概率论与数理统计历年真题-2011.10

合集下载

《概率论与数理统计》考试题(含答案)

《概率论与数理统计》考试题(含答案)

《概率论与数理统计》考试题一、填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则a )、若B A ,互斥,则=)B -A (p 0.5 ;b )若B A ,独立,则=)B A (p 0.65 ;c )、若2.0)(=⋅B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 . 3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X E 8 .4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。

5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。

其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ. 6、设二维随机向量),(Y X 的分布律是有 则=a _0.1_,X的数学期望=)(X E ___0.4___,Y X 与的相关系数=xy ρ___-0.25______。

7、设161,...,X X 及81,...,Y Y 分别是总体)16,8(N 的容量为16,8的两个独立样本,Y X ,分别为样本均值,2221,S S 分别为样本方差。

则:~X N(8,1) ,~Y X - N(0,1.5) ,{}5.12>-Y X p = 0.0456 ,~161521S )15(2χ,~2221S S F(15,7) 。

武汉大学《概率论与数理统计》期末考试历年真题及参考答案

武汉大学《概率论与数理统计》期末考试历年真题及参考答案

6、解:首先确定 f (x, y)
1[
1 x dy]dx
6,0 x 1, x2
y x;
0 x2
E(X)=
1[
0
x x2
x
6dy]dx
1 2
;E(X
2
)=
1[
0
x x2
x2
6dy]dx
3 10
;E(Y)=
1[
0
y
y y 6dx]dy
2 5
E(Y 2 )=
1[
0
y
y
(
1 2
x)(
1 2
y)
f
(x,
y), 所以X ,Y不独立;
(3)1[ 1h(x y) f (x, y)dy]dx 1[ x1 h(z)(x x z)dz]dx
00
0x
0 [ z1 h(z)(2x z)dx]dz 1 1 h(z)(2x z)dx]dz
1 0
0z
0 h(z)(z2 z 1)dz 1 h(z)(1 z2 z)dz
Z 0 1234
P
1 131 1
(Z) 16 4 8 4 16
武汉大学2011-2012 第一学期《概率论与数理统 计》期末试题及参考答案
一、解:(1)P(A+B)=P(A)+P(B)-P(A)P(B)=0.5+0.4-0.5×0.4=0.7
(2)P((A-B)|(A+B))=P((A-B)∩(A+B))/P(A+B)=[P(A)-P(A)P(B)]/P(A+B)=0.3/0.7=3/7 二、解:
y
2
6dx]dy
3 14
;E(XY)=

概率论与数理统计-期末试卷及答案

概率论与数理统计-期末试卷及答案

线O订O 2 .一袋中装有5只球,编号为1 , 2, 3, 4, 5.在袋中同时取3只,最大号码为4的概率是0.33•设随机变量X服从泊松分布,且P(X 1)P(X 2),则P(X 4) -e2.3 —X 1 0 34. 设随机变量服从,则E(X)P 0.7 0.2 0.1 -_-0.4 ,D(X) 1.44 .5. 若X ~ N(3,9),则P{| X | 6} = ___________ 1 3 1(用标准正态分布函数表示).1x26. 设随机变量X的密度函数为f(x) ke x, 则0 x 0k 0.5 ,P(X 2) 0 .雪夫不等式有P(X2425令Z max X,Y,则P Z 1 (1 1A.丄B. —4 2C.3、如果X和Y满足D X YA. X与Y独立B.C. D Y 0D.D. 1D X Y,则必有(BX与Y不相关4、设1,2,2,3,4为来自均匀分布总体U (0,)的样本值,则未知参00______ 专业 ______ 级《概率统计》期末试卷(A考试形式:(闭卷) 考试时间—监考老师:一、填空题(共20分,每小题2分)1•设P(A) 0.6,P(B) 0.7, A,B独立,则P(BA)0.28 .8.设n A是n次独立试验中事件A发生的次数,p为A在每次试验中发生的概率,则对任意的0,有lim P —p 0n n9 •若总体X ~ N(0, 2),X1,X2, ,X6是来自X的样本,令统计量1Y (X1 X2 X3)2(X4 X5 X6)22,则当c _2 .2 时,cY服从3华中师范大学2010--2011学年第一学期、选择题(共10分,每小题2 分)1、设随机变量X在2,4上服从均匀分布,则P 3 X 4(B )A. P 1.5 X 2.5B. P 2.25 X 3.25C. P 3.5 X 4.5D. P 4.5 X 5.52、设相互独立的随机变量X,Y具有同一分布,且X的分布律为10. 设 总体X 的均值已知,方 差2未知. X 1 ,X 2,,X n 为来自 X 的一个样本,?2Cin (X i2 21)为的无偏估计,则C = __ -A. 1.2B. -1C. 4D. 2.4 5、设总体X ~ ( ,2),,2均未知,现从中抽取容量为n 的样本,X,S 2分别为样本均值和样本方差,则 的置信水平为1的置信区间为( A )— S — S A.(X t n 1),X t 皿n 1))v'n I nB.(XS z.n/2(n S/2(n 1))1),Xz.nC.(X ——t .n /2(n1),Xt ■-: nD. (X——z ..n/2(n1),Xz..n/2(n1))1 A 1f Z zf X h z h z2/2(n 1))所以X Z~ N 0,1解:A 表示该学生被录取,B 1表示该生报考普通高中, B 2表示该生报考中专,B 3表示该生报考职业高中(1) 3P A P B i P A B i0.865i 1试求:(1)D X ,D Y ,cov X,YP B 1A PB 1PA B 10.7283解:(1) X 与Y 的边缘分布律分别为(2)P AX1 0 1 (5分)P 壬 2 38 8 813-80 2-83 - 00 Y P常数A2、证明题: 若随机变量X ~ N ,2,则ZX --- N 0,1 .…X解法一:Z——的分布函数为X1xP Z xP -x P Xxe<2(5分)令xU ,得1xu 2P Z xe 2dux2所以ZX~ N 0,1(5分)解法二:令g xx5则E X E YE XY 0EX 2 EY 2686D XD Y— t 2822dt( 3 分)cov X,YE XY E X E Y 0(3 分)(2)cov X,Y 0,从而 XY所以X 与Y 不相关.又 P{ X1,Y1} P{X1} P{Y 1},故二者不独立。

