流体力学——第1章绪论

合集下载

01第一章 绪论 《流体力学(第4版)》罗惕乾(电子课件)

01第一章 绪论 《流体力学(第4版)》罗惕乾(电子课件)
体积弹性模量定义为产生单位相对体积变化所需的压强增高:
E dp dv v
其中E为体积弹性模量,v为流体体积,负号是因为当受压时dp>0体 积减小dv<0,考虑到一定质量的流体 m=ρv = 常数, 其密度与体积成 反比:
dv vd 0, 即 dv d v
体积弹性模量可写为: E ddp(N /mddp2)
dt
d
dt
其中比例系数μ是反映粘性大小的物性参数,称为流体的粘性系数或粘度。
考虑如上图的流体元变形,因为Δ=(u+du)dt-udt=dudt,
又Δ= dytgdθ=dydθ,所以单位时间内的角变形 d等于速度梯度
dt
dd。uy
从而得到著名的牛顿粘性公式:
du
dy
其中τ的单位是帕:N/m2,流体粘性系数μ的单位是:N.s/m2
(3)表面张力σ(N/m) 液体表面由于分子引力大于斥力而在表层沿表面方向
产生的拉力, 单位长度上的这种拉力称为表面拉力。
2、毛细现象
(1)内聚力,附着力
液体分子间相互制约,形成一体的吸引力。
(2)毛细压强
由表面张力引起的附加压强称为毛细压强
3.毛细管中液体的上升或下降高度
d cos( ) 1 d 2hg
慢的趋势,而快层对慢层有向前的牵扯使其有变快的趋势
Δ
u+du τ
dy
d
u
t
t+dt
流体相邻层间存在着抵抗层间相互错动的趋势,这一特性称为流
体的粘性,层间的这一抵抗力即摩擦力或剪切力,单位面积上的剪
切力称为剪切应力τ
牛顿提出,流体内部的剪切力τ与流体的角变形率 成d正比(注
意对于固体而言,τ 与θ 成正比)

流体力学2020_01_绪论-雨课堂

流体力学2020_01_绪论-雨课堂

第一章绪论人类生活在一个被大气包围的星球上,而这颗星球表面的3/4又被广阔的海洋覆盖,我们的生活一刻也离不开流体。

流体力学在工业和日常生活中都有着广泛的应用,例如:飞行器、舰船、港口、石油平台、桥梁、水库、城市给排水管网、化工机械、动力设备、医疗设备等的设计需要流体力学;气象、海况和洪水的预报需要流体力学;大气、海洋、湖泊、河流和地下水中环境污染的防治也需要流体力学。

因此,掌握一定的流体力学知识和方法实在是有必要的。

本章内容提要:1)什么是流体?什么是流体力学?2)流体力学的研究方法;3)流体的主要物理性质;4)流体质点的概念和连续介质模型(或连续介质假定)。

连续介质假定是整个流体力学的基石之一,务必深入理解。

1.1 流体力学的研究对象和任务流体力学属于力学的一个重要分支,它是研究流体在各种力的作用下的平衡(静止)和运动规律的一门科学。

Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid statics) and the subsequent effects of the fluid upon the boundaries, which may be either solid surfaces or interfaces with other fluid (Frank M. White).传统上,流体力学的研究对象包括液体(liquid)和气体(gas),二者统称为流体。

