傅里叶光学答案
《傅里叶光学导论》历年考题.

《傅里叶光学导论》历年考题2002/2003(开卷)1.(24分) 一个衍射屏的振幅透射率函数为)()cos 2121()(2lr circ r r t β+=。
(1)这个屏的作用在什么方面像透镜?(2)给出此屏焦距的表达式。
(3)当用波长为m μλ6.0=的单色平面波垂直照明时,若23.0mm =β,mm l 20=,在其中的会聚焦点处的艾里斑半径0r 为多大(略去其他两项光束背景影响)?2.(20分) 某周期性物体的振幅透过率)()(nd x x t n -∑=∞-∞=δ,假定用均匀的平面波垂直照明,试证明这个物体是“自成像”的,意即物体后面周期性距离上能成自身的理想像,而不需要透镜。
3.(24分) 一成像系统光瞳函数为)2/()2/()()(),(l y rect l x rect l y rect l x rect y x P -=,mm l 20=,成像透镜焦距mm f 200'=,物像距mm d d o i 400==,照明波长m μλ5.0=。
(1)用非相干光照明时,求)2(2000ix d l f f f f λ=≤≤,这一区间的光学传递函数)0,(x f ℘,画出截面图(请注明标度尺)。
(2)用非相干光照明强度透射率)2cos 1(21)(02x f m x I π+=的物体,其中mm f 周252=,试求出其像的强度分布。
(3)用相干光照明时,求其频率传递函数)0,(x f H ,画出)0,(x f H 的截面图(请注明横纵坐标的标度尺)。
(4)用相干平面波垂直照明振幅透射率为)2cos 1(21)(01x f m x t π+=的物体,其中mm f 周5.371=,试求出其像的强度分布。
4.(20分) (1)波长m μλ5.0=的单色平面波。
(cm x 1043⨯=,cm y 1041⨯=,cm z 1023⨯=)。
试求光场x 轴和y 轴的空间频率。
(2)已知一个相干成像系统的截止频率cm c f 5000=,像面大小为cm cm 11⨯,最少可用多少个抽样点取值来表示。
傅里叶光学实验·

实验结果分析与讨论:一.测量小透镜的焦距1f (傅里叶透镜的焦距245.0f cm =)1. 实验光路:He-Ne 激光器→反射镜→直角三棱镜→望远镜(倒置)→小透镜→屏2. 测量焦距的方法:首先布置光路,使从望远镜射出的是平行光。
该平行光通过小透镜射到屏上。
我们知道,在透镜的焦点处,应该有光源的像点。
那么便可以通过移动接收屏找这个像点,以此位置作为焦点。
所以在实验中,我缓慢地移动屏,发现到某一个位置时屏上的像是明亮的一点。
在该位置附近左右移动屏,该点是被略微发散的圆形光斑。
选取那个像为亮点的位置为焦点的位置。
(也可以说,是选取屏上圆形光斑半径最小的位置。
)焦点与小透镜间的距离即为焦距。
所测数据如下:表一 小透镜的焦距得到12.413f cm =二.夫琅和费衍射1. 实验光路:He-Ne 激光器→反射镜→直角三棱镜→光栅→墙屏(此光路满足远场近似)2. 利用夫琅和费衍射测一维光栅常数光栅方程:()dsin =k k=0,1, 2, 3...θλ±±±(2)可以看到0级、1±级、2±级、3±级、4±级。
(3)0级、1±级、级光斑的位置:光斑都是等间距的。
如图三所示,间距为。
(4)计算光栅常数:934163310 1.96103.2210d m ---⨯⨯==⨯⨯三.观察并记录傅立叶频谱面上不同滤波条件的图样或特征1.实验光路:He-Ne激光器→反射镜→直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙屏2. 观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征(1)一维光栅:①滤波模板只让0级通过:无条纹图像,墙屏上一片红光。
如下图所示(下面两个图均为实验过程中当场拍摄):②滤波模板只让级、级通过:有竖条纹,明亮,清晰。
如下图所示:③滤波模板只让级、级通过:竖条纹,类似于上图,但是条纹间隔变密,宽度变细,光强变暗。
傅立叶光学期末试题及答案

