)()31,(11)3,(1)x x f x x x x x --≥⎧⎪=---<<⎨⎪+≤-⎩,所以max ()(1)2k f x f ==-=. (5分)(2) 由已知22222=++b c a ,有4)()(2222=+++c b b a , 因为ab b a 222≥+(当b a =取等号),bc c b 222≥+(当c b =取等号), 所以)(24)()(2222bc ab c b b a +≥=+++,即2≤+bc ab ,故[]2)(max =+c a b (10分)。

吉林省长春市普通高中2020届高三质量监测(一)理数参考答案

吉林省长春市普通高中2020届高三质量监测(一)理数参考答案

长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分)1. B2. C3. C4. C5. D6. A7. D8. A9. C 10. B 11. C 12. C二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分)13. 112 14. 215. 20π16.221n n +,1(1)(1)nn n -++三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10)4L A π=++,由a b >可知,42A ππ<<sin()14A π<+<,即2010S <<+(12分)18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面.(6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴,建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-,(2,0,2)CE =-,平面CDE 的法向量为1(1,0,1)n =; 平面ABCD 的法向量为2(0,0,1)n =;因此1212||cos ||||n n n n θ⋅==⋅ 即平面CDE 与平面ABCD 所成的锐二面角为4π. (12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=. (4分)(Ⅱ)设直线l 的方程为x ty =-与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得 22(34)30t y +--=,即12y y+=,122334y y t -=+. AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t ==+u =,则1u ≥,上式可化为26633u u u u=++当且仅当u =3t =±因此AOB ∆l 的方程为3x y =±. (12分)21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识. 【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=. 则12||||||2PA PB t t ⋅==. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--. (5分) (Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2. (10分)。

吉林省长春市普通高中2020届高三质量监测理科数学试卷(含答案)

吉林省长春市普通高中2020届高三质量监测理科数学试卷(含答案)

所以 an+1

an
=
3n ,
an
=
(an
− an−1)
+
(an−1
− an−2 )
+ ......+ (a2

a1) +
a1
=
3n −1 2
.
.
(6 分)
(Ⅱ)由(Ⅰ)得: bn = n 3n − n ,
Tn = 1 31 + 2 32 + ...... + n 3n , ①
3Tn = 1 32 + 2 33 + ...... + (n −1) 3n + n 3n+1 , ②
①-②可得
−2Tn
=
31
+
32
+
...... +
3n

n 3n+1
=
3n+1 − 2
3

n
3n+1

则 Tn
=

3n+1 − 3 4
+
n 3n+1 2
=
(2n
−1) 3n+1 4
+
3

Sn
=
(2n
−1) 3n+1 4
+
3

n(n +1) 2
.
20. (本小题满分 12 分)
(12 分)
【参考答案与评分细则】解:(Ⅰ)已知点 P 在椭圆 C :
(4 分)
(Ⅱ)设直线 AP 的方程为: y = k(x + 2) ,则直线 OM 的方程为 y = kx .

2020年吉林省长春市高考数学三模试卷(理科)(附答案详解)

2020年吉林省长春市高考数学三模试卷(理科)(附答案详解)

