桩基础课程设计
桩基础课程设计

3、场地特征状况
地下水埋藏与性质:各钻孔混合地下水稳定水位埋深为1.20~2.30m。区内地下水位年变幅约1.50m。地下水对混凝土结构和钢结构具弱腐蚀性,对钢筋混凝土结构中的钢筋不具腐蚀性。
抗震设防:拟建场地抗震设防烈度为7度,设计基本地震加速度值为0.10g,设计地震分组为第一组,拟建建筑抗震设防类别为丙类。场地地震效应:本场地地面下20m深度范围内分布有⑸饱和细砂,初步判别属可液化土层,建议该层的桩周摩阻力乘以折减系数2/3。根据标贯试验结果,依照国标《建筑抗震设计规范》(GB50011-2001)有关规定,可不考虑震陷问题。
桩基工程课程设计
一、设计资料:
1、荷载及典型地质剖面图
(1)建筑标准层平面示意图(图1)
某高层住宅楼,上部结构为钢筋混凝土框架结构,建筑物高度60米,底层柱子截面 (砼强度等级C60),抗震设防烈度为7度,抗震等级为3级。±0.00相当于黄海高程+7.80m,室内外高差为400mm。
(2)底层柱底荷载:
中风化细粒花岗岩:浅灰、灰白色,矿物成份由石英、长石及少许云母组成,岩体较破碎,风化节理、裂隙较发育,碎块状结构,岩芯呈短柱状,RQD值一般75%~90%,岩石工程性质较好,岩石室内饱和单轴抗压强度87.00~126.20MPa,标准值95.16 MPa,属坚硬岩,岩体基本质量等级为3级。本次勘探有9个钻孔进入该岩层,进入深度1.50~7.92m。
桩基础课程设计书

一,设计资料1.1上部结构资料哈市近郊单层工业厂房,室内室外地面高差0.3m ,室外设计地面与天然地面一致,两跨,第一跨度为30m ,有两台50顿桥式吊车,另一跨跨度为24m ,有两台30顿桥式吊车,柱距为12m ,预制中柱截面600×1200mm2,作用于杯口顶面的荷载设计值为:,4.55,103.10,29902KN V m KN M KN F =⋅⨯==底层柱网平面布置及柱底荷载见设计任务书内附图。
1.2建筑物场地资料土层分布和物理力学性质如任务书内附表二,选择桩型,桩端持力层,承台埋深2.1选择桩型根据施工场地的地质条件,采用静压预制桩。
2.2选择桩的几何尺寸及承台埋深如图1所示,承台埋深2.3m ,桩长10m ,桩边长取400×400。
三,确定单桩极限承载力标准值本设计属于二级建筑桩基,根据土的物理指标与承载力参数之间的关系, 单桩竖向极限承载力标准值:26004.0)6.41004.536(4.0421⨯+⨯+⨯⨯⨯=+⋅=+=∑p pk i sik pk sk uk A q l q Q Q Q μ KN 04.14636.404.1047=+=估算单桩承载力设计值(65.1,65.1==p s γγ) KN Q Q R p pk s sk69.88665.104.1463==+=γγ 以此初步确定桩数四,确定桩数和承台底面尺寸4.1桩数及承台的确定荷载,4.55,103.10,29902KN V m KN M KN F =⋅⨯==初步估算桩数,柱子偏心受压考虑。
37.369.8862990==≥R F n (根)取4=n 柱距.2.13m d S a =≥承台底面尺寸3.0m ×2.4m ,边距3002002=d 满足要求。
五,确定复合桩基竖向承载力设计值该桩基属于非端承桩.3 n 按复合基桩计算竖向承载力设计值,采用群桩效应计算复合基桩承载力设计值5.1四桩承台力计算承台净面积:2256.64.044.20.3m A c =⨯-⨯=承台低地基极限阻力标准值,a ck kp q 160= a c ck ck kp n A q Q 4.262456.6160=⨯== a sk kp Q 04.1047=a sk kp Q 416= 分项系数70.1,65.1===c p s γγγ因为桩分布不规则,所以要对桩的距径进行修正,0.34.044.20.3886.0886.0=⨯⨯⨯==b n A d s c a 2.124.2==l B c 群桩效应系数查表得64.1,8.0==p s ηη 承台底土阻力群桩效应系数c e c e c c i c i cc A A A A ηηη+= 承台外正净面积:281.1)5.04.2()5.03(56.6m A e c =-⨯--=承台内正净面积:275.481.156.6m i A i c =-=查表得63.0,11.0==e c i c ηη 25.056.681.163.056.675.411.0=+=+=c e c e c c i c icc A A A A ηηη 则,复合桩基竖向承载力设计值R:KN Q Q Q R c ck c p pk p s sk s723.9597.14.26225.065.141664.165.104.10478.0=++=++=γηγηγη六,单桩设计吊运及吊运采用单点吊桩的强度进行桩身配筋计算,吊点位置在距桩顶,桩端平面处0.293L (L=10m ),起吊时桩身的最大正负弯矩:m kN q k kql M 8.42.1254.0,3.1,,0429.022max =⨯⨯===桩身采用c30混凝土,Ⅱ级钢,m kN kql M ⋅==8.260429.02max桩身截面有效高度:36.004.04.0=-=o h03615.02==o c s bh f M α 查表得9816.0=s γ 2253mm h f M A o y s s ==γ选用2Φ18(2253509mm A s >=)整个主筋为4Φ1821018mm A s =配筋率%6.0%636.0min =>=ρρ满足要求桩身强度:kN R KN A f A f s y c c 691.8866.2364)10183003604003.140.1(0.1)(=>=⨯+⨯⨯⨯=+ϕϕ满足要求七,桩顶作用验算7.1中心受压计算KN G F 6.32996.30929902015.24.20.32990=+=⨯⨯⨯+=+kN n G F N 9.82446.3299==+= kN R N o 69.8869.8249.8240.1=<=⨯=γ7.2偏心荷载计算KN KN M n G F N i6.5812.106875.0475.0103046.329)(22maxmin max =⨯⨯±=⨯±+=∑∑γγ 0,03.10642.112.1068min max >=≈=N KN R KN N o o γγ满足要求八,承台设计8.1承台尺寸柱插入深度1000mm ,柱底与杯底距50mm ,承台厚1450mm ,采用c30混凝土,钢筋采用二级钢,台底保护层厚100mm8.2冲切承载力验算承台底面在45°范围之内,可不进行冲切验算8.3 受弯计算由桩受力可知,2.1068max KN N =平均受力KN N 9.824= KN n G N N j 8.99046.3092.1068max max =-=-= KN n F n G N N j 5.74742990===-= 承台1-1截面处最大弯矩m KN y N M j ⋅=+⨯==64.792)24.02.0(6.19812max 22175)1001050(3009.0792640009.0mm h f M A o y s =-⨯⨯== 选配15Φ14221752308mm A s >=承台2-2截面处最大弯矩m KN y N M j ⋅=+⨯==64.792)24.02.0(6.19812max 选配15Φ14221752308mm A s >=8.4受剪承载力计算mm a y 200=,mm a x 200=,3.015.01350200<====o x y x h a λλ 取2.03.012.0,3.0=+==λβλ ○1KN h f f o y c 4.92661035.14.23.142.06=⨯⨯⨯⨯=β KN v o 4.92666.19818.99020.1<=⨯⨯=γ○2KN h f f o y c 115831035.133.142.06=⨯⨯⨯⨯=β KN v o 115836.19818.99020.1<=⨯⨯=γ。
桩基础课程设计