傅立叶光学期末试题及答案一、选择题(每题4分,共40分)1. 在傅立叶光学中,下列哪个定理描述了一个三维函数在频域中的傅立叶变换与该函数在空域中的傅立叶变换之间的关系?A. 傅立叶变换定理B. 空域传递函数定理C. 空域采样定理D. 空域衍射定理2. 对于一个透镜,在使用傅立叶光学方法进行分析时,下列哪个参数描述了透镜的厚度?A. 光程差B. 折射率C. 焦距D. 相位延迟3. 傅立叶光学中的角谱表达了光波通过一个系统时的哪个参数?A. 相位B. 振幅C. 空间频率D. 时间频率4. 下列哪个方法可以用来获取光波的角谱?A. 干涉仪B. 衍射仪C. 透镜组合D. 聚焦光束5. 在傅立叶变换光谱学中,通过对透镜进行不同衍射角度的空间频率编码,可以实现哪项功能?A. 相位重建B. 滤波C. 聚焦D. 强度调制6. 傅立叶光学中的矢量衍射理论考虑了光波的哪些性质?A. 偏振B. 相位C. 振幅D. 空间频率7. 对于一个平面波,其在通过一个傅立叶光学系统后,下列哪个效应不会改变?A. 振幅B. 相位C. 波长D. 入射角度8. 在傅立叶光学中,下列哪个方法可以用来恢复被透镜组合模糊化的图像?A. 相衬显微镜B. 斑点衍射模糊理论C. 叠加投影法D. 透镜阵列9. 傅立叶光学中的反射与传输不完全衍射补偿方法的基本思想是什么?A. 利用傅立叶变换来补偿光波的相位失真B. 利用远场衍射方法来补偿光波的振幅丧失C. 利用多物体干涉的通道选择性来补偿光波传播的路径差D. 利用时频域变换来补偿光波的波长丢失10. 傅立叶光学中的相移干涉方法可以用来实现下列哪个功能?A. 相位测量B. 聚焦控制C. 衍射成像D. 滤波操作二、简答题(每题10分,共60分)1. 请简述傅立叶光学的基本原理及其在实际应用中的意义。
傅立叶光学基于傅立叶变换理论,将光波的传输、衍射与成像等现象用数学方法进行分析和处理。
其基本原理是将光波通过光学系统时的传递函数进行傅立叶变换,从而可以得到频域上的光波信息。
傅里叶光学chap3-2

光学系统的一般描述
光学系统由孔径和透镜组成,光波由一个平面向另一个平面传播 光学系统由孔径和透镜组成,光波由一个平面向另一个平面传播 孔径 组成 Ul’ (x’,y’) 透镜: 透镜 Ul (x’,y’) 孔径:真实开孔,屏,透明片等 孔径:真实开孔, 描述, 用复振幅透过率t(x 用复振幅透过率 0,y0)描述, 描述
exp( jkz ) k exp[ j ( x 2 + y 2 )] jλ z 2z
+∞
U ( x, y ) =
1 k exp( jkz ) ∫ ∫ U ( x0 , y0 ) exp j [( x − x0 ) 2 + ( y − y0 ) 2 ]dx0 dy0 jλz 2z −∞
∞
x y U ( x, y ) = c′ ∫ ∫ t ( x0 , y0 ) exp − j 2π λf x0 + λf y0 dx0 dy0 −∞ = c'
{t ( x0 , y0 )} f
x=
x y , fy= λf λf
= c' T ( f x , f y )
作业 3.00
的方孔, 一个边长为 a 的方孔,放在焦距为 f 的透镜的前焦面上, 的透镜的前焦面上,孔中心位于透镜 的光轴。 的光轴。用波长为λ 的单色平面波垂 直入射照明, 直入射照明,求透镜后焦面上的光场 复振幅分布和光强度分布。 复振幅分布和光强度分布。 如果孔中心与光轴的距离为b,结果会 如果孔中心与光轴的距离为 结果会 如何? 如何?
x-y z S’
Ul’
∑p
t (x0,y0)
∑0: 输入面
输出面
d0
f
1 k 第三步: 第三步 直接写出 平面传输到观察平面x-y上造成的场分布 传输到观察平面 第一步:直接写出∑0 第一步::由x0-y0平面传输到观察平面− j 上造成的场分布 2 2 U ( x0 , y0 ) = exp ( x0 + y0 ) f − d0 前表面的光场分布: 衍射的F.T.表达式, 2( f − z=f-d0 ): 前表面的光场分布: 衍射的F.T.表达式,注意 d 0 ) Fresnel衍射的F.T.表达式 为(利用 Fresnel
傅里叶光学解析

20世纪上半叶
20世纪40年代至 60年代 20世纪60年代以来
1、傅里叶光学的发展历史
5)现代光学发展的三件大事
✓ 1948年,全息术的诞生,物理学家第一次精确地拍摄下一张立体的物体 像,它几乎记录了光波所携带的全部信息 (这正是“全息”名称的来历)! ✓ 1955年,科学家第一次提出“光学传递函数”的新概念,并用它来评价 光学镜头的质量。 ✓ 1960年,一种全新的光源-激光器诞生了,它的出现极大地推动了相关学 科的发展。
2、傅里叶光学的研究内容和研究方法
1)傅里叶光学基于傅里叶变换的方法研究光学信息在线性系统中的 传递、处理、变换与存储等。 2)傅里叶光学主要的研究内容包括: ✓光在空间的传播(衍射和干涉问题) ✓光学成像(相干与非相干成像系统) ✓全息术(包括计算全息) ✓光学信息处理(相干滤波、相关识别等) ✓光学变换、光计算、光学传感等 3)傅里叶光学主要的研究方法:
傅里叶光学 Fourier Optics
薛常喜 光电工程学院
1、傅里叶光学的发展历史
1)光学是一门古老的学科,主要研究光波的本性、光 波
的传播以及光与物质的相互作用。 2)光学的发展历史可以追溯到公元前5世纪,到目前 已经
有2000多年的历史,并逐渐在物理学中形成了一门 独立
的基础学科。 3)光学的发展历史可以看成是人们对光本性认识的历
史,以及人们利用光学技术推动社会不断进步的历 史。 4)在整个发展历史中,光学也从经典光学发展到现代
光学的发展历程
第一阶段:17世纪 中叶之前
经典光学的早期发 展阶段
【几何光学】
傅里叶光学3-07