2020年吉林省长春市高考数学三模试卷(理科)1.已知集合A={x∈Z|x2≤4},B={x|−4<x<2},则A∩B=()A. B={x|−2≤x<2}B. B={x|−4<x≤2}C. {−2,−1,0,1,2}D. {−2,−1,0,1}2.已知复数z=(a+i)(1−2i)(a∈R)的实部为3,其中i为虚数单位,则复数z的虚部为()A. −1B. −iC. 1D. i3.已知向量a⃗=(1,−2),b⃗ =(3,−3),c⃗=(1,t),若向量a⃗与向量b⃗ +c⃗共线,则实数t=()A. 5B. −5C. 1D. −14.已知函数f(x)=cos x2−√3sin x2的图象为C,为了得到关于原点对称的图象,只要把C上所有的点()A. 向左平移π3个单位 B. 向左平移2π3个单位C. 向右平移π3个单位 D. 向右平移2π3个单位5.函数f(x)=x3e−x−e x的图象大致为()A. B.C. D.6.在(x+1x2)5的展开式中,一定含有()A. 常数项B. x项C. x−1项D. x3项7.已知直线m,n和平面α,β,γ,有如下四个命题:①若m⊥α,m//β,则α⊥β;②若m⊥α,m//n,n⊂β,则α⊥β;③若n⊥α,n⊥β,m⊥α,则m⊥β;④若m⊥α,m⊥n,则n//α.其中真命题的个数是()A. 1B. 2C. 3D. 48.风雨桥是侗族最具特色的建筑之一,风雨桥由桥、塔、亭组成,其塔俯视图通常是正方形、正六边形和正八边形.右下图是风雨桥中塔的俯视图.该塔共5层,若B0B1=B1B2=B2B3=B3B4=0.5m,A0B0=8m.这五层正六边形的周长总和为()A. 35mB. 45mC. 210mD. 270m9.已知圆E的圆心在y轴上,且与圆C:x2+y2−2x=0的公共弦所在直线的方程为x−√3y=0,则圆E的方程为()A. x2+(y−√3)2=2B. x2+(y+√3)2=2C. x2+(y−√3)2=3D. x2+(y+√3)2=310.某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如表),如图是将统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是()学段主题第一学段(1−3年级)第二阶段(4−6年级)第三学段(7−9年级)合计数与代数21284998图形几何182587130统计概率381122综合实践34310合计4565150260A. 除了“综合与实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图形与几何”在第三学段增加较多,约是第二学段的3.5倍B. 所有主题中,三个学段的总和“图形与几何”条目数最多,占50%,综合与实践最少,约占4%C. 第一、二学段“数与代数”条目数最多,第三学段“图形与几何”条目数最多D. “数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少,“图形与几何”条目数,百分比都随学段的增长而增长.11.已知数列{a n}的各项均为正数,其前n项和S n满足4S n=a n2+2a n,(n∈N∗),设b n=(−1)n⋅a n a n+1,T n为数列{b n}的前n项和,则T20=()A. 110B. 220C. 440D. 88012.设椭圆的左右焦点为F1,F2,焦距为2c,过点F1的直线与椭圆C交于点P,Q,若|PF2|=2c,且|PF1|=43|QF1|,则椭圆C的离心率为()A. 12B. 34C. 57D. 2313.一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为______14.等差数列{a n}中,a1=1,公差d∈[1,2],且a3+λa9+a15=15,则实数λ的最大值为______.15.若x1,x2是函数f(x)=x2−7x+4lnx的两个极值点,则x1x2=;f(x1)+f(x2)=.16.现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD为正方形,AB=2,侧面△PAD为等边三角形,线段BC的中点为E,若PE=1.则所需球体原材料的最小体积为______.17.笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值x给宣纸确定质量等级,如表所示:x(48,52](44,48]∪(52,56](0,44]∪(56,100]质量等级正牌副牌废品公司在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(Ⅰ)估计该公司生产宣纸的年利润(单位:万元);(Ⅱ)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值x的频率,如表所示:X(x−−2,x−+2](x−−6,x−+6]频率0.68260.9544其中x−为改进工艺前质量标准值x的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.18.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=4ccosB.(Ⅰ)求证:sinBcosC=3sinCcosB;(Ⅱ)求B−C的最大值.19.四棱锥P−ABCD中,ABCD为直角梯形,BC//AD,AD⊥DC,BC=CD=1,AD=2,PA=PD,E为PC中点,平面PAD⊥平面ABCD,F为AD上一点,PA//平面BEF.(Ⅰ)求证:平面BEF⊥平面PAD;(Ⅱ)若PC与底面ABCD所成的角为60°.求二面角E−BF−A的余弦值.20.已知点A(0,1),点B在y轴负半轴上,以AB为边做菱形ABCD,且菱形ABCD对角线的交点在x轴上,设点D的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)过点M(m,0),其中1<m<4,作曲线E的切线,设切点为N,求△AMN面积的取值范围.21.