实验十三 线性方程组 数学实验课件习题答案
线性方程组的求解完美版PPT

推论:齐次线性方程组 A n n x n 1 0 n 1 只有零解
rA n
即 A 0 , 即系数矩阵A可逆。
2. 解的性质
性质:若 1,2 是齐次线性方程组Ax=0的解,
则 x k 1 1 k 2 2 仍然是齐次线性方程组Ax=b的解。
(可推广至有限多个解)
解向量:每一组解都构成一个向量
解空间: A X 0的所有解向量的集合,对加法和数乘
都封闭,所以构成一个向量空间,称为这个齐次 线性方程组的解空间。
3. 基础解系
设 1 ,2 , ,n r是 A X 0的解,满足
( 1 ) 1 ,2 ,,n r 线性无关;
( 2 ) A X 0 的任一解都可以由 1 ,2 , ,n r线性表示。
则称 1 ,2 , ,n r是 A X 0 的一个基础解系。
定理: 设 A是 m n矩阵,如果 r ( A ) r n ,
则齐次线性方程组 A X 0的基础解系存在, 且每个基础解系中含有 nr个解向量。
证明分三步: 1. 以某种方法找 nr个解。 2. 证明这 nr个解线性无关。 3. 证明任一解都可由这 nr个解线性表示。
线性方程组的求解
中国青年政治学院 郑艳霞
• 使用建议:建议教师具备简单的 MATHMATICA使用知识。
• 课件使用学时:4学时 • 面向对象:文科经济类本科生 • 目的:掌握线性方程组的知识点学习。
假设在美国某一固定选区国会选举的投票结果用三维向量表示为
x民 共
主 和
党 党D R得 得
票 票
若P是一个矩阵,满足各列向量均非负,且各列向量纸盒等于 1,则相对于P的稳定向量必满足:Pq=q。可以证明每一个满 足上述条件的矩阵,必存在一个稳定向量;并且,若存在整 整数k,使得Pk>0,则P存在唯一的向量q满足条件。
大学数学实验报告答案

实验题目:线性方程组的求解实验目的:1. 理解线性方程组的概念和求解方法。
2. 掌握高斯消元法和矩阵求逆法求解线性方程组。
3. 熟悉MATLAB软件在数学实验中的应用。
实验时间:2021年X月X日实验地点:计算机实验室实验器材:1. 计算机2. MATLAB软件实验内容:一、实验原理线性方程组是数学中一类常见的方程组,其形式如下:\[ Ax = b \]其中,\( A \) 是一个 \( m \times n \) 的系数矩阵,\( x \) 是一个 \( n \) 维的未知向量,\( b \) 是一个 \( m \) 维的常数向量。
线性方程组的求解方法有多种,如高斯消元法、矩阵求逆法等。
本实验主要介绍高斯消元法和矩阵求逆法。
二、实验步骤1. 设计一个线性方程组,并记录系数矩阵 \( A \) 和常数向量 \( b \)。
\[ \begin{cases}2x + 3y - z = 8 \\-x + 2y + 3z = 1 \\4x - y + 2z = 3\end{cases} \]系数矩阵 \( A \) 和常数向量 \( b \) 如下:\[ A = \begin{bmatrix}2 &3 & -1 \\-1 & 2 & 3 \\4 & -1 & 2\end{bmatrix}, \quad b = \begin{bmatrix}8 \\1 \\3\end{bmatrix} \]2. 使用MATLAB软件进行高斯消元法求解线性方程组。
```matlabA = [2 3 -1; -1 2 3; 4 -1 2];b = [8; 1; 3];x = A\b;```3. 使用MATLAB软件进行矩阵求逆法求解线性方程组。
```matlabA_inv = inv(A);x_inv = A_invb;```4. 比较两种方法得到的解,并验证其正确性。
三、实验结果与分析1. 使用高斯消元法求解得到的解为:\[ x = \begin{bmatrix}2 \\1 \\1\end{bmatrix} \]2. 使用矩阵求逆法求解得到的解为:\[ x = \begin{bmatrix}2 \\1 \\1\end{bmatrix} \]两种方法得到的解相同,验证了实验的正确性。
13实验十三 线性方程组