3.6光学成像系统的频率特性及其传递函数
MTF的重要性
调制度 modulation , 又称为对比度、反衬度,是评价像质 的定量方法之一。
像的调制度V的定义:
V IM Im IM Im
IM : 最大光强 Im : 最小光强
0, 即IM= Im,像面光强无变化; V= 1, 即Im=0,对比度最高, 条纹结构最清晰。
输入像调制度: V入 = m 调制传 递函数
M TF
V出
V出 V入
Hc Hc I0
Hc Hc
h ' x dx
I
F T h ' I x F T h ' I x
0
OTF
空频为ξ0,调制度为m的余弦条纹,经过非相干成像系统后,成为空频ξ0 , 调制度为 m|OTF|ξ= ξ0的余弦条纹。这也是OTF的物理意义。
衍射受限系统的相干传递函数是光瞳函数的连续两次傅里叶变换。 当光学成像系统存在像差时,用广义光瞳函数代替光瞳函数,并 对其进行两次傅里叶变换得
m 2
h 'I
1
x d x
e
i 2 0 xi
h 'I
xe
2
2
i 2 0 x
dx
m 2
e
i 2 0 xi
h 'I ( x ) e
3
i 2 0 x
dx
第一项是像强度的直流分量(均值) 第二项中的积分是
F T h ' I x
I i xi 1 x x x 1 e x p i 2 i e x p i 2 i 1 c o s 2 i 2 d d d
傅里叶光学金典试题及答案和重要知识点总结

因位置不同而引起的位相色散
x , y
z z
菲涅耳衍射可视为函数
U
0
(
x0
,
y0 ) exp[
j
k 2z
( x0 2
y
0
2
)]
的傅里叶变换在处的值
(3)频域(角谱)表达式: A(u,v) A0 (u,v)exp( jkz)exp[ jz(u2 v2 )]
A(u, v) A0 , • H , H(u,v) exp( jkz)exp[ jz(u2 v2 )] A(u, v) 衍射场角谱 A0 , 孔径后角谱
3、脉冲响应是孔径的傅里叶变换或夫朗和费衍射图样,中心在(-Mx0, -My0)点。 8. 衍射受限系统, 阿贝成像理论;
所谓衍射受限 是指仅仅考虑系统的衍射限制, 不考虑系统的几何像差。
在衍射受限系统中,光的衍射仅受到系统孔径光阑尺寸的限制,因此在考察衍射受限系统时,实际上主要考察
孔径光阑的衍射作用。如果入(出)射光瞳无限大,则光的衍射不受系统的限制,点物应该成理想的点像。然而,
δ 函数的性质:①偶函数性质: (- x) (x) ②坐标缩放性质: (ax) 1 (x)
a
③筛选性质: f (x) (x x0 )dx f (x0 )
④乘积性质: f x• x x0 f x0 • x x0
⑤卷积性质: f x x f x
f x x x0 f x x0
成像过程包含了两次衍射过程:由物面到后焦面,物体衍射光波分解为各种频率的角谱分量,即不同方向传播
的平面波分量,在后焦面上得到物体的频谱。这是一次傅里叶变换过程。由后焦面到像面,各角谱分量又合成为
像,这是一次傅里叶变换逆过程。
9. 相干成像系统的点扩展函数, 相干传递函数; 相干照明系统中,脉冲响应是点物产生的衍射斑的振幅分布。
Questions and Answers for Fourier Optics_傅里叶光学问题解答

By Li Pei
2014 Questions and Answers for Fourier Optics
1.What is the Fourier transform of a two-dimensional function g(x,y)? A: F {g ( x, y )} G ( f X , fY )
-2-
2014 Questions and Answers for Fourier Optics
By Li Pei
transfer function z 1 ( f X ) 2 ( fY ) 2 exp j 2 H ( f X , fY ) 0 The H ( f X , fY ) is nonzero only for f X 2 fY 2 1 f X 2 fY 2 otherwise 1
, showing the propagation
phenomenon as a linear spatial filter with a finite bandwidth characterized by a circular region of radius 1 in frequency plane.
-1-
2014 Questions and Answers for Fourier Optics
By Li Pei
angular spectrum of the transmitted field can be described by the convolution of the angular spectrum of the incident field (A i ) with the angular spectrum of the aperture (T). That is At ( , ) Ai ( , ) T ( , )