已知函数f(x)=mlnx,g(x)=x−1x(x>0).(Ⅰ)讨论函数F(x)=f(x)−g(x)在(0,+∞)上的单调性;(Ⅱ)是否存在正实数m,使y=f(x)与y=g(x)的图象有唯一一条公切线,若存在,求出m的值,若不存在,请说明理由.22.以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=123+sin2θ(θ∈[0,π2]),直线1的参数方程为{x=2−2√55ty=3+√55t(t为参数).(Ⅰ)求曲线C的参数方程与直线l的普通方程;(Ⅱ)设点P为曲线C上的动点,点M和点N为直线l上的点,且满足△PMN为等边三角形,求△PMN边长的取值范围.23.已知函数f(x)=m−|x−2|,m∈R,g(x)=|x+3|.(Ⅰ)当x∈R时,有f(x)≤g(x),求实数m的取值范围.(Ⅱ)若不等式f(x)≥0的解集为[1,3],正数a,b满足ab−2a−b=3m−1,求a+b 的最小值.答案和解析1.【答案】D【解析】解:集合A={x∈Z|x2≤4}={−2,−1,0,1,2},∴A∩B={−2,−1,0,1},故选:D.先求出集合A,再利用集合交集的运算即可算出结果.本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.2.【答案】A【解析】解:因为复数z=(a+i)(1−2i)=(a+2)+(1−2a)i;∴a+2=3⇒a=1;∴z的虚部为:1−2a=−1.故选:A.利用复数的运算法则、实部与虚部的定义即可得出.本题考查了复数的运算法则、实部与虚部的定义,考查了推理能力与计算能力,属于基础题.3.【答案】B【解析】【分析】因为向量a⃗与向量b⃗ +c⃗共线,即两向量平行,根据两向量平行的坐标表示求解即可.本题主要考查平面向量共线的坐标表示,属于基础题.【解答】解:由题,a⃗=(1,−2),b⃗ =(3,−3),c⃗=(1,t),∴b⃗ +c⃗=(4,t−3),∵向量a⃗与向量b⃗ +c⃗共线,即a⃗//(b⃗ +c⃗ ),则1×(t−3)=−2×4,解得t=−5.故选:B.4.【答案】A【解析】解:函数f(x)=cos x2−√3sin x2=2cos(x2+π3)的图象为C,为了得到关于原点对称的图象,只要把C上所有的点向左平移π3个单位,可得y=2cos(x2+π6+π3)=sin x2的图象,显然,y=sin x2的图象关于原点对称,故选:A.由题意利用函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,得出结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象的对称性,属于基础题.5.【答案】B【解析】解:函数的定义域为{x|x≠0},f(−x)=(−x)3e x−e−x =x3e−x−e x=f(x),即函数f(x)为偶函数,其图象关于y轴对称,可排除CD;又f(1)=1e−1−e<0,可排除A;故选:B.先判断函数f(x)的奇偶性,可排除选项CD,再由f(1)<0,可排除选项A,进而得出正确选项.本题考查利用函数性质确定函数图象,考查数形结合思想,属于基础题.6.【答案】C【解析】解:在(x+1x2)5的展开式中,通项公式为T r+1=C5r⋅x5−3r,r=0,1,2,3,4,5,故5−3r不会等于0,不会等于1,不会等于3,故排除A、B、D,令5−3r=−1,可得r=2,故它的展开式中一定含有x−1项,故选:C.)5的通项公式,得出结论.由题意根据(x+1x2本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.7.【答案】C【解析】【分析】本题考查的知识要点:线面垂直的判定和性质的应用,线面平行的判定和性质的应用,主要考查学生的运算能力和转换能力及空间思维能力,属于基础题型.直接利用线面垂直的判定和性质的应用,线面平行的判定和性质的应用求出正确的结果.【解答】解:已知直线m,n和平面α,β,γ,有如下四个命题:①若m⊥α,m//β,则在β内,作n//m,所以n⊥α,由于n⊂α,则α⊥β,故正确;②若m⊥α,m//n,所以n⊥α,由于n⊂β,则α⊥β;故正确.③若n⊥α,n⊥β,所以α//β,由于m⊥α,则m⊥β;故正确.④若m⊥α,m⊥n,则n//α也可能n⊂α内,故错误.故选:C.8.【答案】C【解析】解:B0B1=B1B2=B2B3=B3B4=0.5m,A0B0=8m.利用等边三角形的性质可得:B1A1=7.5,B2A2=7,B3A3=6.5,B4A4=6.这五层正六边形的周长总和=6×(8+7.5+7+6.5+6)=210m.故选:C.利用正六边形与等边三角形的性质即可得出.本题考查了正六边形与等边三角形的性质、等差数列的通项公式求和公式,考查了推理能力与计算能力,属于基础题.9.【答案】C【解析】解:∵圆E的圆心在y轴上,∴设圆心E的坐标为(0,b),设半径为r,则圆E的方程为:x2+(y−b)2=r2,即x2+y2−2by+b2−r2=0,又∵圆C的方程为:x2+y2−2x=0,两圆方程相加得公共弦所在直线的方程为:x−by+b2−r22=0,又∵公共弦所在直线的方程为x−√3y=0,∴{b=√3b2−r22=0,解得{b=√3r=√3,∴圆E的方程为:x2+(y−√3)2=3,故选:C.设圆心E的坐标为(0,b),设半径为r,则圆E的方程为:x2+(y−b)2=r2,两圆方程相加得公共弦所在直线的方程为:x−by+b2−r22=0,又公共弦所在直线的方程为x−√3y=0,从而求出b,r的值,得到圆E的方程.本题主要考查了圆的方程,以及两圆的公共弦所在直线的方程,是中档题.10.【答案】D【解析】解:由图可知图形与几何第一、二学段百分比依次为40%,38.5%,可知降低了,则D错,故选:D.根据表格和条形图分别判断选项,可判断.本题考查对表格,条形图的数据提取能力,属于基础题.11.