13.2 实验内容
13.2.1 求齐次线性方程组的解空间
给定线性齐次方程组AX=0(这里, A为m×n矩阵, X为n维列向量), 该方程组必定有解。如果矩阵A 的秩等于n, 则只有零解; 如果矩阵A的秩小于n, 则有非零解, 且所有解构成一向量空间。 MATLAB中, 可利用命令null给出齐次方程组的解 空间的一个正交规范基。
输出为: x0 = 2 1 0 0 x= [ 1, -1] [ 3, 0] [ 1, 0] [ 0, 1] 所以原方程组的通解为
2,1, 0, 0 k 1 1, 3,1, 0 k 2 ( - 1, 0, 0,1)
T T
T
解2 输入: clear; A=[1,-1,2,1;2,-1,1,2;1,0,-1,1;3,-1,0,3]; D=det(A) b=[1,3,2,5]'; B=[A b]; R1=rank(A) R2=rank(B) RR=rref(B)
解3: 还可以用克莱姆法则计算这个线性方程组的唯一解。为 计算各行列式, 输入未知数的系数向量, 即系数矩阵的列向量。 输入: clear; a=[1,0,1,0]’; b=[-2,1,3,-7]’; c=[3,-1,0,3]’; d=[-4,1,1,1]’; e=[4,-3,1,-3]’; x1=det([e,b,c,d])/det([a,b,c,d]) x2=det([a,e,c,d])det([a,b,c,d]) x3=det([a,b,e,d])/det([a,b,c,d]) x4=det([a,b,c,e])/det([a,b,c,d]) 输出为: x1 = -8.0000 x2 = 3.0000 x3 = 6.0000 x4 = 0
线性方程组典型习题解析

3 线性方程组3.1 知识要点解析(关于线性方程组的常用表达形式)3.1.1 基本概念1、方程组1111221n 12112222n 2m11m22mn mx x b x x bx x b a a a a a a a a a +++=⎧⎪+++=⎪*⎨⎪⎪+++=⎩称为含n 个未知量m 个方程的线性方程组,i)倘若12m b ,b ,....,b 不全为零,则该线性方程组称为非齐次线性方程组; ii)若12m b =b ==b 0=,则该线性方程组就是齐次线性方程组,这时,我们也把该方程组称为1111221n 12112222n 2m11m22mn mx x x x x x a a a a a a a a a +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩c c c 的导出组,(其中12m c ,c ,...c 不全为零)2、记11111221n m x b x b ,x ,b x b n m mn a a A a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎪==⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= 则线性方程组(*)又可以表示为矩阵形式 x b A =**3、又若记 1j 2j j mj ,j 1,2,n a a a α⎛⎫⎪ ⎪== ⎪ ⎪ ⎪⎝⎭则上述方程游客一写成向量形式 1122n n x x x b.ααα+++=***。
同时,为了方便,我们记(,b)A A =,称为线性方程组(*)的增广矩阵。
3.1.2 线性方程组解的判断1、齐次线性方程组x 0A =,(n=线性方程组中未知量的个数 对于齐次线性方程组,它是一定有解的(至少零就是它的解), i)那么,当r n A =秩()=时,有唯一零解;ii)当r n A =秩()<时,又非零解,且线性无关解向量的个数为n-r. 2、非齐次线性方程组x b A =()<() ()=()=n, ()=()()=()<n,n ().()>() A A A A A A A A A A A ⎧⎪⎧⎪⎪⎨⎨⎪⎪⎩⎪⎩秩秩无解;秩秩有唯一解,秩秩秩秩有无穷多解,且基础解系个数为 -秩秩秩不可能3.1.3 线性方程组的解空间 1、齐次线性方程组的解空间(作为线性方程组的一个特殊情形,在根据其次线性方程与非齐次线性方程组解的关系,我们这里首先讨论齐次线性方程组的解空间) 定理:对于数域K 上的n 元齐次线性方程组的解空间W 的维数为 A dim(W)=n-秩()=n-r ,其中A 是方程组的系数矩阵。
线性代数课后习题详细解答 (袁晖坪版)第三章 线性方程组