概率论与数理统计习题含解答,答案)

概率论与数理统计习题含解答,答案)

概率论与数理统计复习题(1)一.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率;(2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

2011年1,4,7,10月自考《概率论与数理统计》(经管类)试题和参考答案

2011年1,4,7,10月自考《概率论与数理统计》(经管类)试题和参考答案

2011年1月全国自考概率论与数理统计(经管类)试题全国2011年4月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ,B ,C 为随机事件,则事件“A ,B ,C 都不发生”可表示为( ) A .B.BC C .ABCD.2.设随机事件A 与B 相互独立,且P(A)=,P(B)=,则P(A B)=( )A . B.C . D.3.设随机变量X ~B(3,0.4),则P{X≥1}=( ) A.0.352 B.0.432 C.0.784 D.0.9364.已知随机变量X 的分布律为P{-2<X≤4 }=( )A.0.2 C.0.55 D.0.8 5.设随机变量X 的概率密度为f(x)=,则E(X),D(X)分别为 ( )A.-3,B.-3,2C.3,D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=则常数c=( )A. B.C.2D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X 与Y 相互独立,则X-Y~( )A.N(-3,-5)B.N(-3,13)C.N (1,)D.N(1,13)8.设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则XY=( )A. B.C. D.9.设随机变量X~2(2),Y~2(3),且X与Y相互独立,则( )A.2(5)B.t(5)C.F(2,3)D.F(3,2)10.在假设检验中,H0为原假设,则显著性水平的意义是( )A.P{拒绝H0| H0为真}B. P {接受H0| H0为真}C.P {接受H0| H0不真}D. P {拒绝H0| H0不真}二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

自学考试 04183-概率论与数理统计(经管类) 2007-2011历年真题版

自学考试 04183-概率论与数理统计(经管类) 2007-2011历年真题版

——给所有为知识而追求的人朋友是会计专业,要参加自考2011年10月的自考,报了两门公共课:概率与数理统计/线性代数,要我给她辅导下。

回想起自己的考研经历,那时都是根据考试大纲/考点复习的,不知道为什么自考没有找到考试大纲,如果有这个东西的话希望有人分享下。

其他方面,个人觉得做真题是最有效果的,因此特意花了点时间整理了历年试题(奇怪的是没找到2011年7月全国卷)。

在此分享给大家,祝她考试顺利,也祝所有参加考试的人,考试顺利。

为了照顾2003版的朋友,以及以后的更新,这里以doc格式上传。

如果大家有新的试题,也请及时更新与共享。

谢谢!注:更新时麻烦更新目录,以方便大家查找。

其中,有个别目录出现乱码,本人没有找到原因,是手动删除的。

目录浙江省2011年7月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。

全国2011年1月自考概率论与数理统计(经管类)试题 ............... 错误!未定义书签。

全国2011年1月自考概率论与数理统计(经管类)参考答案 ....... 错误!未定义书签。

浙江省2011年1月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。

全国2010年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2010年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2010年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2008年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