【答案】D【解析】解:由题意,当n=1时,4a1=4S1=a12+2a1,整理,得a12−2a1=0,解得a1=0,或a1=2,∵a n>0,n∈N∗,∴a1=2,当n≥2时,由4S n=a n2+2a n,可得:4S n−1=a n−12+2a n−1,两式相减,可得4a n=a n2+2a n−a n−12−2a n−1,整理,得(a n+a n−1)(a n−a n−1−2)=0,∵a n +a n−1>0,∴a n −a n−1−2=0,即a n −a n−1=2, ∴数列{a n }是以2为首项,2为公差的等差数列, ∴a n =2+2(n −1)=2n ,n ∈N ∗, ∴b n =(−1)n ⋅a n a n+1=(−1)n ⋅4n(n +1), 则T 20=b 1+b 2+b 3+b 4+⋯+b 19+b 20=−4×1×2+4×2×3−4×3×4+4×4×5−⋯−4×19×20+4×20×21 =(−4×1×2+4×2×3)+(−4×3×4+4×4×5)+⋯+(−4×19×20+4×20×21)=4×2×(3−1)+4×4×(5−3)+⋯+4×20×(21−19) =4×2×2+4×4×2+⋯+4×20×2 =16×(1+2+⋯+10) =16×55 =880. 故选:D .本题先根据公式a n ={S 1,n =1S n −S n−1,n ≥2并结合题干进行计算可判别出数列{a n }是以2为首项,2为公差的等差数列,即可计算出数列{a n }的通项公式,进一步计算出数列{b n }的通项公式,然后运用分组求和可计算出T 20的值.本题主要考查数列求通项公式,以及运用分组求和求前n 项和问题.考查了转化与化归思想,分类讨论法,逻辑推理能力和数学运算能力.本题属中档题.12.【答案】C【解析】解:不妨设椭圆的焦点在x 轴上,如图所示, ∵|PF 2|=2c ,则|PF 1|=2a −2c . ∵|PF 1|=43|QF 1|,∴|QF 1|=34(2a −2c)=32(a −c), 则|QF 2|=2a −32(a −c)⋅a 2+32, 在等腰△PF 1F 2中,可得cos∠PF 1F 2=12|PF 1||F 1F 2|a−c2c.在△QF 1F 2中,由余弦定理可得cos∠QF 1F 2=94(a−c)2+4c 2−14(a+3c)22×2c×32(a−c),由cos∠PF1F2+cos∠QF1F2=0,得a−c2c +94(a−c)2+4c2−14(a+3c)22×2c×32(a−c)=0,整理得:5a−7c6c=0,∴5a=7c,∴e=ca =57.故选:C.由题意画出图形,由|PF2|=2c,|PF1|=43|QF1|,利用椭圆的定义可得:|PF1|=2a−2c,进一步求出|QF1|,|QF2|,在等腰△PF1F2中,求得得cos∠PF1F2.在△QF1F2中,由余弦定理可得cos∠QF1F2,利用cos∠PF1F2+cos∠QF1F2=0,化简求得5a=7c,则答案可求.本题考查椭圆的简单性质,考查三角形中余弦定理的应用,考查了推理能力与计算能力,属于中档题.13.【答案】0.88【解析】解:一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,至少有一个公司不需要维护的概率为:P=1−0.4×0.3=0.88.故答案为:0.88.利用相互独立事件概率计算公式和对立事件概率计算公式直接求解.本题考查概率的求法,考查相互独立事件概率计算公式和对立事件概率计算公式等基础知识,考查运算求解能力,是基础题.14.【答案】−13【解析】解:∵a3+λa9+a15=15=(2+λ)a9=(2+λ)(1+8d),∴λ=151+8d−2,又∵公差d∈[1,2],∴λmax=151+8−2=−13.故填:−13.由a 3+λa 9+a 15=15得出λ与d 之间的关系式,然后求λ的最大值.本题主要考查等差数列的性质和通项公式及衍生出的最值问题,属于基础题.15.【答案】24ln2−654【解析】 【分析】本题主要考查了利用导数研究函数的极值,是中档题.先求出导函数f′(x),由题意可得x 1,x 2是方程2x 2−7x +4=0 的两个根,可得x 1+x 2=72,x 1x 2=2,代入f(x 1)+f(x 2)即可求得结果.【解答】解:∵函数f(x)=x 2−7x +4lnx ,x ∈(0,+∞), ∴f′(x)=2x −7+4x =2x 2−7x+4x,令f′(x)=0得:2x 2−7x +4=0, ∴x 1,x 2是方程2x 2−7x +4=0 的两个根, ∴x 1+x 2=72,x 1x 2=2,∴f(x 1)+f(x 2)=x 12−7x 1+4lnx 1+x 22−7x 2+4lnx 2=(x 1+x 2)2−2x 1x 2−7(x 1+x 2)+4ln(x 1 x 2) =(72)2−2×2−7×72+4ln2=4ln2−654,故答案为:2,4ln2−654.16.【答案】28√2127π【解析】解:所需原材料体积最小的球体即为四棱锥P −ABCD 的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,∵△PAD为边长为2的等边三角形,∴PF=√3,又PE=1,EF=2,∴∠PEF=60°∵PE=EB=EC=1,∴E是△PBC的外心,过E作面PBC的垂线与过G与面ABCD的垂线交于O,则O为四棱锥P−ABCD外接球的球心.∵∠OEG=∠OEP−∠FEP=90°−60°=30°,又GE=2,∴在直角三角形OGE中求出OG=√33,又直角△OAG中,AG=√2,∴OA=√213,即球半径R=√213,∴V球=43πR3=28√2127π.故答案为:28√2127π首先判断原材料体积最小的球体即为四棱锥P−ABCD的外接球,∵E是直角△PBC的外心,∴过E作面PBC的垂线与过正方形ABCD的中心G与面ABCD的垂线交于O,则O为四棱锥P−ABCD外接球的球心.再利用题中所给长度大小关系,可求球半径,求球体积.本题考查四棱锥的外接球问题,通过找球心,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.17.