1 2 3 1⎞ 1 1 −4 1 ⎟ ⎟ 得 r ( A) ≠ r ( A) ,因此原方程组 0 −6 −3 10 ⎟ ⎟ 0 0 0 3⎠
无解。 ⎛ 1 −2 3 −4 4 ⎞ ⎜ 0 1 −1 1 −3 ⎟ ⎟ (3) 由方程组的增广矩阵 A = ( A, β ) = ⎜ ⎜1 3 0 1 1 ⎟ ⎜ ⎟ ⎝ 0 −7 3 1 −3 ⎠
r3 − 2 r2 r2 ↔ r3 r3 + 3r2
1 r3 ×( − ) 6 r2 + 3 r3 r1 − r3
r1 − r2
r2 − 2 r1 r3 − 2 r1
4 ⎧ x1 = − x4 , 4 ⎧ ⎪ 3 ⎪ x1 + 3 x4 = 0, ⎪ ⎪ ⎪ x = − x4 , 得 ⎨ x2 + x4 = 0, ,所以 ⎨ 2 ( x4为自由未知量) ,令 x4 =k ,得原方程组 2 ⎪ ⎪ x = −2 − x4 2 ⎪ x3 + x4 = −2; ⎪ 3 3 3 ⎩ ⎪x = x ⎩ 4 4 4 ⎧ ⎪ x1 = − 3 k , ⎪ ⎪ x = −k , 得通解为: ⎨ 2 (k ∈ R) 2 ⎪ x = −2 − k ⎪ 3 3 ⎪x = k ⎩ 4
11 1 ⎧ ⎪ x1 = 5 + k1 + 5 k 2 , ⎪ ⎪ x2 = k1 , 得原方程组得通解为: ⎨ (k1 , k2 ∈ R) ⎪x = 2 + 2 k ⎪ 3 5 5 2 ⎪x = k ⎩ 4 2 (5) 由方程组的增广矩阵: 1 1 1 1 0⎞ 2 −5 r 1 ⎛1 ⎛1 1 1 1 1 0⎞ r ⎜ ⎟ r3 − r2 ⎜ ⎟ A = ( A, β ) = ⎜ 3 2 1 1 −3 0 ⎟ → ⎜ 0 −1 −2 −2 −6 0 ⎟ ⎜ 5 4 −3 3 −1 0 ⎟ ⎜ 0 0 −6 0 0 0 ⎟ ⎝ ⎠ ⎝ ⎠
实验十三 线性方程组

实验十三 线性方程组
练习1 解方程组 , 相应的 MATLAB代码为 >>clear; >>A=[1 2;4 -3];b=[23;2]; >>X=A\b %左除法,解方程组AX=b 算得(x,y)=(6.6364,8.1818)。 如果用inv命令,相应的MATLAB代码为 >>clear; >>A=[1 2;4 -3];b=[23,2];x=inv(A)*b 仍算得(x,y)=(6.6364,8.1818)。
0 0 0 0
。
【练习与思考】
2. 求解下列非齐次线性方程组。
4 x1 2 x 2 x3 2 (1 ) 3 x1 x 2 2 x3 10 11x 3 x 8 1 2
2x y z w 1 (4 ) 3 x 2 y z 3 w 4 x 4 y 3 z 5 w 2
பைடு நூலகம்
;
x 2 y 23 4 x 3 y 2
实验十三 线性方程组
练习2 求不定方程组 解。相应的MATLAB代码为 >>clear; >>A=[1 2 1;3 -2 1];b=[2;2];x=A\b 求得一个特解(x,y,z)=(1,0.5,0)。
x 2y z 2 3x 2 y z 2
的一个特
【练习与思考】
1. 求下列齐次方程组的一个基础解系。
x1 x 2 2 x3 x 4 0 (1) 2 x1 x 2 x3 x 4 0 2 x 2 x x 2 x 0 2 3 4 1
;
2 x1 3 x 2 x3 5 x 4 3 x x 2 x 7 x 1 2 3 4 (3 ) 4 x1 x 2 3 x3 6 x 4 x1 2 x 2 4 x3 7 x 4
线性代数第三章第三节线性方程组的解课件

