大学概率论与数理统计必过复习资料试题解析(绝对好用)

合集下载

2021年大学基础课概率论与数理统计复习题及答案(精选版)

2021年大学基础课概率论与数理统计复习题及答案(精选版)

2021年大学基础课概率论与数理统计复习题及答案(精选版)一、单选题1、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。

那么对任意给定的a 都有A )0()1()a f a f x dx -=-⎰B ) 01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F【答案】B2、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。

那么对任意给定的a 都有A )0()1()a f a f x dx -=-⎰B ) 01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F【答案】B3、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5【答案】B4、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等(B)方差分析中的假设检验是双边检验 (C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异【答案】D 5、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 i m 211.()i m r e ij i i j S y y ===-∑∑2.1()r A i i i S m y y ==-∑6、对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平0.01下,下列结论中正确的是(A )必须接受0H (B )可能接受,也可能拒绝0H(C )必拒绝0H (D )不接受,也不拒绝0H【答案】A7、设 ()2~,N ξμσ,其中μ已知,2σ未知,123,,X X X 为其样本, 下列各项不是 统计量的是( )(A)22212321()X X X σ++ (B)13X μ+ (C)123max(,,)X X X (D)1231()3X X X ++ 【答案】A8、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是____ _(A)方差分析的目的是检验方差是否相等(B)方差分析中的假设检验是双边检验 (C) 方差分析中包含了随机误差外,还包含效应间的差异(D) 方差分析中包含了随机误差外,还包含效应间的差异【答案】D 9、已知随机变量X 的密度函数f(x)=x x Ae ,x 0,λλ-≥⎧⎨<⎩(λ>0,A 为常数),则概率P{X<+a λλ<}(a>0)的值 A )与a 无关,随λ的增大而增大 B )与a 无关,随λ的增大而减小C )与λ无关,随a 的增大而增大D )与λ无关,随a 的增大而减小【答案】C10、设X ,Y 是相互独立的两个随机变量,它们的分布函数分别为F X (x),F Y (y),则Z = max {X,Y} 的分布函数是A )F Z (z )= max { F X (x),F Y (y)}; B) F Z (z )= max { |F X (x)|,|F Y (y)|}C) F Z (z )= F X (x )·F Y (y) D)都不是i m 211.()i m r e ij i i j S y y ===-∑∑2.1()r A i i i S m y y ==-∑二、填空题1、用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=【答案】F(b,c)-F(a,c)2、设总体X ~12(,),01,,,,n b n p p X X X <<⋅⋅⋅为其子样,n 及p 的矩估计分别是 。

《概率论与数理统计》综合复习资料全

《概率论与数理统计》综合复习资料全

《概率论与数理统计》综合复习资料一、填空题1、一个盒子中有10 个球,其中有 3 个红球, 2 个黑球, 5 个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为;取到的两只球至少有一个黑球的概率为。

2、 X 的概率密度为 f ( x)1 e x2 2 x 1(x) ,则DX。

3、已知随机变量X ~N(1,1),Y~N(3,1) 且 X 与Y 相互独立,设随机变量Z 2X Y 5,则EX;DX。

4、已知随机变量X 的分布列为X-102P k0.40.2p则: EX=;DX =。

5、设X与Y独立同分布,且X~N(2,22) ,则D( 3X2Y) =。

6、设对于事件A、B、 C有 P(A)P(B)1,P(ABC)1P(C),412P( AB) P( BC )P(AC)1。

,则 A 、 B、 C 都不发生的概率为87、批产品中一、二、三等品各占60% 、30%、 10%,从中任取一件,结果不是三等品,则取到的是二等品的概率为。

8、相互独立,且概率分布分别为1,1 y 3f (x)e ( x 1)x) ;( y)(,其它则:E(X Y)=;E(2X3 2 )=。

Y9 、已知工厂A、 B 生产产品的次品率分别为2%和1%,现从由A、 B 工厂分别占30%和70%的一批产品中随机抽取一件,发现是次品,则该产品是 B 工厂的概率为。

10、设X、Y的概率分布分别为, 1 x 54e4 y,y01/ 4( x);( y),,其它0y0则: E(X 2Y) =;(X 2 4 ) =。

E Y二、选择题1、设X 和 Y 相互独立,且分别服从N(1,22) 和N (1,1),则。

A .P{ X Y 1}1/ 2B.P{ X Y0}1/ 2C .P{ X Y0}1/ 2D.P{ X Y 1}1/ 22、已知P( A)0.4,P(B)0.6,P(B | A)0.5 ,则P( A B)。

A .1B.0.7C .0.8D .0.53、设某人进行射击,每次击中的概率为1/3,今独立重复射击10 次,则恰好击中 3 次的概率为。

2021年大学公共课概率论与数理统计必考题及答案(精华版)