桩基础课程设计一、设计资料1、地形拟建建筑场地地势平坦, 局部堆有建筑垃圾。
2.工程地质条件自上而下土层依次如下:(号土层: 素填土, 层厚约1.5m, 稍湿, 松散, 承载力特性值fak=95kPa(号土层: 淤泥质土, 层厚3.3m, 流塑, 承载力特性值fak=65kPa。
(号土层: 粉砂, 层厚6.6m, 稍密, 承载力特性值fak=110kPa。
(号土层:粉质黏土, 层厚4.2m, 湿, 可塑, 承载力特性值fak=165kPa。
(号土层:粉砂层, 钻孔未穿透, 中密-密实, 承载力特性值fak=280kPa。
3.岩土设计技术参数岩土设计参数如表3.1和表3.2所示.表3.1 地基岩土物理力学参数土层编号土的名称孔隙比e含水量W(%液性指数I L标准贯入锤击数N压缩模量Es(MPa)素填土---- 5.0 淤泥质土 1.04 62.4 1.08 - 3.8 ●粉砂0.81 27.6 -14 7.5 ❍粉质黏土0.79 31.2 0.74 -9.2 ⏹粉砂层0.58 --31 16.8表3.2 桩的土的名称桩的侧阻力qsk桩的端阻力qpk土层编号土的名称桩的侧阻力qsk桩的端阻力qpk(1)拟建场区地下水对混凝土结构无腐蚀性。
(2)地下水位深度: 位于地表下3.5m。
5.场地条件建筑物所处场地抗震设防烈度为7度, 场地内无可液化砂土、粉土。
6.上部结构资料拟建建筑物为六层钢筋混凝土结构, 长30m, 宽9.6m。
室外地坪标高同自然地面, 室内外高差450mm。
柱截面尺寸均为400mm×400mm, 横向承重, 柱网布置如图3.1所示。
图3.1 柱网布置图7、上部结构作用上部结构作用在柱底的荷载效应标准组合值如表3.3所示, 该表中弯矩MK 、水平力VK 均为横向方向。
上部结构作用在柱底的荷载效应基本组合值如表3.4所示, 该表中弯短M、水平力V均为横向方向。
表3.3 柱底荷载效应标准组合值题号FK(kN)MK( kN.m)VK(kN)A轴B轴C轴A轴B轴C轴A轴B轴C轴1 1256 1765 1564 172 169 197 123 130 1122 1350 1900 1640 185 192 203 126 135 1143 1650 2050 1810 191 197 208 132 141 1204 1875 2160 2080 205 204 213 139 149 1345 2040 2280 2460 242 223 221 145 158 1486 2310 2690 2970 275 231 238 165 162 1537 2568 3225 3170 293 248 247 174 179 1658 2670 3550 3410 299 264 256 183 190 1709 2920 3860 3720 304 285 281 192 202 19110 3130 3970 3950 323 302 316 211 223 230题号FK (kN)MK( kN.m)VK(kN)9、混凝土强度等级为C25~C30, 钢筋采用HPB235.HRB335级。
桩基础课程设计(1)