B1 1 ~1 1
1
1 2
1
1
1
1 1
2
~ 0 - 1 1 - - 2
0
1-
1 - 2
1
-
2
1 1
~ 0 -1 1-
2
- 2
0
0
2 - - 2
1
-
2
-
3
1 1
0 -1
1-
2
1 -
0
0
1 - 2
1
-
1
2
1 当 1时,
1 1 1 1 B ~ 0 0 0 0
例3 求解非齐次方程组的通解
x1 x1
-
x2 x2
x3 x3
-
x4 0 3x4 1
.
x1 - x2 - 2x3 3x4 -1 2
解 对增广矩阵B进行初等变换
1 - 1 - 1 1 0 1 - 1 - 1 1 0 B 1 -1 1 - 3 1 ~ 0 0 2 - 4 1
1 - 1 - 2 3 - 1 2 0 0 - 1 2 - 1 2
所以方程组的通解为
x1 1 0 1 2
x2 x3 x4
x2
1 0
0
x4
0 2 1
102 .
0
其中x2 , x4任意.
x1 - x2 a1
例4
证明方
程组
x2 x3
-
x3 x4
a2 a3
x4
-
x5
a4
x5 - x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
0
0 1
-2 2
线性方程组解PPT课件

VS
详细描述
高斯消元法的基本思想是将线性方程组转 化为上三角矩阵,然后通过回代过程求解 未知数。在消元过程中,通过行变换将方 程组的系数矩阵变为上三角矩阵,然后通 过回代过程求解未知数。该方法具有较高 的计算效率和精度,适用于大规模线性方 程组的求解。
迭代法
总结词
迭代法是一种求解线性方程组的方法,通过不断迭代逼近解的过程。
在物理领域的应用
力学系统
利用线性方程组描述多体系统的 运动状态,分析系统的平衡点和 稳定性,以及如何通过调整系统
参数实现稳定运动。
电路分析
通过线性方程组表示电路中的电流 和电压关系,分析电路的阻抗、导 纳和转移矩阵等参数,为电路设计 和优化提供依据。
波动方程
利用线性方程组描述波动现象,如 声波、光波和水波等,分析波的传 播规律和特性。
线性方程组解ppt课件
目录 CONTENT
• 线性方程组的基本概念 • 线性方程组的解法 • 线性方程组的解的性质 • 线性方程组的应用 • 线性方程组解的软件实现
01
线性方程组的基本概念
线性方程组的定义
线性方程组
由有限个线性方程组成的方程组,其中每个方程包含一个或多个 未知数。
线性方程
形如 ax + by + c = 0 的方程,其中 a, b, c 是常数,x 和 y 是未 知数。
详细描述
迭代法的基本思想是通过不断迭代逼近解的过程,最终得到线性方程组的近似解。迭代法有多种形式,如雅可比 迭代法、高斯-赛德尔迭代法和松弛迭代法等。这些方法通过迭代更新解的近似值,最终得到满足精度要求的解。 迭代法适用于大规模线性方程组的求解,但计算效率相对较低。
矩阵求解法
总结词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天水师范学院数学与统计学院
实验报告
实验项目名称线性方程组
所属课程名称数学实验
实验类型上机操作
实验日期2013.5.17
班级10数应(2)班
学号291010836
姓名吴保石
成绩
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致。
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求。
3.实验原理:简要说明本实验项目所涉及的理论知识。
4.实验环境:实验用的软、硬件环境。
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容。
概括整个实验过程。
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作。
对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明。
对于创新性实验,应注明其创新点、特色。
6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析。
7.实验结论(结果):根据实验过程中得到的结果,做出结论。
8.实验小结:本次实验心得体会、思考和建议。
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价。