【答案】解:(Ⅰ)由频率分布直方图得:一刀(100张)宣纸中有正牌宣纸100×0.1×4=40张,有副牌宣纸100×0.05×4×2=40张,有废品100×0.025×4×2=20张,∴该公司一刀宣纸的利润为:40×10+40×5+20×(−10)=400元,∴估计该公司生产宣纸的年利润为:400万元.(Ⅱ)由频率分布直方图得:x−=4×(42×0.025+46×0.05+50×0.1+54×0.05+58×0.025)=50,这种机器生产的宣纸质量指标x的频率如下表所示:则一刀(100张)宣纸中正牌的张数约为100×0.6826=68.26张,副牌的张数约为100×(0.9544−0.6826)=27.18张,废品的张数约为100×(1−0.9544)=4.56张,估计一刀宣纸(100张)的利润为:68.26×(10−2)+27.18×(5−2)+4.56×(−10)=582.02元.∴改进工艺后生产宣纸的利润为582.02−100=482.02元,∴482.2>400,∴该公司应生产这种设备.【解析】(Ⅰ)由频率分布直方图求出一刀(100张)宣纸中有正牌宣纸40张,有副牌宣纸40张,有废品20张,由此能求出该公司一刀宣纸的利润为400元,由此能求出估计该公司生产宣纸的年利润.(Ⅱ)由频率分布直方图得x−=4×(42×0.025+46×0.05+50×0.1+54×0.05+58×0.025)=50,求出这种机器生产的宣纸质量指标x的频率,则一刀(100张)宣纸中正牌的张数约为100×0.6826=68.26张,副牌的张数约为100×(0.9544−0.6826)= 27.18张,废品的张数约为100×(1−0.9544)=4.56张,估计一刀宣纸(100张)的利润为582.02元.从而改进工艺后生产宣纸的利润为582.02−100=482.02元,由此该公司应生产这种设备.本题考查利润的求法及应用,考查平均数、频率分布直方图的性质等基础知识,考查数据分析能力、运算求解能力,是基础题.18.【答案】证明:(Ⅰ)a=4ccosB,∴sinA=4sinCcosB,∴sin(B+C)=4sinCcosB,∴sinBcosC+sinCcosB=4sinCcosB,∴sinBcosC=3sinCcosB;解:(Ⅱ)由(Ⅰ)可知sinBcosC=3sinCcosB,则tanB=3tanC,∴tan(B−C)=tanB−tanC1+tanBtanC =3tanC−tanC1+3tan2C=2tanC1+3tan2C=21tanC+3tanC≤2√1tanC⋅3tanC=√33,当且仅当1tanC =3tanC,即tanC=√33时取等号,∴B−C≤π6,即B−C的最大值为π6.【解析】(Ⅰ利用正弦定理将边化为角即可证明,(Ⅱ)由(Ⅰ)化简得出tanB和tanC的关系,再代入两角差的正切公式,利用基本不等式求出最大值.本题考查了三角函数的恒等变换和正弦定理的应用问题,属于中档题.19.【答案】(Ⅰ)证明:连接AC 交BE 与G ,连接EG ,∵PA//平面BEF ,PA ⊂平面PAC ,平面PAC ∩平面BEF =EG ,∴PA//EG ,又E 为PC 的中点,∴G 为AC 的中点,则△AFG≌△BCG , 得AF =BC =12AD =1. ∴F 为AD 的中点,∵BC//FD ,且BC =FD ,∴四边形DCBF 为平行四边形,∵AD ⊥DC ,∴BF ⊥AD ,又BF ⊂平面ABCD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , ∴BF ⊥平面PAD ,又BF ⊂平面BEF , ∴平面BEF ⊥平面PAD ;(Ⅱ)解:连接PF ,∵PA =PD ,F 为AD 的中点,∴PF ⊥AD ,又PF ⊂平面PAD ,平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD , ∴PF ⊥底面ABCD ,又BF ⊥AD ,以F 为坐标原点,分别以FA ,FB ,FP 所在直线为x ,y ,z 轴建立空间直角坐标系, 设P(0,0,t),C(−1,1,0),取平面ABCD 的法向量n 1⃗⃗⃗⃗ =(0,0,1),PC ⃗⃗⃗⃗⃗ =(−1,1,−t),B(0,1,0), ∴sin60°=|n 1⃗⃗⃗⃗⃗ ⋅PC⃗⃗⃗⃗⃗ |n1⃗⃗⃗⃗⃗ |⋅|PC⃗⃗⃗⃗⃗ |,即t√t 2+2=√32,解得t =√6.设平面EBF 的法向量为n 2⃗⃗⃗⃗ =(x,y,z), 由{n 2⃗⃗⃗⃗ ⋅FE ⃗⃗⃗⃗⃗ =−12x +12y +√62z =0n 2⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ =y =0,令z =1,得n 2⃗⃗⃗⃗ =(√6,0,1).设二面角E −BF −A 的平面角为θ,则|cosθ|=|n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ||n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√77, 又θ为钝角,∴cosθ=−√77.即二面角E −BF −A 的余弦值为−√77.【解析】(Ⅰ)连接AC 交BE 与G ,连接EG ,由已知结合线面平行的性质可得PA//EG ,再由E 为PC 的中点,得G 为AC 的中点,则△AFG≌△BCG ,得到AF =BC =12AD =1,即F 为AD 的中点,可得四边形DCBF 为平行四边形,再由AD ⊥DC ,得BF ⊥AD ,可得BF ⊥平面PAD ,进一步得到平面BEF ⊥平面PAD ;(Ⅱ)连接PF ,证明PF ⊥底面ABCD ,又BF ⊥AD ,以F 为坐标原点,分别以FA ,FB ,FP 所在直线为x ,y ,z 轴建立空间直角坐标系,设P(0,0,t),由PC 与底面ABCD 所成的角为60°求解t ,然后分别求出平面ABF 与EBF 的一个法向量,由两法向量所成角的余弦值可得二面角E −BF −A 的余弦值.本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.20.【答案】解:(Ⅰ)设B(0,−t)(t >0),菱形ABCD 的中心在x 轴上,设为Q 点.