桩基础课程设计(1)一、概述桩基础是现代建筑中广泛应用的一种地基处理方式。
桩基础不仅具有承受建筑荷载的能力,而且可有效地降低地基沉降,防止地基侧移,提高建筑的抗震能力。
本课程旨在通过教授桩基础的原理、设计方法和施工技术,培养学生对桩基础的深刻理解。
二、课程大纲2.1 桩基础原理•桩基础的定义•桩基础的分类•桩基础的荷载传递机理•桩基础的作用2.2 桩基础设计•桩基础设计的基本原理和方法•桩基础的荷载-位移特性分析•桩基础的设计参数选择•不同种类桩基础应用场合与设计方法2.3 桩基础施工技术•桩基础施工前的准备工作•桩基础施工过程•桩基础施工质量控制•桩基础施工常见问题解决方法三、教学方法3.1 理论讲授本课程通过理论讲授,传授桩基础的原理、设计方法和施工技术,使学生对桩基础有系统、全面的了解,为后续的实践操作打下坚实的基础。
3.2 实践操作为了提高学生的实操能力和解决实际问题的能力,本课程安排了大量的实践操作环节,包括桩基础的施工现场观摩、桩基础施工质量检查和实操演练等。
四、考核方法考核方法主要包括两种方式:理论考试和实践操作。
4.1 理论考试理论考试采用笔试方式进行,考察学生对桩基础原理、设计方法和施工技术的掌握程度以及理论基础的扎实程度。
4.2 实践操作实践操作主要考察学生的实操能力和解决实际问题的能力,通过桩基础施工现场观摩和实操演练等方式进行。
五、教学资源为了保证教学质量,本课程所需要的教学资源包括:•一份通俗易懂的桩基础设计教材•一份桩基础设计软件——STAAD.Pro•一份桩基础施工操作手册六、教学成果通过本课程的学习,学生应掌握以下知识与技能:•理解桩基础的定义、分类和作用•掌握桩基础设计的基本原理和方法•能够分析和计算桩基础的荷载-位移特性•熟练掌握桩基础施工过程和质量控制方法•具备解决桩基础施工常见问题的能力七、桩基础是建筑结构中不可或缺的组成部分,学习桩基础课程对建筑专业学生具有重要意义。
桩基础课程设计 (土木工程专业毕业设计)

2.1 设计资料2.1.1 上部结构资料某教学实验楼,上部结构为七层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30。
底层层高3.4m(局部10m,内有10t桥式吊车),其余层高3.3m,底层柱网平面布置及柱底荷载见附图。
2.1.2 建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物平面位置见图2-1。
图2-1 建筑物平面位置示意图建筑物场地位于非地震区,不考虑地震影响。
场地地下水类型为潜水,地下水位离地表2.1米,根据已有资料,该场地地下水对混凝土没有腐蚀性。
建筑地基的土层分布情况及各土层物理、力学指标见表2.1.表2.1地基各土层物理,力学指标土层编号土层名称层底埋深(m)层厚(m)3(kN/m)γe(%)ωLI(kPa)c()ϕ︒(MPa)sE(kPa)kfMPasP()1 杂填土 1.8 1.8 17.52灰褐色粉质粘土10.1 8.3 18.4 0.90 33 0.95 16.7 21.1 5.4 125 0.723灰褐色泥质粘土22.1 12.0 17.8 1.06 34 1.10 14.2 18.6 3.8 95 0.864黄褐色粉土夹粉质粘土 27.45.319.10.88 30 0.70 18.423.311.51403.445 灰-绿色粉质粘土>27.4 19.7 0.72 26 0.46 36.5 26.8 8.6 210 2.822.2 选择桩型、桩端持力层 、承台埋深2.2.1 选择桩型因为框架跨度大而且不均匀,柱底荷载大 ,不宜采用浅基础。
根据施工场地、地基条件以及场地周围环境条件,选择桩基础。
因转孔灌注桩泥水排泄不便,为减少对周围环境污染,采用静压预制桩,这样可以较好的保证桩身质量,并在较短的施工工期完成沉桩任务,同时,当地的施工技术力量、施工设备以及材料供应也为采用静压桩提供可能性。
2.2.2 选择桩的几何尺寸以及承台埋深依据地基土的分布,第③层是灰色淤泥质的粉质粘土,且比较后,而第④层是粉土夹粉质粘土,所以第④层是比较适合的桩端持力层。
桩基础课程设计计算书