2021年大学公共课概率论与数理统计必考题及答案(精华版)

2021年大学公共课概率论与数理统计必考题及答案(精华版)一、单选题1、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是( ))(A ∑-=111n i i X n )(B ∑=-n i i X n 111 )(C ∑=ni i X n 21 )(D ∑-=-1111n i i X n 【答案】D2、服从正态分布,,,是来自总体的一个样本,则服从的分布为___ 。

(A)N (,5/n) (B)N (,4/n) (C)N (/n,5/n) (D)N (/n,4/n) 【答案】B3、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A )1.B )9.C )10.D )6. 【答案】C4、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是 A )当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭B ){}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅ C ){}(1),k k n k n kP X C p p n-==-0,1,2,,k n =⋅⋅⋅ D ){}(1),1k kn k i nP X k C p p i n -==-≤≤ 【答案】B5、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】AX 1-=EX 25EX =),,(1n X X X ∑==ni inX X 111-1-1-1-6、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A7、设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A )增大 B )减少 C )不变 D )增减不定。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

2020年大二必修概率论与数理统计必考题及答案(含解析)

2020年大二必修概率论与数理统计必考题及答案(含解析)

2020年大二必修概率论与数理统计必考题及答案(含解析)一、单选题1、设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是 A )123X X X ++ B )123max{,,}X X X C )2321i i X σ=∑ D )1X μ-【答案】C2、设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是(A )22111()1n i i S X X n ==--∑(B )22211()n i i S X X n ==-∑(C )221S X + (D )222S X + 【答案】D3、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A4、对于事件A ,B ,下列命题正确的是 (A )若A ,B 互不相容,则A 与B 也互不相容。

(B )若A ,B 相容,那么A 与B 也相容。

(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。

(D )若A ,B 相互独立,那么A 与B 也相互独立。

【答案】D5、设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S ni i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) n S X t /3μ-=(D) nS X t /4μ-=【答案】B6、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A7、在一次假设检验中,下列说法正确的是______ (A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 【答案】A8、设12,,,n X X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C XX θ-+==-∑为 2σ的无偏估计,C =(A )1/n (B )1/1n - (C ) 1/2(1)n - (D ) 1/2n - 【答案】C9、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A10、设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____(A)4114i i X X ==∑ (B)142X X μ+-(C)42211()i i K X X σ==-∑ (D)4211()3i i S X X ==-∑【答案】C 二、填空题1、设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

2020年大二必修概率论与数理统计必考题及答案(新版)

2020年大二必修概率论与数理统计必考题及答案(新版)

2020年大二必修概率论与数理统计必考题及答案(新版)一、单选题1、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A2、设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是( ))(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 【答案】B3、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销” (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。

【答案】D4、1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设:216292821X X Y X X Z ++=++= ,则YZ~( ) )(A )1,0(N )(B )16(t )(C )16(2χ )(D )8,8(F【答案】D5、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是 A )当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭B ){}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅ C ){}(1),k kn k nk P X C p p n-==-0,1,2,,k n =⋅⋅⋅ D ){}(1),1k k n ki n P X k C p p i n -==-≤≤【答案】B6、对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平0.01下,下列结论中正确的是(A )必须接受0H (B )可能接受,也可能拒绝0H (C )必拒绝0H (D )不接受,也不拒绝0H 【答案】A7、设离散型随机变量(,)X Y 的联合分布律为 (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则A ) 9/1,9/2==βαB ) 9/2,9/1==βαC ) 6/1,6/1==βαD ) 18/1,15/8==βα 【答案】A8、服从正态分布,,,是来自总体的一个样本,则服从的分布为___ 。

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案

《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。

2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。

3.a,b为随机事件,则p(ab)?0.3。

p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。

25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。

36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。

7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。

8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。

339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。

611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。

5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。

12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。

319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。

24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。

15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。

0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4)3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5)(6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式:(4) Bayes公式: 7.事件的独立性:独立(注意独立性的应用)第二章随机变量与概率分布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对任意, 2.连续随机变量:具有概率密度函数,满足(1)(2);(3)对任意,4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,;(6)为连续函数,且在连续点上, 5.正态分布的概率计算以记标准正态分布的分布函数,则有(1);(2);(3)若,则;(4)以记标准正态分布的上侧分位数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导数,,若不单调,先求分布函数,再求导。