近年来,等离子体也被纳入流体力学的研究范畴,因此等离子体在某些情况下也被视为流体。

本书将要讨论的流体限于液体和气体。

此外,在流体力学研究中,通常从形态上将物体分为固体(solid)和流体(fluid)两类。

流体力学研究的是流体中大量分子的宏观运动规律,而不是具体的分子运动,属于宏观力学的范畴。

这一点在本章第3节中将具体讨论。

第1章 流体力学绪论 矿山流体机械

第1章 流体力学绪论 矿山流体机械

第一节 流体力学概述 流体力学发展简史
第一阶段(16世纪以前):流体力学形成的萌芽阶段 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力
学成为一门独立学科的基础阶段 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个
方向发展——欧拉、伯努利 第四阶段(19世纪末以来)流体力学飞跃发展
第一篇 流体力学基础
流体力学是研究流体运动和平衡规律及 其应用的科学,是力学的一个重要分支。
流体力学研究的对象——液体和气体。来自流体力学的研究内容:1、关于流体平衡的规律,它研究流体处于静止 (或相对平衡)状态时,作用于流体上的各种力 之间的关系,这一部分称为流体静力学;
2、关于流体运动的规律,它研究流体在运动状态 时,作用于流体上的力与运动要素之间的关系, 以及流体的运动特征与能量转换等,这一部分称 为流体动力学。
第三阶段(18世纪中叶-19世纪末)流体力学沿着
两个方向发展——欧拉(理论)、伯努利(实验)
工程技术快速发展,提出很多经验公式
1769年 谢才——谢才公式(计算流速、流量)
1895年 曼宁——曼宁公式(计算谢才系数)
1732年 比托——比托管(测流速)
1797年 文丘里——文丘里管(测流量)
理论
流体力学在煤矿中的应用
矿山通风、排水、压气,水力采煤、 重力选矿,气力、水力运输,采煤机、 支架、机床设备的液压系统等。
第1章 绪论
本章学习目标:
掌握液体和气体流动性的区别; 掌握流体密度和重度的概念及计算; 掌握流体的压缩性和膨胀性特点; 掌握牛顿黏性定律及黏性的度量方法。
流体力学发展简史 流体力学的研究方法 流体的主要物理性质
矿山流体机械
龙岩学院物理与机电工程学院 陈虹微

流体力学重点概念总结

流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。

它的大小与作用面积成比例。

剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。

重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。

单位:kg/m3 。

重度:指单位体积流体的重量。

单位: N/m3 。

流体的密度、重度均随压力和温度而变化。

流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。

静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。

流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。

流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。

任何一种流体都具有粘滞性。

牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。

τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。

动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。

2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。

静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。

流体力学基础知识

流体力学基础知识
流体力学基础知识 流体力学基础知识
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充

流体力学基础知识

流体力学基础知识

第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。

其单位是牛顿,N。

单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。

其单位是N/kg。

2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。

3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。

4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。

其单位为N/(㎡·s),以符号Pa·s表示。

运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。

国际单位制单位㎡/s。

动力黏度μ与运动黏度ν的关系:μ=ν·ρ。

5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。

毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。

6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。

(P12,还需看看书,了解什么是以上三种模型!)。

第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。

2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。

两水头中的压强P必须采用相对压强表示。

b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。

3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。

流体力学第一章 绪 论 第二章 场论与正交曲线坐标

流体力学第一章 绪 论 第二章 场论与正交曲线坐标

全书分上下两册,三篇,十五章。上册包括第一篇“流体力 学基础”和第二篇“流体动力学基本原理及流体工程”,具体内 容为:绪论、场论与正交曲线坐标、流体静力学、流体运动学、 流体动力学微分形式基本方程、流体动力学积分形式基本方程、 伯努利方程式及其应用、量纲分析和相似原理、流动阻力与管道 计算、边界层理论、流体绕过物体的流动和气体动力学基础。下 册包括第三篇“计算流体动力学”,具体内容为:计算流体动力 学的数学物理基础、流体动力学问题的有限差分解法和流体动力
第一节 第二节 第三节 第四节
连续性方程 动量方程 动量矩方程 能量方程
退出 返回
第七章 伯努利方程式及其应用
第一节 第二节 第三节 第四节 第五节
伯努利方程式及其限定条件 实际流体的伯努利方程式 实际流体的总流伯努利方程式 相对运动的伯努利方程式
伯努利方程式的应用
退出 返回
第八章 量纲分析和相似原理
流体力学第一章 绪 论 第二章 场论与正
交曲线坐标
前言
本书是为高等工科院校非力学专业硕士研究生流体力学课程 教学编写的。考虑到教学时数有限,所以有些内容并未深入展开。 本书重点放在流体力学的基本概念、基本理论和解决流体力学问 题的基本方法上,目的在于为研究生开展课题研究和将来从事工 作提供必需的较为坚实的流体力学基础知识,同时也兼顾到工程 技术人员和科技工作者的需要。
第1页
退出 返回
第一章 绪 论
第一节 流体力学的研究对象和发展历史
自Newton(1642-1727)提出了三大运动定律和线性流体的粘性定律以后, 流体力学得到了较大的发展。十八世纪的一大批数学家如Bernoulli、 Euler、 Lagrange、 Laplace等在理想流体的假定下取得了许多无摩擦流 动问题的研究成果,如Euler的运动微分方程和其积分形式——Bernoulli 方程。但理想流体的假定有较大的局限性,工程实际中的大多数流动无 不受流体粘性的影响。当时的工程师们开始抵制这种他们认为不切实际 的理想流体流动理论,在几乎完全依赖实验的基础上发展了一门新的科 学——水力学。这样的实验科学家有Weber、Hagen、Poiseulle、Darcy 等。他们通过实验得到了诸如明渠流动、船舶阻力、管道流动、波动等 问题的有用数据。

