用比例解决问题课件(校级公开课定稿)

合集下载

新人教版六年级数学下册《用比例解决问题》课件公开课共26页

新人教版六年级数学下册《用比例解决问题》课件公开课共26页
新人教版六年级数学下册《用比例解 决问题》课件公开课
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
26

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
Hale Waihona Puke ▪27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

《用比例解决问题》课件

《用比例解决问题》课件

04
比例问题在生活中的应用
购物中的折扣问题
总结词
折扣问题在购物中很常见,通过比例 关系可以快速计算出商品的实际价格 。
详细描述
在商店促销活动中,经常会有折扣和 优惠券等促销方式。通过比例关系, 我们可以快速计算出商品打折后的实 际价格,从而更好地做出购买决策。
金融中的利率问题
总结词
利率问题是金融领域中非常重要的一环,通过比例关系可以计算出投资回报和贷款利息 。
05
练习与巩固
基础练习题
总结词:巩固基础
详细描述:基础练习题是为了帮助学生掌握比例的基本概念和应用,题目难度较 低,主要涉及基础的比例计算和简单的应用题。
进阶练习题
总结词
提升解题能力
详细描述
进阶练习题是在基础练习题的基础上增加难 度,题目涉及较复杂的比例关系和计算,以 及比例在实际问题中的应用,旨在提高学生 的解题能力和思维灵活性。
面积、体积问题
总结词
面积和体积问题中经常涉及到比例关系,通过比例关系可以求解未知的面积或体积。
详细描述
在面积和体积问题中,通常已知部分量之间的关系,需要求解未知的量。例如,已知长方形的长和宽,可以求出 面积;或者已知圆柱体的底面半径和高,可以求出体积。通过比例关系,可以将问题转化为数学模型,从而方便 求解。
《用比例解决问题》课件
contents
目录
• 比例的定义与性质 • 比例问题的解决方法 • 比例问题实例解析 • 比例问题在生活中的应用 • 练习与巩固
01
比例的定义与性质
比例的定义
比例是指两个比值相等的关系 ,通常表示为“a:b=c:d”。
比例分为正比例和反比例两种 ,正比例是指两个量同时扩大 或缩小,反比例是指一个量扩 大时另一个量缩小。

用比例解决问题pptPPT课件

用比例解决问题pptPPT课件

02
比例的基本性质
交叉相乘
01
交叉相乘是指比例中两个内项的乘 积等于另外两个外项的乘积的性质。 例如,如果 a:b = c:d,那么 a/b = d/c 或 a/c = b/d。
02
这一性质在解决比例问题时非常 有用,因为它可以帮助我们建立 等式,从而找到未知数的值。
比例的传递性
比例的传递性是指如果三个量 a、b、 c 满足 a:b = b:c,那么 a:b:c = a/b × c/b = a/c。
比例的概念是数学和生活中常见的基本概念,广泛应用于各种领域,如工程、经济、 医学等。
比例的应用场景
01
02
03
工程设计
在工程设计中,比例常用 于确定各个部分的大小和 位置,例如建筑设计、机 械设计等。
经济分析
在经济分析中,比例常用 于比较不同经济指标之间 的关系,例如GDP、CPI 等。
医学研究
在医学研究中,比例常用 于比较不同药物或治疗方 法的效果,例如药物疗效、 手术成功率等。
比例用于确定物体间的位置关系,例 如通过比例尺在地图上表示实际距离。
比例在代数中的应用
比例用于解决方程式问题,例如 通过交叉相乘法解线性方程组。
比例用于研究函数的性质,例如 通过比例关系分析函数的增减性。
比例用于解决实际生活中的问题, 例如通过比例关系计算投资回报
率或利率。
04
比例在实际生活中的应用
03
比例在数学中的应用
分数与比例的关系
分数是比例的一种表 现形式,用于表示部 分与整体的关系。
分数和比例在数学中 经常一起使用,用于 解决各种问题。
比例可以转化为分数 形式进行计算或比较 大小。
比例在几何学中的应用

