傅里叶光学在光纤光栅色散测量系统中的应用

合集下载

傅里叶光学在光纤光栅色散测量系统中的应用

傅里叶光学在光纤光栅色散测量系统中的应用

傅里叶光学在光纤光栅色散测量系统中的应用学生姓名专业学号学院研究方向2012年1月傅里叶光学在光纤光栅色散测量系统中的应用摘要:本论文首先通过傅里叶变换的方法分析普通的迈克尔孙光纤干涉仪,然后根据傅里叶分析理论建立了基于傅里叶变换光谱技术的光纤光栅色散测量系统。

详细阐述了系统组成和原理,针对测量方法和误差来源进行分析。

对啁啾光纤光栅的实际测量结果证明了系统的可行性。

测量重复性优于5ps。

系统具有结构简单,测量时间短等优点。

关键词:傅里叶变换;光谱技术;光纤光栅;色散正文:1.引言随着光纤光栅制作技术的不断提高及其应用领域的不断扩展,对其本身特性的要求越来越高。

普通的光谱分析仪只能满足光纤光栅反射率、带宽和中心波长特性的测试。

研制高效率、高精度的光纤光栅色散测量系统具有很大的实用价值。

本论文研究基于傅里叶变换光谱技术的测量系统采用双光束干涉原理,利用频率调制方法使不同波长的光受到不同频率的调制,然后通过傅里叶积分变换进行解调而获取不同波长的光谱色散信息。

系统本身具有多路接收和高通量的优点。

使用快速傅里叶变换算法通过计算机处理数据,进一步减少了获得最终结果的时间。

本文将结合傅里叶光学分析的基础来对系统原理、实验方法和误差来源进行详细说明并给出使用该系统对啁啾光纤光栅色散的实测结果。

2.测量原理基于傅里叶变换光谱技术的测量系统由光源、干涉仪、接收器和计算机组成。

其中干涉仪用来实现干涉调频,待测光纤光栅连接在迈克尔逊干涉仪的一臂。

接收器用于接收光功率并进行光电转换及模拟数字转换。

计算机对采集的干涉图信号进行离散傅里叶变换处理并输出最终的光纤光栅色散特性结果。

2.1 干涉仪在图 1 所示的普通光纤迈克尔逊干涉仪中,参考臂尾端的反射镜沿光轴方向移动,实现光程扫描。

光源发出的光经耦合器分振幅沿两臂传输,参考臂的光经反射镜反射,测量臂中满足布喇格波长的光被光纤光栅反射,两反射光回到耦合器叠加后的光强被探测器接收。

傅里叶变换光谱学方法测量光纤光栅色散

傅里叶变换光谱学方法测量光纤光栅色散

变 换 的方法 来 测 定 和研 究 光 谱 图_ 。它 同 时测 量 、 1 ] 记
录所有 谱元 , 比传 统 的 色散 型光 谱 仪 有 高 得 多 的信 噪 比和分 辨率 , 已广泛应 用 于化学 、 理和 生物 的基 本研 物 究 和检 测 、 离子 体热 核 反 应 诊 断 及 核 同位 素分 析 等 等
( c o lo pid S in e , in n o mainS in ea d S h o fAp l ce c s Be ig I fr t ce c n e j o Te h oo y Unv r i c n lg ie st y,Be ig 1 0 9 i n 0 1 2,Chn ) j ia
Ree rho o r rta som p crmercmeh dfr s ac nF ui rn fr s eto ti e t o o me s r gf e rt gds es n au i i rgai i ri n b n p o
Ja gFe g,Ya a h n,Ch n n s a in n n Xio a e g Qig h n
d s rb d e c i e .Th s u s o a u i g a d d t r c s i g a e d s u s d e is e fme s r n a a p o e sn r ic s e .Th a u e n e u t r ie n n e me s r me tr s ls a e g v n a d t e s u c so ro r n l z d Th y t m a h d a t g so h i p e s r c u ea d t es o t e s r h o r e fe r ra ea a y e . e s s e h s t e a v n a e ft esm l t u t r n h h r a u — m