2011年考研数学概率论真题与答案--WORD版

2011年考研数学概率论真题与答案--WORD版

2011年概率论考研真题与答案1. (2011年数学一、三)设1()F x 和2()F x 为两个分布函数,其相应的概率密度1()f x 与2()f x 是连续函数,则必为概率密度函数的是_________. 【D 】 A.12()()f x f x B.212()()f x F x C.12()()f x F x D.1221()()()()f x F x f x F x + 解:根据分布函数的性质,1221()()()()0f x F x f x F x +≥1221[()()+()()]f x F x f x F x dx +∞-∞∴⎰12()()F x F x +∞=-∞1=2. (2011年数学一)设随机变量X 与Y 相互独立,且()E X 与()E Y 存在,记{}max ,U X Y =,{}min ,V X Y =,则()E UV =_________. 【B 】A. ()()E U E VB. ()()E X E YC. ()()E U E YD. ()()E X E V 解:因为当X Y ≥时,,U X V Y ==;当X Y <时,,U Y V X ==.所以,UV XY =,于是()()E UV E XY =根据X 与Y 相互独立,所以()()()E UV E X E Y =.3. (2011年数学三)设总体X 服从参数为(0)λλ>的泊松分布,12,,,(2)n X X X n ≥ 是来自该总体的简单随机样本,则对于统计量1=11n i i T X n =∑和12=1111n in i T X X n n -=+-∑,有__________. 【D 】A. 1212()(),()()E T E T D T D T >>B. 1212()(),()()E T E T D T D T ><C. 1212()(),()()E T E T D T D T <>D. 1212()<(),()()E T E T D T D T < 解: ()X P λ(),()E X D X λλ∴==1=1=111()()()n ni i i i E T E X E X n n λ∴===∑∑12=11111()()(1)11n i n i E T E X X n n n n n nλλλλ-=+=⋅-⋅+⋅=+--∑ 12()()E T E T ∴<122=1=1111()()()n n i i i i D T E X D X n n n n nλλ===⋅⋅=∑∑11222=1=11111()()()()1(1)n n i n i n i i D T D X X D X D X n n n n --=+=+--∑∑ 222111(1)()(1)11n n n n n n n n nλλλλλ=⋅-⋅+⋅=+=+--- 21()()D T D T ∴<4. (2011年数学三)设(,)X Y 服从22(,,,,0)N μμσσ则2()E XY =____. 【22()μσμ+】解: 因为(,)X Y 服从二维正态分布,且相关系数为零,则X 与Y 相互独立.22222()()()()[()()]()E XY E X E Y E X D Y E Y μσμ∴=⋅=⋅+=+5. (2011年数学三)且{}221P X Y ==,求: (1) 二维随机变量(,)X Y 的概率分布;(2) Z XY =的概率分布;(3) X 与Y 的相关系数XY ρ.解:(1) 由{}221P X Y ==, 可得:{}220P X Y ≠={}{}{}0,10,11,00P X Y P X Y P X Y ∴==-=======因此,(,)X Y 的概率分布为(2) 显然,Z XY =的可能取值为-1,0,1,由(,)X Y 的概率分布可得:(3)(),(),()0,()393E X D X E Y D Y ====, ()0E XY = (,)()()()0Cov X Y E XY E X E Y ∴=-=0XY ρ==6. (2011年数学一)设12,,,n X X X 是来自正态总体20(,)N μσ的简单随机样本,其中0μ已知,2>0σ,未知. (1)求参数2σ的最大似然估计 2σ;(2)计算 2()E σ和 2()D σ.解: 总体的概率密度为: 202()22(;)x f x μσσ--=似然函数为2012()2221()(;)ni i x ni i L f x μσσσ=--=∑==∏两边取对数,得 202212()ln ()ln 22nii xnL n μσσσ=-=--∑关于2σ求导,得2212222()ln ()+22()nii x d L nd μσσσσ=--=∑令22ln ()0,d L d σσ=解得λ的最大似然估计值 22011()ni i x n σμ==-∑ (2) 20(,)i X N μσ(0,1)i X N μσ-∴222002111()()()nni ii i X Xn μμχσσ==-∴=-∑∑20211[()]ni i E Xn μσ=∴-=∑, 20211[()]2ni i D Xn μσ=-=∑于是, 2222220021111()[()]=[()]==n ni i i i E E X E X n n n nσσσμμσσ===--⋅∑∑ 4442220022211112()[()]=[()]=2=n n i i i i D D X D X n n n n nσσσσμμσ===--⋅∑∑ 7. (2011年数学三)设二维随机变量(,)X Y 服从区域G 上的均匀分布,其中G 是由0,2x y x y -=+=以及0y =所围成的三角形区域. 求:(1)X 的概率密度()X f x ;(2) 条件概率密度()X Y f x y .解:(1)根据二维均匀分布的定义,(,)X Y 的概率密度为1,(,)(,)0,x y G f x y ∈⎧=⎨⎩其它X 的概率密度为02-010101()(,)112=2-1<200x x X dy x x x f x f x y dy dy x x x +∞-∞⎧≤≤⎪≤≤⎧⎪⎪==<≤≤⎨⎨⎪⎪⎩⎪⎩⎰⎰⎰其他其他(2) 2-2(1-y)01101()(,)=00y y Y y dx y f y f x y dx +∞-∞⎧≤≤≤≤⎧⎪==⎨⎨⎩⎪⎩⎰⎰其他其他在=(0y 1)Y y ≤≤时,X 的条件概率密度12-(,)2(1-y)()==()0X Y Y y x y f x y f x y f y ⎧≤≤⎪⎨⎪⎩其他。

大学概率论与数理统计试题库及答案a

大学概率论与数理统计试题库及答案a

<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档