用比例解决问题课件

用比例解决问题课件

灵活运用比例的算过程。
详细描述
比例的性质包括交叉相乘、合比性质等。这些性质可以帮助我们快速找到比例关系中的未知量,简化计算过程, 提高解题效率。同时,要注意在解题过程中保持逻辑清晰,避免出现计算错误。
THANKS。
商业计算
在商业中,比例常被用来 计算成本、利润和销售量等。
物理实验
在物理实验中,比例常被 用来描述物体的质量和体 积等之间的关系。
数据分析
在数据分析中,比例常被 用来描述数据分布和趋势等。
02
比例的解决法
直接比较法
总结词
通过直接比较两个比例的大小, 判断结果。
详细描述
根据题目给出的比例关系,直接 比较两个比例的大小,从而得出 结果。这种方法适用于比例关系 明显且简单的题目。
详细描述
根据题目给出的比例关系,设未知数表示相关的量,然后通 过代数运算,将比例问题转化为方程或不等式问题。最后解 方程或不等式,得出结果。这种方法适用于比例关系复杂且 需要求解多个未知数的题目。
03
比例例解析
购物优惠比例问题
01
总结词
理解优惠券、折扣和积分兑换等优惠方式,根据比例计算实际支付金额。
用比例解决件
• 比例的定义与性质 • 比例问题的解决方法 • 比例问题实例解析 • 比例问题在生活中的应用 • 比例问题的注意事项与技巧
01
比例的定与
比例的定 义
01
比例是指两个比值相等的关系, 通常表示为“a:b=c:d”的形式, 其中a、b、c、d是四个实数。
02
比例可以用来描述两个数量之间 的关系,当一个数量变化时,另 一个数量也会按照一定的比例变化。
02 03
详细描述
在购物时,经常会遇到各种优惠方式,如满减优惠、折扣优惠、积分兑 换等。解决这类问题需要理解优惠比例的计算方式,根据商品原价和优 惠比例,计算出实际需要支付的金额。

《用比例解决问题》课件

《用比例解决问题》课件

总结
通过本次课程,我们学习了用比例解决问题的基本方法和注意事项。比例在实际生活中有着广泛的应用, 希望您能在各种情境下灵活运用比例来解决问题。
《用比例解决问题》PPT 课件
欢迎来到本次课程,我们将探讨如何用比例解决各种实际问题。比例可以帮 助我们求解量的关系、未知数的值以及比较不同的数据量大小。
概述
比例是解决实际问题的有力工具。我们将介绍如何用比例解决一些常见问题, 比如求解关系、未知数和比较数据量。
问题1:已知一个比例,求解另一个未知 数的值
实例分析
食物中营养成分的比例 计算
以几个实例演示如何计算食物 中不同营养成分的比例,帮助 您做出更健康的饮食选择。
测量物体密度的比例计算
通过实际示例,我们将展示如 何使用比例计算物体的密度, 有助于您更好地了解物体的性 质。
比较不同年份的经济增 长率
通过比例计Байду номын сангаас,我们可以比较 不同年份的经济增长率,揭示 经济发展的变化趋势。
通过已知比例来计算未知量的值是常见问题。我们将详细介绍如何在正比例和反比例的情况下求解未知 数的值。
问题2:已知两个量的比值,求解两个量 的实际值
通过已知比值来计算两个量的实际值也是常见问题。我们将解释如何根据比重、浓度等物理量的比值计 算出实际值。
问题3:比较不同数据量的大小
比例可用于比较不同的数据量大小。我们将演示如何通过比率、百分比等来 比较数据量,帮助您更好地理解数据的关系。

《用比例解决问题》课件PPT

《用比例解决问题》课件PPT
将比例与方程结合,让学生通过解方程来找到未 知的比例关系,进一步加深对比例的理解。
综合练习题
总结词
涉及多个知识点的题目,旨在提高学生的综合运用能力和 解题技巧。
比例与其他数学知识的结合
将比例与其他数学知识(如代数、几何等)结合,设计一 些综合性较强的题目,以提高学生的解题技巧和综合运用 能力。
实际应用中的比例问题
成本控制
企业通过分析生产成本的比例关系, 优化生产流程和原材料采购,降低 生产成本。
质量管理
企业使用比例来控制产品质量,例 如抽样检验中样本与总体之间的比 例,以确保产品质量符合标准。
商业决策中的比例问题
市场占有率分析
企业通过分析市场占有率的比例 关系,了解自身在市场竞争中的
地位和优劣势。
销售预测
投资者根据自身的风险承受能力和投 资目标,使用比例来配置不同类型的 资产,以实现资产的保值增值。
风险评估
投资者使用比例来评估投资风险,例 如股票和债券的市盈率、市净率等指 标,以确定投资的安全性和盈利性。
生产制造中的比例问题
生产计划制定
企业根据市场需求和产能,制定 合理的生产计划,以确保产品供
应和销售的平衡。
《用比例解决问题》课件
目录
• 比例的定义与性质 • 比例问题的解决方法 • 比例问题实例解析 • 比例问题在生活中的应用 • 练习与巩固
01 比例的定义与性质
比例的定义
01
02
03
比例的定义
比例是表示两个比值相等 关系的数学概念,通常表 示为a:b=c:d的形式。
比例的表示方法
在数学中,比例通常用冒 号或等号来表示,如 a/b=c/d或a:b=c:d。
设计一些涉及实际应用的题目,如按比例分配资源、按比 例计算成本等,让学生能够将所学知识应用于实际问题中。