傅里叶光谱仪的光路原理及应用

傅里叶光谱仪的光路原理及应用

傅里叶光谱仪的光路原理及应用
傅里叶光谱仪是一种能够将电磁辐射信号(例如可见光)分解成不同频率的光谱的仪器。

其基本工作原理是将待测光束分别通过不同的波长带通滤波器,将光分解成不同频率的多个光束,并将其分别投射到多个光散射角度的检测器上面。

傅里叶光谱仪中通常包括一个光源、一个单色器或者其他波长选择器、一个用于分束和收集光的光学系统、一个光电检测器和一个信号处理系统。

傅里叶光谱仪的应用极其广泛,它在监测和分析物质中所发射或吸收的特定的频率或波长上发挥重要作用,例如红外光谱会在高分子材料、着色剂和药物的分析中被使用,紫外光谱则在生化、制药、环境学和食品加工等领域中被广泛应用。

此外,傅里叶光谱仪在分析和研究宇宙中的物质起到了至关重要的作用,在石油和煤炭探测领域也有重大的应用价值。

总之,傅里叶光谱仪是一种强大的分析工具,可以帮助科学家和研究人员更全面地认识物质的特性和性质,有助于推动科学研究的进步和物质的利用和开发。

傅里叶变换投影光栅法测量物体的三维形貌-最新文档

傅里叶变换投影光栅法测量物体的三维形貌-最新文档

傅里叶变换投影光栅法测量物体的三维形貌-最新文档傅里叶变换投影光栅法测量物体的三维形貌三维形貌测量又称三维轮廓术或三维面形测量,是指运用微波、光电、机械、声音等各种手段获得物体表面三维空间形状的方法和技术,它有接触式和非接触式测量两种形式,非接触式测量测量速度快、分辨率高、无破坏、全场测量、适应性强,并且数对据的获取速度更快、自动化程度更高、成本比较低等优点,广泛应用与计算机辅助设计、数控加工技术、产品质量检测、医学诊断等方面,在建筑、桥梁、隧道等大型基础设施检测也有诸多应用。

投影光栅法属于光学非接触式测量,是现在研究越来越广泛的一个分支。

原本等间距的光栅投射到物体表面,受物体高度影响而产生变形。

高度变化的信息可以存储于变形光栅的相位信息,而参考平面的光栅图中不含有此信息。

如果能够找出一种方法将变形光栅图与参考光栅图中所包含的相位差解析出来,即可提取出物体的高度信息,再与平面信息作为参照的基准进行结合,即可得到物体的三维形貌信息。

该方法绕过了提取等高线、确定云纹级数等处理过程,通过编程可实现图像处理自动化,在数据的处理过程中,还可通过图像的采集密度来获取较大的数据量,可以大范围的提高光学测量的精度。

普通的光学方法制造出来的光栅制造过程比较困难,在使用过程中相位测量也容易出现各种问题,目前已不再使用真正的光栅,而是通过计算机生成的虚拟光栅来代替。

计算机可生成虚拟光栅或电子光栅,常用的有LCD(Liquid Crystal Display,液晶显示器)投影仪。

LCD光栅通过软件编程即可获得形状可控、频率可调的光栅,且可以方便精确的进行相移控制,克服了固定光栅片的缺陷,大大提高了系统的自适应能力。

在投影条件良好的情况下,投影仪能获得超过1:100的对比度。

投影光栅法关键在于相位测量,根据相位检测方法的不同,有莫尔等高法、相移法、卷积解调法、变换法等常用的方法,本文采用的是傅里叶变换方法。

1 数字影栅云纹技术与傅里叶变换方法的基本原理传统的投影栅线条纹是将制作好的光栅放于光源前面而形成,这种方法设备简单,但局限性很多,比如投射区域的亮度不均匀,且由于光栅的制作工艺精度有限使得产生的栅线不清晰,不能实现依照被测物体几何形状、尺寸以及测量的角度、方位、和间距来自动调节实验装置的投影和接收系统,灵活性比较差,并且不能根据实验需要来改变光栅的相位和周期。

傅里叶光学的实验报告(3篇)

傅里叶光学的实验报告(3篇)