第三章随机向量1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有(1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关于右连续;(3);(4),,;(5);(6)对二维连续随机向量, 6.随机变量的独立性独立(1)离散时独立(2)连续时独立(3)二维正态分布独立,且7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续时,;,; (3) 二维时, (4);(5);(6);(7)独立时, 2.方差(1)方差,标准差(2);(3);(4)独立时, 3.协方差(1);;;(2)(3);(4)时,称不相关,独立不相关,反之不成立,但正态时等价;(5)4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律3.中心极限定理(1)设随机变量独立同分布,或,或或,(2)设是次独立重复试验中发生的次数,,则对任意,或理解为若,则第六章样本及抽样分布 1.总体、样本(1)简单随机样本:即独立同分布于总体的分布(注意样本分布的求法);(2)样本数字特征:样本均值(,);样本方差)样本标准样本阶原点矩,样本阶中心矩 2.统计量:样本的函数且不包含任何未知数 3.三个常用分布(注意它们的密度函数形状及分位点定义)(1)分布,其中标准正态分布,若且独立,则;(2)分布,其中且独立;(3)分布,其中性质 4.正态总体的抽样分布(1);(2 ;(3 且与独立;(4);,(5)(6)第七章参数估计 1.矩估计:(1)根据参数个数求总体的矩;(2)令总体的矩等于样本的矩;(3)解方程求出矩估计 2.极大似然估计:(1)写出极大似然函数;(2)求对数极大似然函数(3)求导数或偏导数;(4)令导数或偏导数为0,解出极大似然估计(如无解回到(1)直接求最大值,一般为min或max) 3.估计量的评选原则,则为无偏;(2) 有效性:两个无偏估计中方差小的有效; (1)无偏性:若《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分) 1.设事件仅发生一个的概率为0.3,且,则生的概率为 2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间密度为4.设随机变量相互独立,且均服从参数为的指数分布,_________,5.设总体的概率密度为是来自的样本,则未知参数的极大似然估计量为解:1.即所以 .2.由知即解得,故 . 3.设的分布函数为的分布函数为,密度为则因为,所以,即故另解在上函数严格单调,反函数为所以4.,故 .5.似然函数为解似然方程得的极大似然估计为二、单项选择题(每小题3分,共15分) 1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若,则与也独立. (B)若,则(C)若,则与也独立. 与也独立(D)若,则与也独立.() 2.设随机变量的分布函数为,则的值为(A).(B)(C). (D). ()3.设随机变量和不相关,则下列结论中正确的是(A)与独立. (B)(C). (D). () 4.设离散型随机变量和的联合概率分布为若独立,则的值为(A). (A). . ()(C)(D) 5.设总体的数学期望为为来自的样本,则下列结论中正确的是(A)X1是的无偏估计量. (B)X1是的极大似然估计量. (C)X1是的相合(一致)估计量. (D)X1不是的估计量.()解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D)事实上由图可见A与C不独立2.所以 3.由不相关的等价条件知应选(B). 4.若独立则有应选(A). 2 , 9 故应选(A) 5.,所以X1是的无偏估计,应选(A). 三、(7分)已知一批产品中90% 0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设‘任取一产品,经检验认为是合格品’ ‘任取一产品确是合格品’ 则(1)(2) .四、(12分)从学校乘汽车到火车站的途中有3 件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差. 解:的概率分布为即的分布函数为五、(10分)设二维随机变量在区域匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概率密(1)的概率密度为(2)利用公式其中当或时时故的概率密度为的分布函数为或利用分布函数法六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标互独立,且均服从分布. 求(1)命中环形区域的概率;(2)命中点到目标中心距离1);(2). 七、(11分)设某机器生产的零件长度(单位:cm),今抽取容量为16 样本,测得样本均值,样本方差. (1)求的置信度为0.95 区间;(2)检验假设(显著性水平为0.05). (附注)解:(1)的置信度为下的置信区间为所以的置信度为0.95的置信区间为(9.7868,10.2132)(2)的拒绝域为,因为,所以接受《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1)设事件与相互独立,事件与互不相容,事件与互不相容,,,则事件、、中仅发生或仅概率为(2)甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取个球,发现它们是同一颜色的,则这颜色是黑色的概率为(3)设随机变量的概率密度为现对察,用表示观察值不大于0.5的次数,则___________. (4)设二维离散型随机变量的分布列为若,则(5)设是总体的样本,是样本方差,若,(注:, , , )解:(1)因为与不相容,与不相容,所以,故同理 . . (2)设‘四个球是同一颜色的’,‘四个球都是白球’,‘四个球都是黑球’则 . 所求概率为所以(3)其中,,(4)的分布为这是因为,由得,故(5)即,亦即 . 二、单项选择题(每小题3分,共15分)(1)设、、为三个事件,且,则有(A)(B)(C)(D)(2)设随机变量的概率密度为且,则在下列各组数中应取(A)(B)(C).(D)(3)设随机变量与相互独立,其概率分布分别为则有())(A)(B)(C)(D)()(4)对任意随机变量,若存在,则等于(A)(B)(C)(D)()(5)设为正态总体的一个样本,表示样本均值,则的置信度为的置信区间为(B)(C)()(D)解(1)由知,故(A)应选C. (2)即时故当应选(3)应选(4)应选(5)因为方差已知,所以的置信区间为应选D. 三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率。