《用比例解决问题》比和按比例分配PPT课件-(共36张PPT)

《用比例解决问题》比和按比例分配PPT课件-(共36张PPT)
500千克的海水中含盐25千克,120吨的海水含盐几吨?
华南服装厂3天加工西装180套,照这样 计算,要生产540套西装,需要多少天?
一辆汽车2小时行驶140千米,照这样的速度,甲地到乙地的公路长350千米。这辆汽车从甲地到乙地需要行驶多少小时?
速度
路程
时间

一定,


比例
等量关系是:
路程
时间
每小时打9000字
每小时打3600字
6小时
15小时
去时每小时行60千米,2小时到达株洲。
回来时每小时行75千米,1.6小时到达长沙。
大胆尝试
选择其中的三个数量编一道正比例或反比例应用题。
解:设可以站 行.
学生总数一定,每行的人数与行数成反比例。
24

20×18

15
答:可以站15行.

24
360
工程队修一条水渠。每天修30米,
4天修完。如果每天修40米,多少天
可以修完?
40χ = 30×4
40χ = 120
χ = 120÷40
χ = 3
答:3天可以修完。
用比例解决问题
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
1、购买课本的单价一定,总价和数量。
因为
所以
2、总路程一定,速度和时间。
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
总数一定时,生产的天数和每天 生产的件数成反比例。
因为
所以
做一做
2、同学们做广播体操,每行站20人,正好站18行,如果每行 站24人,可以站多少行?
1、食堂买3桶油用了780元,照这样计算,买8桶油要多少元?

人教版《用比例解决问题》(完美版)PPT课件1

人教版《用比例解决问题》(完美版)PPT课件1

检 验:
222.5 45 95 45
锯成3段需要的时间 锯2次
锯成6段需要的时间 锯5次
9x 25 2x 59 x 59
2
x 22.5
答:锯成6段需要22.5分钟。
学以致用
4.客车和货车同时从A、B两地相对开出,它们的速度之比是6:5,
相遇时客车行驶了75Km,货车行驶了多少千米?
相遇问题 两车同时启动,
用水量
总价
张大妈
我们家用 了10t水。
李奶奶用水量
要解决水费问题,就要知道水的单价和用水量。 水的单价虽然不知道,但它是一定的。
李奶奶家上个月的水费是多少钱?
我们家上个月用 了8t水,水费是 28元。
张大妈
我们家用 了10t水。
李奶奶
我们可以先算出每吨水的价钱,再算出10t水的价钱。
28÷8×10 =3.5×10
x 1.5 4 2.4
2.52.4 6
x 2.5
答:这棵树实际高2.5米。
学以致用
段数,不是次数。
3.一根木料锯成3段需要9分钟,照这样计算,锯成6段需要多少分
钟?(用比例解答)
锯成3段要锯2次,9分钟对应2次的时间。
解:设锯成6段需要 x分钟。
问题求的是锯5 次的时间。 每锯一次的时间一定。
我们家上个月用了 8t水,水费是28元。
我们家用 了10t水。
张大妈
李奶奶
张大妈家的水费 张大妈家的用水量
每吨水的价格(单价)
李奶奶家的水费 李奶奶家的用水量
每吨水的价格(单价)
因为每吨水的价格一定,所以水费和用水的吨数成正比例, 也就是说两家的水费和用水吨数的比值相等。
李奶奶家上个月的水费是多少钱?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x 元. x =
8
x = 780×8 x = 2080
答:买8桶油要用2080元.
做一做
同学们做广播操,每行站20人,正好站18行. 如果每行站24人,可以站多少行? 学生总数一定,每行的人数与行数成反比例. 解:设可以站 24
x = 20×18 ×18 x = 2024 x
= 15
x 行.
答:可以站15行.
ቤተ መጻሕፍቲ ባይዱ
小明买了4枝圆珠笔用了6元。小刚想买3
枝同样的圆珠笔,要用多少钱?
解:设要用χ元钱。 解:设要用 χ 元钱。 3 4
6 6 = χ χ = 4 4χ = 3×6 3 4χ = 18 χ = 18÷4 χ = 4.5
答:要用4.5元。 总价 (一定) =单价 数量
大胆尝试
去时每小时行 60千米,2小 时到达昆明。
智慧城堡
加油啊!
只列式不计算
① 一个小组3天加工零件189个,照这样 计算,9天可加工零件x个。
189 3