第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。

2. 通过实验验证傅里叶变换在光学系统中的应用。

3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。

4. 理解透镜的成像过程及其与傅里叶变换的关系。

二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。

根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。

透镜可以将这些平面波聚焦成一个点,从而实现成像。

本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。

2. 光学系统:利用透镜实现傅里叶变换。

3. 空间滤波:在频域中去除不需要的频率成分。

4. 图像重建:根据傅里叶变换的结果恢复原始图像。

三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。

(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。

(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。

2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。

(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。

3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。

(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。

(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。

(4)观察频谱图像的变化,分析透镜的成像过程。

4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。

(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。

(3)观察滤波后的频谱图像,分析滤波器对图像的影响。

五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。

基于傅里叶变换光谱技术的光纤光栅色散测量系统

基于傅里叶变换光谱技术的光纤光栅色散测量系统
( n ) = 百 1 l ( r ) e x p ( 一 i 2  ̄ n r / N) , 式中, ( r ) 为, 璐 ( f ) 在
理。简化步骤如下 : 设当前点的相位为 , 前一点 的相位
为咖 。 若一 叮 T ≤咖 广 ≤叮 T , 则当前相位点不变 。 若 广 > 时间坐标上的离散值 : 把时间长度 分为 , v 等分 , 采样间 叮 T , 则当前相位点及其后各点一律减 2 叮 T 。 若q , - , 6 。 < 一 叮 T , 则 叮 T 。 通过解卷绕处理 , 就可 隔 告, 各采样点对应时刻为" r = r T s 。r - = O , 1 , …, , v 一 1 , 是 当前相位点及其后各点一律加 2 时域数据序列的序号。 n = O , 1 , …, ^ 1 , 是频域数据序列的 序数。 ( n ) 表示了对应于频率 n 。 的频谱 。 ( n ) 获得连续的相位, 进行数值微分 。
) = t a n - 1 (
对 的数值微分求得。
3 实 验

k H z , 采 集 ( 5 ) 48 据 。三 次 重 复 测 量 的 群
O 万 个 数 这样 , 光纤光栅相对时间延迟 r 的离散值就可以由 ( ) 6
4 实验 结 果
我们 采 用该 系统对 一 个 啁啾 光纤 光 栅进 行 测量 。这 个 啁啾光纤 光栅 的中心 波长 为 1 5 4 9 . 4 n m, 3 d B带 宽 为 0 . 8 n m。 平 面 反 射 镜 移 动 距 离 3 2 9 . 5 7 6 m m,采 样 频 率
是一复数, 因此它既含有幅值 , 又含有相位信息
2 R e [ T 。 2 ( r ) ] 。 2 ( r ) "1 2 " ( r ) = r‘ { ( t £ , ) + ( ) } 对负频率 , ( 埘 ) 的值为零, 可得 : ( t £ I ) ; ( w ) r ( w ) e x p { 一 ( t £ I ) } - 2 R e [ T 。 ( f ) ] } f o r w > O( 2 )