由题意可知,∣OQ ∣2=∣OA ∣∣OB ∣,则Q(√t,0),又Q 为BD 的中点,因此点D(2√t,t) 即点D 的轨迹为{x =2√ty =t (t 为参数且t ≠0), 化为标准方程x 2=4y(x ≠0).(Ⅱ)设点N(a,a 24),过点N 的切线方程为:y −a 24=a2(x −a),点M(m,0)在该切线方程上,∴M(a2,0), 即m =a2,由1<m <4,可得2<a <8,又k MN =a2,k AM =−2a ,则k MN k AM =−1,即NM ⊥AM , ∴S =12∣MN ∣∣AM ∣=12√(a2)2+(a 24)2⋅√1+(a2)2=a(4+a 2)16,可知当2<a <8时,S 为关于a 的增函数,因此S 的取值范围是(1,34).【解析】(Ⅰ)设B(0,−t)(t >0),因为菱形ABCD 对角线的交点Q 在x 轴上,根据射影定理,得∣OQ ∣2=∣OA ∣∣OB ∣,求得Q 点坐标,进而求得D 点坐标,去掉参数,求得D 的轨迹曲线E ;(Ⅱ)设点N(a,a 24),可列出该点处的切线方程,将M 点代入,由1<m <4,求得a 的取值范围,易推得NM ⊥AM ,则S =12∣MN ∣∣AM ∣用a 表示出△AMN 面积,根据a 的取值范围进而求得△AMN 面积的取值范围.本题考查了曲线与方程,考查了利用导数求曲线上某点的切线方程,考查了两直线垂直斜率乘积为−1,属于中档题.21.【答案】解:(Ⅰ)F(x)=f(x)−g(x)=mlnx −x−1x,F′(x)=m x−1x 2=mx−1x 2,当m ≤0时,F′(x)<0,则F(x)在(0,+∞)上单调递减;当m >0时,由F′(x)<0得0<x <1m ,由F′(x)>0得x >1m , ∴函数F(x)在(0,1m )上单调递减,在(1m ,+∞)上单调递增; (Ⅱ)函数f(x)=mlnx 在点(a,mlna)处的切线方程为y −mlna =m a(x −a),即y =m ax +mlna −m , 函数g(x)=x−1x在点(b,1−1b )处的切线方程为y −(1−1b )=1b 2(x −b),即y =1b 2x −2b +1,又y =f(x)与y =g(x)的图象有唯一一条公切线,故{ma =1b 2①mlna −m =1−2b ②, 由①得,m =ab 2代入②消去m ,整理得b 2−2b −alna +a =0③,则此关于b(b >0)的方程③有唯一解,令g(b)=b 2−2b −alna +a =(b −1)2−alna +a −1,令ℎ(a)=−alna +a −1,ℎ′(a)=−lna ,由ℎ′(a)>0得0<a <1,由ℎ′(a)<0得a >1,∴函数ℎ(a)在(0,1)上单调递增,在(1,+∞)上单调递减,则ℎ(a)≤ℎ(1)=0, (i)当ℎ(a)=0时,方程③有唯一解b =1,由ℎ(a)=−alna +a −1=0得a =1,此时m =a b 2=1;(ii)当ℎ(a)<0时,二次函数g(b)=(b −1)2−alna +a −1在b ∈(1,+∞)上显然有一个零点,b ∈(0,1)时,由方程②mlna −m =1−2b ,可得m(lna −1)=b−2b<0,而m >0,则lna −1<0,则g(0)=−alna +a =−a(lna −1)>0,∴二次函数g(b)=(b −1)2−alna +a −1在b ∈(0,1)上也有一个零点,不合题意; 综上,m =1.【解析】(Ⅰ)求得F(x),并求导,然后分m ≤0及m >0讨论即可得出单调性情况;(Ⅱ)根据题意,由导数的几何意义可得{ma =1b 2①mlna −m =1−2b ②,进而得到b 2−2b −alna +a =0③,则此关于b(b >0)的方程③有唯一解,令g(b)=b 2−2b −alna +a =(b −1)2−alna +a −1,ℎ(a)=−alna +a −1,ℎ′(a)=−lna ,则易知ℎ(a)≤ℎ(1)=0,然后分ℎ(a)=1及ℎ(a)<0讨论即可得出结论.本题考查函数与导数的综合运用,考查导数的几何意义以及利用导数研究函数的单调性,二次函数的零点等知识点,考查分类讨论思想,运算求解能力,属于较难题目.22.【答案】解:(Ⅰ)曲线C 的极坐标方程为ρ2=123+sin 2θ(θ∈[0,π2]),转换为直角坐标方程为x 24+y 23=1(0≤x ≤2,0≤y ≤√3),转换为参数方程为{x =2cosθy =√3sinθ(θ为参数,θ∈[0,π2]).直线1的参数方程为{x =2−2√55ty =3+√55t(t 为参数).转换为直角坐标方程为x +2y −8=0. (Ⅱ)设P(2cosθ,√3sinθ),θ∈[0,π2], 所以点P 到直线l 的距离d =√3sinθ−8|√5=4√55|sin(θ+π6)−2|,由于θ∈[0,π2],所以12≤sin(θ+π6)≤1, 所以4√55≤d ≤6√55, 故等边三角形的边长的取值范围:8√1515≤x ≤12√1515.【解析】(Ⅰ)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.23.【答案】解:(1)由题意得:∵f(x)≤g(x)在x ∈R 上恒成立,∴m ≤|x +3|+|x −2|恒成立, 即m ≤(|x +3|+|x −2|)min又∵|x +3|+|x −2|≥|(x +3)−(x −2)|=5 ∴m ≤5,即m ∈(−∞,5] (2)令f(x)≥0,∴m ≥|x −2| 若m ≤0,则解集为⌀,不合题意;若m>0,则有−m≤x−2≤m,即x∈[2−m,2+m]又∵解集为x∈[1,3],∴m=1∴ab−2a−b=2∴b=2a+2 a−1∵{a>0b>0,解得a>1∴a+b=a+2a+2a−1=a−1+4a−1+3∴a+b≥2√(a−1)(4a−1)+3=7当且仅当a−1=4a−1,即a=3时,等号成立,此时b=4∴a=3,b=4时a+b的最小值为7【解析】(1)利用绝对值三角不等式性质(2)利用绝对值不等式解法求出m,带入得到a,b等式,转化为只含有a的式子后利用基本不等式可以求解.本题考查绝对值三角不等式,以及基本不等式的应用,考查转化思想以及计算能力,是中档题第21页,共21页。

