2018中考数学总复习知识点梳理:19讲多边形与平行四边形(华师大)

合集下载

多边形与平行四边形知识点总结

多边形与平行四边形知识点总结

多边形与平行四边形知识点总结
多边形与平行四边形
一、多边形
1.多边形的定义:平面内由若干条线段首尾相接而成的封闭图形。

2.多边形的对角线:n边形的一个顶点可以引出(n-3)条对角线,将多边形分成(n-2)个三角形。

3.多边形的内角和和外角和:n边形的内角和公式为(n-2)×180°,外角和为360°。

4.正多边形:各边相等,各角也相等的多边形。

二、平行四边形的性质
1.平行四边形的定义:两组对边分别平行的四边形。

2.平行四边形的性质:
边:两组对边分别平行且相等。

角:对角相等,邻角互补。

对角线:互相平分。

对称性:中心对称但不是轴对称。

3.平行四边形解题模型:
利用平行四边形相邻两边之和等于周长的一半。

利用平行四边形中有相等的边、角和平行关系,结合三角形全等来解题。

过平行四边形对称中心的任一直线等分平行四边形的面积及周长。

三、平行四边形的判定
注意:平行四边形的解题方法有很多种,需要根据具体情况进行选择。

中考数学复习《多边形与平行四边形》

中考数学复习《多边形与平行四边形》

证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.

华师版数学多边形知识点

华师版数学多边形知识点

华师版数学多边形知识点
华师版数学中关于多边形的知识点主要包括以下内容:
1. 多边形的定义:多边形是由若干条线段首尾相连而构成的封闭图形。

2. 多边形的分类:按照边的长度和角的大小,多边形可分为等边多边形、等腰多边形、直角多边形等。

3. 内角和外角:对于任意多边形,可以计算每个内角和外角的和。

内角和公式为:(n-2) x 180°,其中 n 表示多边形的边数。

外角和公式为:360°。

4. 三角形的性质:三角形是一种特殊的多边形,具有一些独特的性质,例如三角形的
内角和恒为180°,三条高线的交点是三角形的垂心等。

5. 四边形的性质:四边形是一种有四条边的多边形。

四边形具有一些特殊的性质,如
平行四边形的对角线相互平分,菱形的对角线互相垂直等。

6. 多边形的面积:对于规则多边形,可以使用特定的公式计算面积。

而对于不规则多
边形,可以将其分解为多个三角形,再分别计算每个三角形的面积,最后求和。

7. 多边形的周长:多边形的周长是其所有边长的总和。

计算多边形周长时,可以利用
多边形的各种性质,如相邻两边之和等于第三边等进行计算。

8. 多边形的对称性:多边形可以存在各种对称性,如中心对称、轴对称等。

对称性可
以帮助我们研究多边形的性质和解题。

以上是华师版数学中关于多边形的一些基本知识点,通过学习这些知识点,可以了解多边形的特性、性质和计算方法,从而解决与多边形相关的问题。

多边形平行四边形矩形菱形正方形的知识点总结

多边形平行四边形矩形菱形正方形的知识点总结

多边形(基础)知识讲解知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:知识点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为()23-n n ;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.凸多边形凹多边形知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).知识点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于()nn︒⋅-1802;知识点三、多边形的外角和多边形的外角和为360°.知识点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于n ︒360;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.平行四边形(基础)知识点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”.知识点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.知识点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.知识点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.知识点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 知识点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的21,每个小三角形的面积为原三角形面积的41. (3)三角形的中位线不同于三角形的中线. 知识点五、平行线间的距离 1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值. (2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.知识点一、矩形的定义有一个角是直角的平行四边形叫做矩形.知识点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.知识点二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.知识点三、矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.知识点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.知识点四、直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.知识点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.知识点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.知识点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.知识点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 知识点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.知识点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.知识点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.正方形(基础)知识点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.知识点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.知识点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.知识点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.知识点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).知识点四、特殊平行四边形之间的关系或者可表示为:知识点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.知识点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.梯形(基础)知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:方法作法图形目的平移平移一腰过一顶点作一腰的平行线分解成一个平行四边形和一个三角形过一腰中点作另一腰的平行线构造出一个平行四边形和一对全等的三角形平移对角线过一顶点作一条对角线的平行线构造出平行四边形和一个面积与梯形相等的三角形作高过一底边的端点作另一底边的垂线构造出一个矩形和两个直角三角形;特别对于等腰梯形,两个直角三角形全等延长延长两腰延长梯形的两腰使其交于一点构成两个形状相同的三角形延长顶点和一腰中点的连线连接一顶点和一腰的中点并延长与底边相交构造一对全等的三角形,将梯形作等积变换知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.。