傅里叶光谱仪的应用

傅里叶光谱仪的应用

傅里叶光谱仪的应用
傅里叶光谱仪是一种广泛应用于物理、化学、生物等领域的光学测试仪器。

它是通过将光信号分解成不同波长的光谱分量来进行分析的。

傅里叶光谱仪的应用非常广泛。

以下是傅里叶光谱仪的几种主要应用。

1.光学材料表征
傅里叶光谱仪是用于光学材料表征的主要工具之一。

光谱分析能够提供光学材料的折射率、透过率、反射率等信息。

这些性质可以用于优化光学元件的设计,如透镜、滤光片和其他光学涂层。

傅里叶光谱仪也可用于分析光散射等其他材料特性。

2.光谱分析
傅里叶光谱仪也可用于光谱分析,包括化学分析和检测,例如气体分析、药物分析等等。

从分光仪读取的光谱数据可用于识别化合物、确定其浓度,从而应用于药物研究、医学诊断、环境监测等领域。

3.材料研究
傅里叶光谱仪也可用于化学和材料科学中的研究。

例如,傅里叶光谱仪可以用于
测量分子结构和能量层次,分析材料的热导率、电导率、热膨胀系数等物理性质,以及研究材料的晶体结构。

4.生物医学
在生物医学领域,傅里叶光谱仪也非常有用。

利用傅里叶光谱仪可以获得关于细胞和生物分子中的结构和化学信息。

它可以用于分析蛋白质、核酸和其他生物分子的光谱,以及用于了解生物分子的三维结构。

总之,傅里叶光谱仪是一种重要的仪器,被广泛应用于化学、物理、生物医学和其他领域。

其提供了许多关于物质的信息,以便研究者研究和应用。

傅里叶变换红外光谱仪使用的是光栅色散元件

傅里叶变换红外光谱仪使用的是光栅色散元件

傅里叶变换红外光谱仪使用的是光栅色散元件傅里叶变换红外光谱仪是一种光谱分析仪器,可用于对物质分子的结构及化学键信息进行分析。

其工作原理是将样品吸收后的红外光分离成不同波长的成分,通过检测不同波长的光强度变化来获得样品的红外光谱图像。

其中,光栅色散元件是傅里叶变换红外光谱仪中的核心组件之一,下面我们来详细了解一下它的工作原理和特点。

工作原理:光栅色散元件是一种利用光栅的衍射原理来分离光波的光学元件。

当入射光波通过具有周期性结构的光栅时,会发生衍射现象,不同波长的光波会发生相位差异,从而分离成不同角度的衍射光,形成不同波长的光谱线。

通过旋转光栅可改变衍射出来的光线的角度,从而改变输出的波长范围。

特点:1.高分辨率。

由于光栅具有高精度、高准直性的特点,因此能够在不影响光路长度的前提下实现高分辨率的光谱分离。

2.宽波长范围。

光栅色散元件能够适应不同波长的光谱分析需求,具有较大的波长范围。

通常可覆盖红外光谱中1000 cm-1至4000 cm-1的大部分波长范围。

3.易于控制。

光栅色散元件的旋转角度直接影响输出波长的范围,用户可以通过控制旋转角度来实现需要的波长范围。

4.适应性好。

光栅色散元件能够适应不同的光源和检测器,具有较强的适应性和通用性。

同时,其结构简单、制作工艺成熟,具有较高的稳定性和可靠性。

5. 成本较低。

相较于其他光谱分析元件,光栅色散元件制作成本较低,易于批量生产和使用,可以降低仪器的生产成本和使用成本。

总之,光栅色散元件作为傅里叶变换红外光谱仪的核心组件之一,具有高分辨率、宽波长范围、易于控制、适应性好和成本较低等特点,是一种重要的光谱分析元件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

傅里叶光学在光纤光栅色散测量系统中的应用学生姓名专业学号学院研究方向2012年1月傅里叶光学在光纤光栅色散测量系统中的应用摘要:本论文首先通过傅里叶变换的方法分析普通的迈克尔孙光纤干涉仪,然后根据傅里叶分析理论建立了基于傅里叶变换光谱技术的光纤光栅色散测量系统。

详细阐述了系统组成和原理,针对测量方法和误差来源进行分析。

对啁啾光纤光栅的实际测量结果证明了系统的可行性。

测量重复性优于5ps。

系统具有结构简单,测量时间短等优点。

关键词:傅里叶变换;光谱技术;光纤光栅;色散正文:1.引言随着光纤光栅制作技术的不断提高及其应用领域的不断扩展,对其本身特性的要求越来越高。

普通的光谱分析仪只能满足光纤光栅反射率、带宽和中心波长特性的测试。

研制高效率、高精度的光纤光栅色散测量系统具有很大的实用价值。

本论文研究基于傅里叶变换光谱技术的测量系统采用双光束干涉原理,利用频率调制方法使不同波长的光受到不同频率的调制,然后通过傅里叶积分变换进行解调而获取不同波长的光谱色散信息。