2020高考冲刺 吉林省长春市2020届(一)数学(理)试题 含解析 【精】提分必备

2020高考冲刺 吉林省长春市2020届(一)数学(理)试题  含解析  【精】提分必备

冲刺2020高考 提分必备长春市2020届高三质量监测(一)理科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|2}A x x =≥,2{|30}B x x x =-> ,则A B =I ( )A. ∅B. {|3,x x >或x ≤2}-C. {|3,x x >或0}x <D. {|3,x x >或2}x ≤【答案】B 【解析】 【分析】求得集合{|2A x x =≤-或2}x ≥,{|0B x x =<或3}x >,再根据集合的交集运算,即可求解.【详解】由题意,集合{|2}{|2A x x x x =≥=≤-或2}x ≥, 集合2{|30}{|0B x x x x x =->=<或3}x >,所以A B =I {|3x x >或2}x ?, 故选B .【点睛】本题主要考查了不等式的解法,以及集合的交集运算,其中解答中正确求解集合,A B 是解答的关键,着重考查了推理与运算能力,属于基础题.2.复数252i +i z =的共轭复数z 在复平面上对应的点在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C 【解析】 【分析】根据复数的运算求得2i z =-+,得到z 2i =--,再根据复数的表示,即可求解,得到答案. 【详解】由题意,根据复数的运算可得复数252i +i 2i z ==-+,则z 2i =--,所以z 对应点(2,1)--在第三象限,故选C .【点睛】本题主要考查了复数的运算,以及复数的表示,其中解答中熟记复数的运算法则,以及复数的表示是解答的关键,着重考查了推理与运算能力,属于基础题.3.已知31()3a =,133b =,13log 3c =,则( )A. a b c <<B. c b a <<C. c a b <<D. b c a <<【答案】C 【解析】 【分析】分析每个数的正负以及与中间值1的大小关系.【详解】因为311()()133a <<=,103331>=,1133log 3log 10<=,所以01,1,0a b c <<><,∴c a b <<, 故选:C.【点睛】指数、对数、幂的式子的大小比较,首先确定数的正负,其次确定数的大小(很多情况下都会和1作比较),在比较的过程中注意各函数单调性的使用.4.已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b =( )A. 3-B. 1C. 3-或1D.52【答案】C 【解析】 【分析】根据直线与圆相切,则圆心到直线的距离等于半径来求解.=∴|1|2b +=∴13b b ==-或 故选:C.【点睛】本题考查直线与圆的位置关系中的相切,难度较易;注意相切时,圆心到直线的距离等于半径.5.2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7y x=+,其相关指数2R0.9817=,给出下列结论,其中正确的个数是( )①公共图书馆业机构数与年份的正相关性较强②公共图书馆业机构数平均每年增加13.743个③可预测 2019 年公共图书馆业机构数约为3192个A. 0 B. 1 C. 2 D. 3 【答案】D【解析】【分析】根据ˆb和2R确定是正相关还是负相关以及相关性的强弱;根据ˆb的值判断平均每年增加量;根据回归直线方程预测2019年公共图书馆业机构数.【详解】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确;由回归方程,当7x=时,得估计值为3191.9≈3192,故③正确.故选:D.【点睛】回归直线方程中的ˆb 的大小和正负分别决定了单位增加量以及相关型的正负;相关系数2R 决定了相关性的强弱,越接近1相关性越强.6.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为51-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A. (35)π-B. 51)πC. 51)πD.(52)π【答案】A 【解析】 【分析】根据扇形与圆面积公式,可知面积比即为圆心角之比,再根据圆心角和的关系,求解出扇形的圆心角.【详解】1S 与2S 所在扇形圆心角的比即为它们的面积比, 设1S 与2S 所在扇形圆心角分别为,αβ, 则51αβ-=,又2αβπ+=,解得(35)απ=- 【点睛】本题考查圆与扇形的面积计算,难度较易.扇形的面积公式:21122S r lr α==,其中α是扇形圆心角的弧度数,l 是扇形的弧长.7.已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是( ) ①,a b αα⊥⊥,则//a b ②,αγβγ⊥⊥,则αβ⊥③//,//a b αα,则//a b ④//,//αγβγ,则//αβ A. ①②③ B. ②③④ C. ①③ D. ①④【答案】D 【解析】 【分析】①可根据线面垂直的性质定理判断;②③④可借助正方体进行判断.【详解】①由线面垂直的性质定理可知垂直同一平面的两条直线互相平行,故正确;②选取正方体的上下底面为αβ、以及一个侧面为γ,则//αβ,故错误;③选取正方体的上底面的对角线为a b 、,下底面为α,则//a b 不成立,故错误;④选取上下底面为αβ、,任意作一个平面平行上底面为γ,则有 //αβ成立,故正确.所以说法正确的有:①④. 故选:D.【点睛】对于用符号语言描述的问题,最好能通过一个具体模型或者是能够画出相应的示意图,这样在判断的时候能更加直观.8.已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b = ,则11S =( ) A. 44 B. 44- C. 88 D. 88-【答案】A 【解析】 【分析】根据等比数列的性质,求得64a =,再利用等差数列的前n 项和公式,即可求解11S 的值,得到答案.【详解】由题意,等比数列{}n a 为等比数列,满足21a =,1016a =,根据等比数列的性质,可得266210116,0a a a a =⨯=>,可得64a =,所以664b a ==,则11111611()11442b b b S +==⨯=,故选A . 【点睛】本题主要考查了等比数列的性质,以及等差数列的前n 项和公式的应用,其中解答中熟记等比数列的性质和等差数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.9.把函数()y f x =图象上所有点的横坐标伸长到原来的2倍,得到2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示),则()y f x =的解析式为( )A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+ C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=-【答案】C 【解析】 【分析】由图象可得()01f =,解得6π=ϕ,又由112sin()012ωπϕ⋅+=,解得2ω=,得到2sin(2)6y x π=+,在利用三角函数的图象变换,即可求得,得到答案.【详解】由图象可知,()02sin(0)1f ωϕ=⋅+=,即1sin ||22πϕϕ=<Q ,解得6π=ϕ,又由112sin()012ωπϕ⋅+=,即111111242sin()0π,01261261211k k Z T πππωπωπω⋅+=∴⋅+=∈<∴<<Q ,解得2ω=,即函数的解析式为2sin(2)6y x π=+,将函数2sin(2)6y x π=+图象上点的横坐标缩短到原来的12倍,得2sin(4)6y x π=+, 所以函数()f x 解析式2sin(4)6y x π=+.故选C .【点睛】本题主要考查了利用三角函数图象及三角函数的图象变换求解三角函数的解析式,其中解答中熟记三角函数的图象与性质,以及三角函数的图象变换是解答的关键,着重考查了推理与运算能力,属于基础题.10.已知函数()y f x =是定义在R 上的奇函数,且满足(2)()0f x f x ++=,当[2,0]x ∈-时,2()2f x x x =--,则当[4,6]x ∈时,()y f x =的最小值为( ) A. 8- B. 1-C. 0D. 1【答案】B 【解析】 【分析】根据题意,求得函数()f x 是以4为周期的周期函数,进而利用[2,0]x ∈-时,函数()f x 的解析式和函数的奇偶性,即可求解[4,6]上的最小值,得到答案. 【详解】由题意知(2)()0f x f x ++=,即(2)()f x f x +=-, 则()()4[(2)2](2)f x f x f x f x +=++=-+=, 所以函数()f x 是以4为周期的周期函数,又当[2,0]x ∈-时,2()2f x x x =--,且()f x 是定义在R 上的奇函数, ∴[0,2]x ∈时,2()2f x x x =-,∴当[4,6]x ∈时,222()(4)(4)2(4)1024(5)1f x f x x x x x x =-=---=-+=--, 所以当5x =时,函数()f x 的最小值为(5)1f =-. 故选B .【点睛】本题主要考查了函数周期性的判定及应用,以及函数的奇偶性的应用,其中解答中熟练应用函数周期性的判定方法,得出函数的周期是解答的关键,着重考查了推理与运算能力,属于基础题.11.已知椭圆22143x y +=的右焦点F 是抛物线22(0)y px p =>的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为( )B. 2C. 3D. 4【答案】C 【解析】 【分析】利用抛物线的定义和焦点弦的性质,求得1213,3x x ==,进而可求得||||AF BF 的值.【详解】由椭圆22143x y +=,可得右焦点为(1,0),所以12p =,解得2p =,设1122(,),(,)A x y B x y ,由抛物线的定义可得1222816sin 6033p p AB x x p =++===o,所以12103x x +=, 又由21214p x x ==,可得1213,3x x ==,所以12||31231||123px AF p BF x ++===++. 故选C .【点睛】本题主要考查了椭圆的几何性质,以及抛物线的焦点弦的性质的应用,其中解答中熟练应用抛物线的定义求解是解答的关键,着重考查了推理与运算能力,属于基础题.12.已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为( ) A. 1m £B. 1m <-C. 1m >-D. m 1≥【答案】C 【解析】 【分析】求得函数的导数21()(2)ex f x x -'=-,得到函数()f x 的单调性,以及()()1,2f f f 的取值,再由导数的几何意义,即可求解。