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压缩系数 体积模量
p
1 V 1 1 v 2 [m / N ] V p p v p
EV V
p p p v [Pa] V v
V / V 1 v [K ] 膨胀系数(体胀系数): T T
19
1.3.3压缩性(compressibility)
牛顿流体 : 剪应力和变形速率满足线性 关系。
O

m<1 m=1
m>1
du dn
m
图1.3.4牛顿流体和非牛顿流体
非牛顿流体:剪切应力和变形速率之间 不满足线性关系的流体。
du k dn
18
1.3.3压缩性(compressibility)
1) 压缩性定义:
流体的密度或容积随压力或温度变化的性质。流体都是 可压缩的。
1.1.3 工程应用
江苏科技大学
流体力学已广泛用于国民经济的各个领域。

在水利建设中:如防洪、灌溉、航运、水力发电、河道整治等; 在航空航天中:如航天飞机、人造卫星等;

在国民经济的其他技术部门中:如机械工程中的润滑、液压传动; 船舶的行波阻力;市政工程中的通风、通水,高层建筑的受风作用; 铁路、公路隧道中的压力波传播、汽车的外形与阻力的关系;血液在 人体内的流动;污染物在大气中的扩散等。
1)流体与固体的区别:
固体:具有一定形状,不易变形,能承受法向应力, 亦能承受切向力,可以通过应力、 应变关系来描述 其变形。 流体:无固定形状,只能承受压力,一旦受到剪切 力,便连续不断变形,产生流动; 它只能通过应变 与速度变化率描述。
2
1.1.1 研究对象
2)液体与气体的区别: 液体——无形状,有一定的体积;不易压缩,存在自 由(液)面。 气体——既无形状,也无体积,易于压缩。 3)流体力学的进一步分类:
4
1.1 流体力学的研究对象及意义
5)流体力学研究方法: 理论方法、实验方法、数值方法。
江苏科技大学
* 理论研究方法:通过对流体物理性质和流动特征的科学抽象(近似)
抽出合理的理论模型。对这样的理论模型,根据机械运动的普遍规律, 建立控制流体运动的闭合方程组,将原来的具体流动问题转化为数学 问题,在相应边界条件和初始条件下求解。理论研究方法的关键在于 提出理论模型,并能运用数学方法求出理论结果。由于数学上的困难, 许多实际问题还难以精确求解 ——理论流体力学。
1.2 流体的连续介质假设
2)假设的合理性及其意义 合理性:在标准状态下( 0 0 C , 1atm)1 m m3 空气中,具 有2.7×1016 个分子,水具有3.4× 1019 个分子,气体分子 平均自由行程约为7×106 cm. 意义:可以应用数学方法描述流体的连续流动,亦即流体 的各种物理量应为空间和时间的单值连续可微函数。
以断面平均流速的计算方法。
* 隋朝完成的南北大运河。 * 隋朝工匠李春在(公元605~617年)修建的赵洲石拱桥 —— 拱背
的4个小拱,既可减压主拱的负载,又可宣泄洪水。
*中华人民共和国成立以来,根治了淮河工程,黄河的综合工程,长 江综合利用、整治工程和几座大桥相继建成,长江三峡工程顺利建成。
1.1 流体力学及流体力学课程概述
理想(静止)流体中没有切应力 力 p
p pnn
,不能承受拉力。表面力只有法向压应力
0
,只承受压
p p n n
pn
n
p pnn
n
pnn
0

pn
24
z
p pn n p( x, y, z, t )
D
px
n
pn
C
py
dz
A
pxx p yy pzz pnn
f ( x, y, z ) lim
F 1 F dF lim m0 m V 0 V dV
S V
单位质量质量力: f f x i f y j f z k 质量力的合力:F V f ( x, y, z, t )dV
S
p nn n
P
重力场中: f
图1.3.1
u y
• 发现内摩擦(剪应)力和变形速率呈线性
dux F u A h dy
16
1.3.2 粘性(viscosity)
3)粘性系数
—— 动力粘性系数( Pa.s )。 值越大,流体 =(T)
越粘,抵抗变形运动的能力越强。