系统本身具有多路接收和高通量的优点。

使用快速傅里叶变换算法通过计算机处理数据,进一步减少了获得最终结果的时间。

本文将结合傅里叶光学分析的基础来对系统原理、实验方法和误差来源进行详细说明并给出使用该系统对啁啾光纤光栅色散的实测结果。

2.测量原理基于傅里叶变换光谱技术的测量系统由光源、干涉仪、接收器和计算机组成。

其中干涉仪用来实现干涉调频,待测光纤光栅连接在迈克尔逊干涉仪的一臂。

接收器用于接收光功率并进行光电转换及模拟数字转换。

计算机对采集的干涉图信号进行离散傅里叶变换处理并输出最终的光纤光栅色散特性结果。

2.1 干涉仪在图 1 所示的普通光纤迈克尔逊干涉仪中,参考臂尾端的反射镜沿光轴方向移动,实现光程扫描。

光源发出的光经耦合器分振幅沿两臂传输,参考臂的光经反射镜反射,测量臂中满足布喇格波长的光被光纤光栅反射,两反射光回到耦合器叠加后的光强被探测器接收。

图1 普通迈克尔孙干涉仪根据光谱表示方法,两臂光波场中某点光振动可以用解析函数给出:11102220()2()exp()exp()()2()exp()exp()U t a w i w iwt dwU t a w i w iwt dwϕϕ∞∞=-=-⎰⎰其中11()exp()a w i w ϕ-和22()exp()a w i w ϕ-分别是两臂光波场中某点光振动的傅里叶变换。

根据部分相干理论,如果用Γ表示重组光束的相对时延,2/h c Γ=, h 为反射镜从零光程差位置开始移动的距离,c 为光程差,那么探测器处强度可以用常数0I 和一个振荡部分0s I (τ)的和表示:0()()os I I I ττ=+。

忽略所乘常数,干涉图振荡部分()os I τ与互相干函数12()I τ的实部成正1212()(),()I U t U t ττ=<+>,这里〈〉表示求时间平均。

互相干本质上与光源和干涉仪的色散相位不均衡与和式子21()()()w w w φφφ=-有关。

将Γ12(τ) 归一化得到复相干度:1212()/γτ=Γ可得:12()()os I τγτ∝ (1)这里R e 表示复数的实部。

假设光场是稳定的,背景色散可忽略,Weiner-Khintchine 定理有:~12()()()exp{()exp()}G w r w i w iw dw γτϕτ+∞-∞=-⎰这里()S w =G ()()exp{()exp()w r w i w iw ϕτ-是光源归一化功率谱密度,可知()exp{()r w i w ϕ-是被测光纤光栅反射系数。

定义()S w =G ()()exp{()exp()w r w i w iw ϕτ-,可知()S w 和()exp{()r w i w ϕ-是傅里叶变换对112()(())F S w γτ-=,这里F{ }表示傅里叶变换。

根据傅里叶变换的线性定理*~~*11212122Re[()]()(){()()}F S W S W γτγτγτ-=+=+- 对负频率,~()S W 的值都为零,可得~~12()()()exp(()){2Re[()]}S W G W r w w F ϕγτ=-= (2)且对于w>0时,结合式( 1)和式( 2),有~()()exp((){()}os G W r w w F I ϕτ-∝~()(){()}os G W r w F I τ∝ (3) ()arg {()}os w F I ϕτ (4)等式(3) 的关系是经典傅里叶变换光谱学光谱分析的基础,已经广泛应用于光纤干涉仪。

式(4) 表明色散相位()w ϕ等于干涉图傅里叶变换的辐角,是离散傅里叶变换光谱技术中恢复色散相位的基础。

光纤光栅的色散一般可以用不同频率成分的相对时间延迟来表示()()g d w d w ϕτ=。

2.2离散傅里叶变换连续信号傅里叶分析中,在时域或频域都需要对连续函数作积分运算,而且其积分限都要包括从[-∞,+∞]全部时间轴或频率轴的范围。

为在数字计算机上完成傅里叶变换,对此进行了两点修改。

一是连续函数在时频域上都应变成离散数据;二是把计算范围从无限宽收缩到一个有限区域内。

离散傅里叶变换的结果周期化了时域和频域函数。

连续函数()os I τ的离散傅里叶变换表示为:101()exp(2nr /)N r r X n I i N N π-==-∑ 式中r I 为os I 在时间坐标上的离散值:把时间长度τ分为N 等分,采样间隔s T T N=,各采样点对应时刻为s rT τ=,0,1,.....1r N =-是频域数据序列的序数。

()X n 表示了对应于频率12n n w f n Nπ==∙的频谱。

()X n 是一复数,因此它既含有幅值,又含有相位信息1m I [()]()tan()Re[()]n X n w X n ϕ-=。

这样,光纤光栅相对时间延迟g τ的离散值就可以由()n w ϕ对n 的数值微分求得。

3. 实验基于傅里叶变换光谱技术的光纤光栅色散测量系统如图 2 所示。

光源部分使用ASE 宽带光源加可调滤波器的结构,一方面可以减小参考臂反射光中与光纤光栅反射光谱不匹配的部分从而提高条纹可见度,另一方面可以通过调节满足不同光纤光栅带宽和中心波长的需要。