2020吉林长春高考模拟真题—理数+答案

2020吉林长春高考模拟真题—理数+答案

=
2e x0

1 x02
= 0 ,解得 1 2
x0
3 (此处可由验证得到). 3
即 h(x) 的最小值为 h(x0 )
=
2e x0
+
1 x0
=
1 x02
+
1 x0
,令
1 x0
= t (
3, 2) ,
则 1 + 1 = t2 + t (3 + x02 x0
3,6) ,将 h(x) 的最小值设为 a ,则 a (3 +
21. (本小题满分 12 分)
【参考答案与评分细则】(Ⅰ)已知函数 f (x) = ex ,则 (1, f (1)) 处即为 (1,e) ,
又 f (x) = ex , k = f (1) = e ,
可知函数 f (x) = ex 过点 (1, f (1)) 的切线为 y − e = e(x −1) ,即 y = ex . (4 分)
x2 a2
+
y2 b2
= 1(a
b 0) 上,
可设 P(x0, y0) ,即
x02 a2
+
y02 b2
= 1,
又 kAP
kBP
=
y0 x0 + a
y0 x0 − a
=
y02 x02 − a2
=
− b2 a2
=
−3 4

且 2c = 2,可得椭圆 C 的方程为 x2 +
sin
2 cos
+
cos2
|
=
|
4

2 sin(2 + ) +1|
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长春市 2020 届高三质量监测(一) 理科数学一、选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1. 已知集合{|||2}A x x =≥,2{|30}B x x x =-> ,则A B =IA. ∅B. {|3,x x >或x ≤2}-C. {|3,x x >或0}x <D. {|3,x x >或2}x ≤ 2. 复数252i +i z =的共轭复数z 在复平面上对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知31()3a =,133b =,13log 3c =,则A. a b c <<B. c b a <<C. c a b <<D. b c a << 4. 已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b = A. 3- B. 1 C. 3-或1 D.525. 2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是①公共图书馆业机构数与年份的正相关性较强 ②公共图书馆业机构数平均每年增加 13.743 个③可预测 2019 年公共图书馆业机构数约为 3192 个A. 0B. 1C. 2D. 36. 中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为A. (35)π-B. 51)πC. 51)πD. 52)π7. 已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是 ① ,a b αα⊥⊥,则//a b ② ,αγβγ⊥⊥,则αβ⊥ ③ //,//a b αα,则//a b ④//,//αγβγ,则//αβA. ① ② ③B. ② ③ ④C. ① ③D. ① ④8. 已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b = ,则11S = A. 44 B. 44- C. 88 D. 88-9. 把函数()y f x =图象上所有点的横坐标伸长到原来的2倍,得到2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则()y f x =的解析式为A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=- 10. 已知函数()y f x =是定义在R 上的奇函数,且满足(2)()0f x f x ++=,当[2,0]x ∈-时,2()2f x x x =--,则当[4,6]x ∈时,()y f x =的最小值为A. 8-B. 1-C. 0D. 111. 已知椭圆22143x y +=的右焦点F 是抛物线22(0)y px p =>的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为 A.3 B. 2 C. 3 D. 412. 已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为A. m ≤1B. m <-1C. m >-1D. m ≥1 二、填空题:本题共4小题,每小题5分. 13. 381(2)x x-展开式中常数项为___________.14.边长为2正三角形ABC 中,点P 满足1()3AP AB AC =+u u u r u u u r u u u r,则BP BC ⋅=u u r u u u r _________.15.平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C --大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为________. 16.已知数列{}n a 的前项n 和为n S ,满足112a =-,且1222n n a a n n++=+,则2n S = __________,n a =__________.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考 题,每个试题考生都必须作答. 第 22~23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.(本小题满分 12 分)△ABC 的内角,,A B C 的对边分别为,,a b c ,tan ()a b A a b => . (Ⅰ)求证:△ABC 是直角三角形;(Ⅱ)若10c =,求△ABC 的周长的取值范围. 18. (本小题满分 12 分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AD DC ⊥,22AB AD DC ===,E 为PB 中点.(Ⅰ)求证://CE 平面PAD ;(Ⅱ)若4PA =,求平面CDE 与平面ABCD 所成锐二面角的大小. 19.(本小题满分 12 分)某次数学测验共有 10 道选择题,每道题共有四个选项,且其中只有一个选项是正确 的,评分标准规定:每选对 1 道题得 5 分;不选或选错得 0 分. 某考生每道题都选并能确定其中有 6 道题能选对,其余 4 道题无法确定正确选项,但这 4 道题中有 2 道题能排除两个错误选项,另 2 道只能排除一个错误选项,于是该生做这 4 道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(Ⅰ)求该考生本次测验选择题得 50 分的概率;(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望. 20.(本小题满分 12 分)已知点(1,0),(1,0)M N -若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(3,0)Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程. 21.(本小题满分 12 分)已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x < ,证明:121ex e x +>+. (二)选考题:共 10 分,请考生在 22、23 题中任选一题作答,如果多做则按所做的第一题计分. 22.(本小题满分 10 分)选修 4-4 坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=.(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值. 23. (本小题满分 10 分)选修 4-5 不等式选讲已知函数()|3||1|f x x x =+-- . (Ⅰ)解关于x 的不等式()1f x x +≥ ;(Ⅱ)若函数()f x 的最大值为M ,设0,0a b >>,且(1)(1)a b M ++=,求a b + 的最小值.长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分) 1. B 【解析】{|||2}{|2,2}A x x x x x =≥=-或≤≥,2{|30}{|0,3}B x x x x x x =->=<>或,∴A B =I {|3,x x >或x ≤2}-2. C 【解析】252i +i 2i z ==-+,则z 2i =--,其对应点为(2,1)--,在第三象限3. C 【解析】01,1,0a b c <<><,∴c a b <<4. C 【解析】 由圆心到切线的距离等于半径,得22211=+∴|1|2b +=∴13b b ==-或5. D 【解析】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确;由回归方程,当7x =时,得估计值为3191.9≈3192,故③正确.6. A 【解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则512αβ-=,又2αβπ+=,解得(35)απ=- 7. D 【解析】①正确; ② 错误;③错误;④正确8. A 【解析】 2210661164a a a a =⨯==∴,∴664b a ==,1161144S b ==9. C 【解析】由2sin(0)1ωϕϕ⋅+=π∴=6,由112sin()0212ωπϕω⋅+==∴即2sin(2)6y x π=+,横坐标缩短到原来的12倍,得2sin(4)6y x π=+,即为()f x 解析式. 10. B 【解析】由(2)()0f x f x ++=得函数的周期为4,又当[2,0]x ∈-时,2()2f x x x =--,且()f x 是定义在R 上的奇函数∴[0,2]x ∈时,2()2f x x x =-,∴当[4,6]x ∈时,22()(4)(4)2(4)1024f x f x x x x x =-=---=-+此时()f x 的最小值为(5)1f =-.[法2:由周期为4,()f x 在[0,2]上的最小值即为()f x 在[4,6]上的最小值]11. C 【解析】椭圆的右焦点为(1,0),∴12p =∴2p =,||1cos60p AF =-︒,||1cos60pBF =+︒,∴||10.53||10.5AF BF +==-. 12. C 【解析】21()(2)ex f x x -'=-∴()f x 在(1,2)上递减,在(2,)+∞上递增,当2x >时,()0f x >,又(1)1f =-,(2)1f <-,(2)0f =∵(1)1f '=-∴m >-1二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分) 13. 112【解析】由3883(8)1881(2)()2(1)rrr r r r r r r T C x C x x----+=-=-有3(8)0r r --=得6r =∴6866782(1)112T C -=-=14. 2【解析】112(())()()()333BP BC AB AC AB AC AB AC AB AC AB ⋅=+-⋅-=-⋅-u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r221248122233332AC AB AC AB =+-⋅=+-⨯⨯=u u u r u u u r u u u r u u u r15. 20π【解析】 取AD,BC 的中点分别为12,O O ,过1O 作面ABD 的垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结12,O E O E ,则12O EO ∠即为二面角A BD C --的平面角,121O E O E ==,连OE ,在Rt △1O OE 中,13OO =,在Rt △1O OA 中,12O A =得5OA =,即球半径为5,所以球面积为20π.16.221n n +,1(1)(1)n n n -++【解析】由1222n n a a n n ++=+得21222(21)2(21)n n a a n n -+=-+-211(21)(21)2121n n n n ==--+-+∴2nS =1113-+1135-+…+112121n n --+1121n =-+. 由111212a =-=-⨯递推得277623a ==⨯,311111234a =-=-⨯,421212045a ==⨯,归纳可得1(1)(1)n n n -++.【法2:】122111111=()()22112n n a a n n n n n n n n ++=-=-+-+++++∴11111()[()]112n n a a n n n n +--=---+++∴11{()}1n a n n --+为首项为1-,公比为1-的等比数列,11111()=(1)=(1)+()=(1)+11(1)n n n n n a a n n n n n n ------+++∴三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10102)4L A π=++,由a b >可知,42A ππ<<,因此2sin()124A π<+<,即2010102L <<+(12分) 18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面. (6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴, 建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-u u u r ,(2,0,2)CE =-u u u r,平面CDE 的法向量为1(1,0,1)n =u r;平面ABCD 的法向量为2(0,0,1)n =u u r;因此1212||2cos ||||2n n n n θ⋅==⋅u r u u r. 即平面CDE 与平面ABCD 所成的锐二面角为4π.(12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y+=. (4分)(Ⅱ)设直线l 的方程为x ty =与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得22(34)30t y +--=,即12234y y t+=+,122334yy t -=+.AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t==+u =,则1u ≥,上式可化为26633u u u u=++, 当且仅当u =3t =±时等号成立, 因此AOB ∆l 的方程为3x y =±. (12分) 21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识.【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=.则12||||||2PA PB t t ⋅==. (10分) 23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--U .(5分)(Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2.(10分)。

相关文档
最新文档