数学初中多边形知识点总结

数学初中多边形知识点总结

数学初中多边形知识点总结一、多边形的基本概念1. 多边形的定义多边形是指由三条或三条以上的线段组成的封闭图形,其中每条线段都是多边形的一条边,相邻边之间都有一个公共端点,并且相邻边不共线。

多边形的每条边都是多边形的一个边界,边界之间的部分则是多边形的内部。

2. 多边形的组成多边形由若干边和若干顶点组成,边和边之间以及边和顶点之间相互连接形成了多边形的形状。

3. 多边形的性质多边形是一个封闭的平面图形,其内部未被包括在多边形之外。

多边形的各个边界之间没有交叉,是一个平面图形。

二、多边形的分类1. 按边数分类根据多边形的边数,可以将多边形分为三角形、四边形、五边形等不同类型。

2. 按边长度分类根据多边形的各边长度是否相等,可以将多边形分为正多边形和不规则多边形。

3. 按边形状分类根据多边形的各边是否都是直线段,可以将多边形分为正多边形和不规则多边形。

三、多边形的性质1. 内角和多边形的内角和公式为:S = (n-2) * 180°,其中S为内角和,n为多边形的边数。

2. 对角线对角线是指连接多边形的两个不相邻顶点的线段。

对角线的数量可以由公式计算出来:C(n,2) = n(n-1)/2,其中n为多边形的顶点数。

3. 角的取值范围多边形的内角范围在(0,180°)之间,而凸多边形的外角范围在(180°,360°)之间。

四、多边形的周长和面积计算1. 周长的计算多边形的周长是指多边形边界的总长度,可以通过计算各边的长度之和来求得。

2. 面积的计算多边形的面积可以通过不同方法来计算,比如通过正多边形的面积和边长计算,或者通过将多边形分解成多个简单的几何图形来进行计算。

五、常见多边形的性质和公式1. 三角形的性质和公式三角形是最简单的多边形,其内角和为180°,并且满足勾股定理等性质。

2. 正多边形的性质和公式正多边形是所有边和内角都相等的多边形,其内角和公式为:S = (n-2) * 180°,其中S为内角和,n为多边形的边数。

中考总复习:多边形与平行四边形--知识讲解(基础)

中考总复习:多边形与平行四边形--知识讲解(基础)