χ
9
② 六年级同学们做广播操,每行站20人, 正好站12行,如果每行站24人,可以站x行。 24χ = 20×12
做一做
食堂买3桶油用780元,照这样计算,买8桶油要 用多少元?(用比例知识解答) 每桶油的单价一定,总价和数量成正比例. 解:设买8桶油要用 780 3 3
成比例,成什么比例?为什么?
3、零件总数一定,生产的天数和每天
生产的件数。

因为 每天生产的件数×天数=总数(一定) 总数一定时,生产的天数和每天 所以 生产的件数成反比例。
判断下列每题中的两个量是不是
成比例,成什么比例?为什么?
4、总钱数一定,用去的钱数和剩下的钱数。 因为 用去的钱数+剩下的钱数=总钱数(一定)
我们家上个月用了8吨水, 水费是12.8元.
我们家用了10吨 水.
张大妈
李奶奶
李奶奶家上个月的水费是多少元?
张大妈家水费 用水吨数
李奶奶家水费 用水吨数

每吨水的价钱
= 每吨水的价钱
我们家上个月用了8吨水, 水费是12.8元.
我们家用了10吨 水.
张大妈
李奶奶
李奶奶家上个月的水费是多少元?
张大妈家水费 用水吨数 李奶奶家水费 用水吨数
工程队修一条水渠。每天修30米,4天修完。 如果每天修40米,多少天可以修完?
工作效率×时间=工作总量(一定)反比例
解:设χ天可以完成。
40χ = 30×4 40χ = 120 χ = 120÷40 χ= 3
答:3天可以修完。
我会分析
小明买了4枝圆珠笔用了6元。小刚想买
3枝同样的圆珠笔,要用多少钱?
用比例解决问题
判断下列每题中的两个量是不是
成比例,成什么比例?为什么?
1、总路程一定,速度和时间。 2 、购买课本的单价一定,总价和数量。
因为
总价 = 单价(一定) 速度×时间 =路程(一定) 数量

所以 总路程一定,速度和时间成反比例。 单价一定时,总价和数量成正比例。
反比
判断下列每题中的两个量是不是
回来时每小时 行75千米, 1.6小时到达禄 丰。
选择其中的三个数量编一道正比例或 反比例应用题。
小结
用比例知识解答应用题的关键:是正确找出
题中的两种相关联的量,判断它们成哪种比例 关系,然后根据正反比例的意义列出方程.
谢谢合作!
再见!
如果每包30本, 要捆多少包?
解:设要捆x包 30X=20×18 X=360÷30 X=12 答:要捆12包。
这批书如果每包 20本,要捆18包.
如果捆15包, 每包多少本?
解:设每包X本. 15X = 20×18
20×18 X= 15
X = 24 答:每包24本.
解比例应用题的一般方法和步骤: 1、判断题目中两种相关联的量是成正 比例还是反比例; 2、设未知量为x,注意写明计量单位; 3、列出比例式,并解比例式; 4、检查后写出答案;
= 每吨水的价钱
= 每吨水的价钱
我们家上个月用了8吨水, 水费是12.8元.
我们家用了10吨 水.
张大妈
李奶奶
李奶奶家上个月的水费是多少元? 解:设李奶奶家上个月的水费是 x 12.8
x元
8 x = 12.8× 10
8

10
x = 12.8× 10 8 x = 16
答:李奶奶家上个月的水费是16元.
我们家上个月用了8 吨水,水费是12.8元.
我上个月的水费 是19.2元.
张大妈
王大爷
王大爷家上个月用了多少吨水?
解:设王大爷家上个月用水 x 吨
8 = x 12.8 x= 19.2× 8
x=
19.2× 8 12.8
12.8
19.2
x = 12
答:王大爷家上个月用水12吨。
这批书如果每包 20本,要捆18包.
所以
不成比例
我们家上个月用了8 吨水,水费是12.8元.
我们家用了 10吨水.
张大妈
李奶奶
李奶奶家上个月的水费是多少元?
我们家上个月用了8吨水, 水费是12.8元.
我们家用了10吨 水.
张大妈
李奶奶
李奶奶家上个月的水费是多少元?

这道题中涉及哪三种量? 每吨水的价钱、水费和用水的吨数. 哪种量是一定? 每吨水的价钱一定. 水费和用水的吨数成什么比例关系? 每吨水的价钱一定,水费和用水的吨数成正比例.
相关文档
最新文档