——运动粘性系数(m2/s)。
2、在古典“水动力学”的基础上,Navier和stokes提出了著名的实际 粘性流体的基本运动方程——N-S方程。从而为流体力学的长远发展奠 定了理论基础。但是由于古典流体力学在理论上的假设,如理想流体与 实际不尽相符,或数学上求解方程的困难,不能满意地解决工程问题, 故而形成了以实验方法来制定经验公式的“实验流体力学”;
2)可压缩流体和不可压缩流体, 斜压、正压概念 d 0 不可压缩流体: dt
正压流体:
f p
斜压流体:
f ( p, T )
20
1.4 流体的界面现象和性质
1. 互不掺混流体界面上存在表面张力 (surface tension) 2. 流体与固壁界面表面张力 毛细现象:气、液、固三种界面之间的浸润作用。 3.流-固界面上速度的连续性
1.1 流体力学的研究对象及意义
江苏科技大学
3、从十九世纪末起,人们将理论分析方法和实验分析方法相结合以解 决实际问题,“古典流体力学” 和“实验流体力学”的内容也不断更 新。在此基础上,最终形成了理论与实际并重的现代流体力学;这期间, 英国工程师、物理学家雷诺阐明了相似原理,流体流动有层流和湍流两 种形态,判别准数雷诺数,雷诺方程。英国物理学家、数学家瑞利提出 了量纲分析求流动相似准则。 4、二十世纪六十年代以后,由于计算机的发明与普及,出现了在理论 分析和实验观察的基础上拟定计算方案,利用计算机编程求解数值解的 流体力学研究方法,即“计算流体力学“。现代测量技术如激光测速仪 等的应用和计算机在实验数据的监测、采集等中的应用,都促进了工程 流体力学的发展。
m d m lim V 0 V dV 1 比容 (specific volume): v
密度(density) : ( kg m ) in the SI unit system
3
重度(specific weight): g 比重(specific gravity): d
1.1 流体力学的研究对象及意义
5)流体力学的发展史
江 苏 科 技大 学
流体力学的萌芽,是自距今约2200年希腊学者阿基米德的《论浮 体》一文开始的。他对静止流体的性质作了第一次科学总结。 流体力学的主要发展,是从牛顿时代开始的,1687年牛顿的名著 《原理》讨论了流体的阻力、波浪运动等问题,使流体力学开始变为力 学中的一个独立分支。此后,流体力学的发展主要经历了四个阶段: 1、伯努利所提出的液体运动的能量估计及欧拉所提出的液体运动的解 析方法,为研究液体运动的规律奠定了理论基础,在这一基础上形成了 属于数学的古典“水动力学”(或古典流体力学);

1.2 流体的连续介质假设
江苏科技大学
实际流体是由分子组成的,流体分子是有一定形状的,流体分 子与分子之间存在间隙,每个分子不停地做无规则的热运动,从微 观结构上来看,在空间和时间上都是不连续的,但是流体力学研究 的是流体的宏观规律,一般不需要讨论流体分子的微观结构,客观 上又是稳定和连续的。因此需要对流体的物理实体加以模型化。
1753年瑞士自然科学家欧拉首先提出了连续介质模型 为宏观的 流体力学模型,即假定流体是由无数流体质点所组成,这些流体质 点紧密接触,彼此没有间隙。
* 流体质点
① 宏观上足够小, 以致于可以将其看成一个几何上没有维度的点; ② 微观上足够大,它里面包含许许多多的流体分子,其行为已经
表现出大量分子的统计学性质;
如流体密度:
m m lim * lim x, y , z , t V 0 V V V V
12
1.3 流体的物理性质
一、易流动性
江苏科技大学
静止流体不能承受切应力,在切应力作用下流体能产生连续变 形(流动)。
1.3 流体的物理性质
流体的密度 重度
g gk
V

pn
t
22
f
F
1.5.2. 表面力:
外界通过接触传递的力,用应力来表示。
P dP p n lim S 0 S dS
pnn p n n
pn t
S
S
V
p nn n
P
表面力的合力
P
p n ds
S

f F
pn
t
23
1.5.3 理想流体中一点处的应力—— Pascal’s law
粘性流体:界面上流体速度和固体运动速度相等。
v vb
(无滑移条件)
理想流体:界面上允许流体切向滑移,但不能穿透,即界面上 流-固速度的法向投影相等
v n v b n(不可穿透条件)
21
1.5 作用在流体上的质量力和表面力
1.5.1 质量力(体积力):
透过物质传递的力。分离体内任取一微元体积,其质量为 有 m ,
第1章 绪论( Preface )
目的:
了解流体的基本物理性质(流动性、粘性、可压 缩性)
内容:
• • • 连续介质假设 流体的流动性、粘性、可压缩性等物理性质 作用在流体上的力。
1
1.1 流体力学的研究对象及意义
1.1.1 研究对象 流体(Fluid),包括液体(Liquid)和气体(Gas)。
N m3
H O@4
相关文档
最新文档