中考总复习:多边形与平行四边形--知识讲解(基础)【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n -2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三:【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是( )A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.举一反三:【变式】现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A.2种 B.3种 C.4种 D.5种【答案】 B.类型二:平行四边形及其他知识的综合运用3.如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.【思路点拨】连接ME,FN,由四边形ABCD为平行四边形,得到对角线互相平分,利用AAS得到三角形AOE与三角形COF全等,利用全等三角形对应边相等得到OE=OF,同理得到三角形BOM与三角形DON全等,得到OM=ON,进而确定出四边形MEFN为平行四边形,利用平行四边形的对边平行即可得证.【答案与解析】证明:连接ME,FN,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE⊥BD,CF⊥BD,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,同理△BOM≌△DON,得到OM=ON,∴四边形EMFN为平行四边形,∴EN∥MF.【总结升华】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.4.如图所示,△ABC中,∠BAC=90°,延长BA到D,使,点E、F分别为边BC、AC 的中点.(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G,求证:AG=DG.【思路点拨】(1)E、F分别为BC、AC中点,则EF为△ABC的中位线,所以EF∥AB,.而.则EF=AD.从而易证△DAF≌△EFC, 则DF=CE=BE.(2) AG与DG在同一个三角形中,只需证∠D=∠DAG即可.【答案与解析】(1)∵点E、F分别为BC、AC的中点,∴ EF是△ABC的中位线.∴ EF∥AB,.又∵,∴ EF=AD.∵ EF∥AB,∴∠EFC=∠BAC=90°,∵∠BAC=90°,∴∠DAF=90.又∵ F是AC的中点,∴AF=CF,∴△DAF≌△EFC.∴DF=EC=BE.(2)由(1)知∵△DAF≌△EFC,∴∠D=∠FEC.又∵ EF∥AB,∴∠B=∠FEC.又∵ AG∥BC,∴∠DAG=∠B,∴∠ DAG=∠FEC∴∠D=∠DAG.∴AG=DG.【总结升华】三角形中位线定理的作用:位置关系——可以证明两条直线平行;数量关系——可以证明线段的相等或倍分.此外应注意三角形共有三条中位线,并且它们又重新构成一个新的三角形.举一反三:【变式】如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C.5.如图:六边形ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD ⊥BD.已知FD=4cm,BD=3cm.则六边形ABCDEF的面积是_________cm2.【思路点拨】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【答案与解析】连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∵FD⊥BD,∴∠GDH=90°,∴四边形AHDG是矩形,∴AH=DG∵EH=AE-AH,BG=BD-DG∴EH=BG.∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=3×4=12cm2.故答案为:12.【总结升华】注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.6 .已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+32-4,求BC的长.【思路点拨】(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;(2)根据三角形中位线定理可得PF∥AO,且PF=12AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.【答案与解析】(1)如图,连接PO,∵PE⊥AC,PE=3,EO=1,∴tan∠EPO=3 EOPE=,∴∠EPO=30°,∵PE⊥AC,PF⊥BD,∴∠PEO=∠PFO=90°,在Rt△PEO和Rt△PFO中,PO PO PE PF=⎧⎨=⎩,∴Rt△PEO≌Rt△PFO(HL),∴∠FPO=∠EPO=30°,∴∠EPF=∠FPO+∠EPO=30°+30°=60°;(2)如图,∵点P是AD的中点,点F是DO的中点,∴PF ∥AO ,且PF=12AO , ∵PF ⊥BD ,∴∠PFD=90°, ∴∠AOD=∠PFD=90°,又∵PE ⊥AC ,∴∠AEP=90°,∴∠AOD=∠AEP ,∴PE ∥OD ,∵点P 是AD 的中点,∴PE 是△AOD 的中位线,∴PE=12OD , ∵PE=PF ,∴AO=OD ,且AO ⊥OD ,∴平行四边形ABCD 是正方形,设BC=x ,则x+12x ,∵ -4,∴x , 解得x=4,即BC=4.【总结升华】 本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD 是正方形是解题的关键.举一反三:【变式】如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)是双曲线上的一点,Q 为坐标平面上的一动点,PA ⊥x 轴,QB ⊥y 轴,垂足分别为A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,是否可以使△OBQ 与△OAP 面积相等?(3)如图2,点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ周长的最小值.图1 图2【答案】(1)正比例函数解析式为,反比例函数解析式为.(2)当点Q在直线MO上运动时,设点Q的坐标为,,解得.所以点Q的坐标为和.(3)因为P(,),由勾股定理得OP=,平行四边形OPCQ周长=.因为点Q在第一象限中的双曲线上,所以可设点Q的坐标为,由勾股定理可得,通过图形分析可得:OQ有最小值2,即当Q为第一象限中的双曲线与直线的交点时,线段OQ的长度最小.所以平行四边形OPCQ周长的最小值:.。