参考臂加入偏振控制器匹配两臂中传输光的偏振态进一步提高干涉条纹可见度。

图2 基于福利叶变换的光谱技术色散测量系统计算机通过伺服气浮导轨控制平面反射镜沿光轴方向移动并对干涉图数据进行采样。

如果反射镜的运动速度为V ,那么波数为的光将被干涉仪以2f V σσ=的频率调制。

根据采样定理可知,为避免频谱混叠使信号无损地记录下来,干涉图的采样频率f s 必须大于max 24f V σσ≥Hz ,即以max 4V σ/s 的时间间隔对干涉图采样;过度采样会增加数据量,花费计算时间,而不会增加光谱信息。

因此实际测量中的采样频f s 选取要适当。

离散傅里叶变换后的光谱分辨率1σδ∆=,决定于平面反射镜的最大移动距离。

实验中不可能无限增大移动距离而达到任意高的分辨率,而且过大的移动距离会增加环境因素对系统的影响从而增大测量结果的误差。

通过在干涉图数据后补零可以对离散傅里叶变换后的光谱进行改善:使数据N 为2的整次幂便于使用快速傅里叶算法;对原光谱做插值可以在一定程度上克服干涉图数据过短产生的光谱泄漏现象。

式(5) 中反正切函数的值域是( -π,π] ,由等式获得的相位()n w ϕ仅仅是相位的主值,即卷绕的相位,不能直接进行数值微分。

因此必须对相位()n w ϕ先进行解卷绕处理。

简化步骤如下:设当前点的相位为()i ϕ,前一点的相位为(1)i ϕ-。

若- π≤()i ϕ-(1)i ϕ-≤π,则当前相位点不变。

若()i ϕ-(1)i ϕ->π,则当前相位点及其后各点一律减2 。

若()i ϕ-(1)i ϕ-<- π,则当前相位点及其后各点一律加2。

通过解卷绕处理,就可获得连续的相位,进行数值微分。

4. 实验结果我们采用该系统对一个啁啾光纤光栅进行测量。

这个啁啾光纤光栅的中心波长为1549.4nm ,3dB 带宽为0.8nm 。

平面反射镜移动距离329.576mm ,采样频率48kHz ,采集60万个数据。

三次重复测量的群时延如图3所示。

从图中可知F BG 中反射功率最大的光谱区域,其测量值的重复性最好。

在FBG 的3dB 反射带宽以上的区域,测量的重复性优于5ps 。

图3 三次重复测量光纤光栅群时延实验结果实验中,由于所测啁啾光纤光栅群时延远远大于背景群时延(飞秒量级),忽略了系统的背景色散,背景色散主要包括参考臂空气层的色散以及干涉仪中光纤长度不匹配带来的色散。

平面反射镜是系统中唯一运动的部件,其运动精度是系统性能好坏的关键。

由于我们用等时间间隔进行采样,反射镜扫描速度的不均匀性会导致光程差的非线性变化,从而对系统精度造成影响。

解决办法是使用高相干干涉仪监测反射镜的平移,加入过零电路测定高相干干涉条纹的过零点输出信号触发系统采样;也可以采集高相干干涉图数据在随后的数字计算中对宽带干涉图进行修正。

系统的误差还包括探测器和电子系统对频率响应的不一致,模拟信号在数字化过程中带来的量化误差以及离散傅里叶变换运算中的舍入误差等。

针对各种误差进行数学上的分析,从而进一步改进整个实验系统是我们今后的研究方向。

5.结语基于傅里叶变换光谱技术的建立是傅里叶光学分析法在光纤光栅测量系统的应用实例。

通过傅里叶变换光谱分析的方法分析传统的测量系统之后进行改进后的测量系统具有高通量、多路接收、高分辨率、宽自由光谱范围和杂散光低、结构简单、测量速度快等优点。

所测啁啾光纤光栅群时延具有5ps的重复性。

对系统进一步改进、集成和小型化后,具有很高的实用转化推广价值。

相关文档
最新文档