解:设‘从箱中任取2件都是一等品’ ‘丢失等号’ .则;所求概率为四、(10分)设随机变量的概率密度为求(1)常数;(2)的分布函数;(3)解:(1)∴(2)的分布函数为(3)五、(12分)设的概率密度为求(1)边缘概率密度;(2);(3)的概率密度(2)(3)时时六、(10分)(1)设,且与独立,求;(2)设且与独立,求.;(2)因相互独立,所以七、(10分)设总体的概率密度为试用来自总体的样本,求未知参数的矩估计和极大似然估计解:先求矩估计故的矩估计为再求极大似然估计所以的极大似然估计为《概率论与数理统计》期末试题(4)与解答一、填空题(每小题3分,共15分)(1)设,,,则至少发生一个的概率为(2)设服从泊松分布,若,则(3)设随机变量的概率密度函数为今对进行8 独立观测,以表示观测值大于1的观测次数,则(4)的指数分布,由5个这种元件串联而组成的系统,能够正常工作100小时以上的概率为(5)设测量零件的长度产生的误差服从正态分布,今随机地测量16 ,. 在置信度0.95下,的置信区间为得(2)故 .解:(1)(3),其中 . (4)设第件元件的寿命为,则求概率为(5)的置信度下的置信区间为 . 系统的寿命为,所以的置信区间为(). 二、单项选择题(下列各题中每题只有一个答案是对的,请将其代号填入()中,每小题3分,共15分)(1)是任意事件,在下列各式中,不成立的是(A)(B)(C) . . (D). ()(2)设是随机变量,其分布函数分别为,为使是某一随机变量的分布函数,在下列给定的各组数值中应取 . (B). (C). (D). ()(3)设随机变量的分布函数为,则的分布函数为(A)(A).(B) . (D). ()(4)设随机变量的概率分布为 . 且满足,则的相关系数为(C) . (C). (D). ()相互独立,根据切比(5)设随机变量雪夫不等式有(A)0. (B . (C). (D). ()解:(1)(A):成立,(B):应选(B)(A). (B)(2). 应选(C)(3)应选(D)(4)的分布为,所以,于是 .应选(A)(5)由切比雪夫不等式应选(D)三、(8分)在一天中进入某超市的顾客人数服从参数为的泊松分布,而进入超市的每一个人购买种商品的概率为,若顾客购买商品是相互独立的,求一天中恰有个顾客购买种商品的概率。

解:设‘一天中恰有个顾客购买种商品’ ‘一天中有个顾客进入超市’ 则四、(10分)设考生的外语成绩(百分制)服从正态分布,平均成绩(即参数之值)为72分,96以上的人占考生总数的2.3%,今任取100个考生的成绩,以表示成绩在60分至84分之间的人数,求(1)的分布列.(2)和. 解:(1),其中由得所以故的分布列为(2),. 五、(10分)设在由直线及曲线y 上服从均匀分布,(1)求边缘密度和,并说明与是否独立. (2)求. 解:区域D的面积的概率密度为所围成的区域(1)(2)因,所以不独立.(3) . 六、(8分)二维随机变量在以为顶点的三角形区域上服从均匀分布,求的概率密度。

相关文档
最新文档