九年级数学下册(沪科版)中考知识点梳理 第19讲 多边形与平行四边形

九年级数学下册(沪科版)中考知识点梳理  第19讲 多边形与平行四边形

第五单元四边形第19讲多边形与平行四边形一、知识清单梳理知识点一:多边形关键点拨与对应举例1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为()32n n-.多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解.例:(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.2.多边形的内角和、外角和( 1 ) 内角和:n边形内角和公式为(n-2)·180°(2)外角和:任意多边形的外角和为360°.3.正多边形(1)定义:各边相等,各角也相等的多边形.(2)正n边形的每个内角为()2180nn-⋅,每一个外角为360°/n.( 3 ) 正n边形有n条对称轴.(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.知识点二:平行四边形的性质4.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法:(1)平行四边形相邻两边之和等于周长的一半.(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.例:如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为9.6.5.平行四边形的性质(1)边:两组对边分别平行且相等.即AB∥CD 且AB=CD,BC∥AD且AD=BC. (2)角:对角相等,邻角互补.即∠BAD=∠BCD,∠ABC=∠ADC,∠ABC+∠BCD=180°,∠BAD+∠ADC=180°. (3)对角线:互相平分.即OA=OC,OB=OD(4)对称性:中心对称但不是轴对称.6.平行四边形中的几个解题模型(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF为等腰三角形,即AB=BF.(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD ≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.(4)根据平行四边形的面积的求法,可得AE·BC=AF·CD.OD CBA知识点三:平行四边形的判定7.平行四边形的判定(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.即若AB∥CD,AD∥BC,则四边形ABCD是□.(2)方法二:两组对边分别相等的四边形是平行四边形.即若AB=CD,AD=BC,则四边形ABCD是□.(3)方法三:有一组对边平行且相等的四边形是平行四边形.即若AB=CD,AB∥CD,或AD=BC,AD∥BC,则四边形ABCD是□.(4)方法四:对角线互相平分的四边形是平行四边形.即若OA=OC,OB=OD,则四边形ABCD是□.(5)方法五:两组对角分别相等的四边形是平行四边形若∠ABC=∠ADC,∠BAD=∠BCD,则四边形ABCD是□.例:如图四边形ABCD的对角线相交于点O,AO=CO,请你添加一个条件BO=DO或AD∥BC或AB∥CD(只添加一个即可),使四边形ABCD为平行四边形.OD CBA。

多边形与平行四边形知识点归纳

多边形与平行四边形知识点归纳

第 部分 四边形第一单元第1课时 多边形与平行四边形二、知识梳理(一) 多边形1.多边形的概念:(1)多边形:在平面内,由若干条不在同一直线上 的线段首尾顺次相连接组成的封闭图形叫做多边形。

(2)正多边形:在平面内,各内角 都相等, 各边 也都相等的多边形叫正多边形。

各角相等的多边形不一定是正多边形,如矩形;各边相等的多边形不一定是正多边形,如菱形。

正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形。

2.多边形的内角和与外角和:(1)内角和:n 边形的内角和等于(n ─2)∙180 ;正n 边形的一个内角等于nn180)2( .(2)外角和:多边形的外角和等于360°.(注:多边形的外角和是定值,与边数无关). 3.多边形的对角线:(1)概念:在多边形中,连接 互不相邻 的两个顶点的线段叫做多边形的对角线. (2) n 边形有2)3( n n 条对角线 4.平面图形的镶嵌:(1)概念:用形状 、大小 完全相同的一种或几种 平面图形 进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的 镶嵌 . (2)镶嵌的条件:在同一顶点的几个角的和等于360°. (二) 平行四边形1.平行四边形的概念: 两组对边分别平行 的四边形是平行四边形。

2.平行四边形的性质:(1)边:平行四边形的两组对边分别 平行且相等 . (2)角:平行四边形的对角 相等 ,邻角 互补 。

图1图2图4 (3)对角线:平行四边形的对角线 互相平分 。

(4)平行四边形对称性:平行四边形是中心对称图形,其对称中心是 对角线交点 ;经过对称中心的任意一条直线将平行四边形面积平分. 3.平行四边形的判定方法:(1)边:①两组对边分别 平行 的四边形是平行四边形(平行四边形的概念);②一组对边 平行且相等 的四边形是开行四边形; ③两组对边分别 相等 的四边形是平行四边形.(2)角:两组对角分别 相等 的四边形是平行四边形. (3)对角线:对角线 互相平分 的四边形是平行四边形. 4.平行四边形面积:平行四边形面积=底×高.三、课堂训练考查目标:多边形的内角和与外角和 1.已知一个多边形的内角和是外角和的23,则这个多边形的边数是 5 . [举一反三]一个多边形的内角和是720°,则这个多有的边数为 6 . [举一反三]矩形的外角和等于 360° 考查目标:正多边形的概念2.一个正多边形的每一个外角都是40°,这个多边形的边数是 9 .[举一反三]一个正多边形的一个内角是144°,它是一个 10 边形. 考查目标:平面图形的镶嵌3.下列多边形中,不能单独铺满地面的是( C ) (A )正三角形 (B )正方形 (C )正五边形 (D )正六边形[举一反三]现有四种地砖,它们的形状分别为正三角形、正方形、正六边形、正八边形,且它们的边长都相等,同时选择其中两种地砖密铺地面.选择的方式有( B ) (A )2种 (B )3种 (C )4种 (D )5种 考查目标:平行四边形的性质4.如图1.在□ABCD 中,过点C 的直线CE ⊥AB .垂足为E ,若∠EAD =53°,则∠BCE 的度数为( B )(A )53° (B )37° (C )47° (D )123°[举一反三] 如图2.在□ABCD 中,对角线AC 、BD 相交于点O ,且AB ≠AD ,则下列式子不正确的是( A )(A )AC ⊥BD (B )AB =CD (C )BO =OD (D )∠BAD =∠BCD5.如图3.在□ABCD 中,AC 平分∠DAB ,AB =3.则□ABCD 的周长( C ) (A )6 (B )9 (C )12 (D )15图5图5 第3题第6题第7题[举一反三]如图4在□ABCD 中,已知AB =6cm ,AD =8cm , DE 平分∠ADC 交BC 边于点E ,则BE 等于( A )(A )2cm (B )4cm (C )6cm (D )8cm 考查目标:平行四边形的判定6.不能判定一个四边形是平行四边形的条件是( B )(A )两组对边分别平行 (B )一组对边平行另一组对边相等 (C )一组对边平等且相等 (D )两组对边分别相等 [举一反三]在四边形ABCD 中,已知AB =CD ,再添加一个条件:_AD =BC (答案不唯一)______,使四边形ABCD 成为平行四边形 考查目标:平行四边形的面积 7.平行四边形花坛的底是6m ,高是4m ,则它的面积是 24cm 2[举一反三].如图5,A 、B 、C 为一个平行四边形的三个顶点, 且A 、B 、C 三点的坐标分别为(3,3)、(6,4)、(4、6).(1)请直接写出这个平行四边形的第四个顶点的坐标;(2)求此平行四边形的面积. 解:(1)第四个顶点的坐标为(7,7)或(5,1)或(1,5)(2)把⊿ABC 补成正方形,面积为9,减去三个小直角三角形 的面积可得S ⊿ABC =4,∴平行四边形的面积为8 【达标训练】1.(2013.长沙市)下列多边形中,内角和与外角和相等的是( A ) .(A )四边形 (B )五边形 (C )六边形 (D )八边形 2.(2013.梅州市)已知一个多边形的内角和小于它的外角和.则这个多边形的边数是( A ) (A )3 (B )4 (C )5 (D )63.(2013.襄阳市)如图□ABCD 的对角线相交于点O ,且AB =5, ⊿OCD 的周长为23,则□ABCD 的两条对角线的和是( C ) (A )18 (B )28 (C )36 (D )464.(2013.杭州市)在□ABCD 中,下列结论一定正确的是( B ) .(A )AC ⊥BD (B )∠A +∠B =180° (C )AB =CD (D )∠A ≠∠C5.(2011.泰州)四边形ABCD 中,对角线AC 、BD 相交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有( C ) (A )1组 (B )2组 (C )3组 (D )4组6.(2013.江西省)如图. □ABCD 与□DCEF 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 25° .7.(2013.安徽省)如图.P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点.⊿PEF 、⊿PDC 、⊿P AB 的面积分别为S 、S 1、S 2.若S =2.则S 1+S 2= 8 .8.(2013.烟台市)如图.□ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BC =12,则⊿DOE 的周长为 15 .C 9.(2013.北京市)如图.在□ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE、CF.(1)求证:四边形CEDF是平行四边形.(2)若AB=4,AD=6,∠B=60°.求DE的长答案:(1)证明:在□ABCD中AD∥BC,AD=BC.∵F是AD的中点,∴DF=12AD.又∵CE=12BC,∴DF=CE且DF∥CE,∴四边形CEDF为平行四边形.(2)解:过点D作DH⊥BE于H,在□ABCD,AB∥CD.∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=4.∴在Rt⊿CDH中,CH=12CD=2,DH=32.在□CEDF中,CE=DF=12AD=3,∴EH=CE-CH=3-2=1.在Rt⊿DHE中,DE=22HEDH =221)32( =13.10.(2011.常德)如图.已知四边形ABCD是平行四边形(1)求证:⊿MEF∽⊿MBA(2)若AF、BE分别是∠DAB和∠CBA的平分线,求证DF=EC.【答案】(1)证明:在□ABCD中,∵CD∥AB,∴∠MEF=∠MBA,∠MFE=∠MAB,∴⊿MEF∽⊿MBA.(2)证明:在□ABCD中,CD∥AB,∠DF A=∠F AB,又∵AF是∠DAB的平分线,∴∠DAF=∠F AB∴∠DAF=∠DF A,∴AD=DF,同理可得EC=BC,∵在□ABCD中,AD=BC,∴DF=EC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018中考数学总复习知识点梳理:19讲多边形与平行四边形(华师大)第五单元四边形
第19讲多边形与平行四边形
一、知识清单梳理
知识点一:多边形关键点拨与对应举例
1.多边形的相关概念(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.
(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为.
多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解.
例:
(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.
(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.
2.多边形的内角和、外角和(1)内角和:n边形内角和公式为(n-2)•180°(2)外角和:任意多边形的外角和为360°.
3.正多边形(1)定义:各边相等,各角也相等的多边形.
(2)正n边形的每个内角为,每一个外角为360°/n.
(3)正n边形有n条对称轴.
(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,
既是轴对称图形,又是中心对称图形.
知识点二:平行四边形的性质
4.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.利用平行四边形的性质解题时的一些常用到的结论和方法:
(1)平行四边形相邻两边之和等于周长的一半.
(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.
(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长. 例:
如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为9.6.
5.平行四边形的性质
(1)边:两组对边分别平行且相等.
即AB∥CD且AB=CD,BC∥AD且AD=BC.
(2)角:对角相等,邻角互补.
即∠BAD=∠BCD,∠ABC=∠ADC,
∠ABC+∠BCD=180°,∠BAD+∠ADC=180°.
(3)对角线:互相平分.即OA=OC,OB=OD
(4)对称性:中心对称但不是轴对称.
6.平行四边形中的几个解题模型(1)如图①,AF平分∠BAD,则可利
用平行线的性质结合等角对等边得到△ABF为等腰三角形,即AB=BF. (2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;
两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;
根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.
(3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.
(4)根据平行四边形的面积的求法,可得AE•BC=AF•CD.
知识点三:平行四边形的判定
7.平行四边形的判定
(1)方法一(定义法):两组对边分别平行的四边形是平行四边形. 即若AB∥CD,AD∥BC,则四边形ABCD是□.
(2)方法二:两组对边分别相等的四边形是平行四边形.
即若AB=CD,AD=BC,则四边形ABCD是□.
(3)方法三:有一组对边平行且相等的四边形是平行四边形.
即若AB=CD,AB∥CD,或AD=BC,AD∥BC,则四边形ABCD是□.
(4)方法四:对角线互相平分的四边形是平行四边形.
即若OA=OC,OB=OD,则四边形ABCD是□.
(5)方法五:两组对角分别相等的四边形是平行四边形
若∠ABC=∠ADC,∠BAD=∠BCD,则四边形ABCD是□.例:如图四边形ABCD的对角线相交于点O,AO=CO,请你添加一个条件BO=DO或AD∥BC或AB∥CD(只添加一个即可),使四边形ABCD为平行四边形.。

相关文档
最新文档