一、教学内容
《土木工程基础》第五章:桩基础的设计与计算
1.桩基础的类型与构造特点
-预制桩
-现场浇筑桩
-混合桩
2.桩基础的设计原则与要求
-桩长度的确定
-桩径的选择
-桩间距的确定
3.桩基础的计算方法
-单桩承载力计算
-桩群承载力计算
-桩基沉降计算
4.桩基础施工质量控制
-施工准备
-钻孔、灌注桩施工
-预制桩打桩施工
5.桩基础工程实例分析
-工程背景
-设计与计算方法
-施工过程及质量控制
本章节内容紧密围绕桩基础的设计与计算,结合教材内容,旨在让学生掌握桩基础的基本知识、设计原则和计算方法,提高解决实际工程问题的能力。
2、教学内容
《土木工程基础》第五章:桩基础课程设计计算书
6.桩基础设计所需参数的确定
-桩基与地基处理技术的结合
19.桩基础设计的创新思维培养
-设计方案的创新方法
-解决问题的创新策略
-跨学科合作与交流
20.课程总结与评价
-学生设计作品展示
-设计过程中的经验与教训
-教学效果反馈与改进
本部分教学内容着重于实践应用和安全质量控制,同时强调创新思维的培养。通过桩基础与其他基础形式的结合应用,拓宽学生的知识面,并结合课程总结与评价,提高教学质量和学生的学习效果。
4、教学内容
《土木工程基础》第五章:桩基础课程设计计算书
16.桩基础施工中的安全措施
-施工现场安全管理
-施工人员安全培训
-应急预案制定
17.桩基础施工中的质量控制
-施工过程中的质量检测
-桩基工程的验收标准
-质量问题处理方法
12根桩的桩基础课程设计

12根桩的桩基础课程设计摘要:一、引言1.介绍桩基础课程设计的目的2.阐述桩基础在建筑工程中的重要性二、设计背景及要求1.工程概况a.工程名称b.工程地点c.工程类型d.工程规模2.设计要求a.设计标准b.设计桩型c.设计桩径d.设计桩长e.设计承载力三、设计过程1.资料收集与分析a.地质资料b.地形地貌资料c.气象资料d.地震资料2.设计计算a.桩基的稳定性分析b.桩基的承载力计算c.桩顶的位移计算d.桩基的沉降计算3.设计优化a.桩数的优化b.桩径的优化c.桩长的优化d.桩型的优化四、设计成果与应用1.设计成果a.桩基布置图b.桩基承载力计算书c.桩基施工图d.桩基设计说明书2.设计应用a.工程实践中的应用b.设计理念的推广c.工程案例分析五、总结与展望1.总结a.桩基础课程设计经验总结b.设计中遇到的问题及解决方法2.展望a.桩基础设计的未来发展趋势b.桩基础设计在建筑工程中的创新应用正文:一、引言桩基础课程设计是土木工程专业中非常重要的一门课程,它旨在培养学生的理论知识和实践能力,使学生能够独立完成桩基设计任务。
本文以12根桩的桩基础课程设计为例,详细介绍了设计背景、设计要求、设计过程、设计成果及应用等方面的内容。
二、设计背景及要求本工程为某建筑工程,位于我国某地,工程类型为住宅楼,规模适中。
设计要求包括:设计标准、设计桩型、设计桩径、设计桩长及设计承载力。
根据工程特点和设计要求,本课程设计选取了合适的桩型、桩径和桩长,以确保工程的稳定性和安全性。
三、设计过程设计过程包括资料收集与分析、设计计算和设计优化。
在资料收集与分析阶段,我们充分了解了地质、地形地貌、气象和地震等资料,为后续设计提供了有力保障。
在设计计算阶段,我们根据所选桩型、桩径和桩长,进行了桩基的稳定性分析、承载力计算、桩顶位移计算和沉降计算。
在设计优化阶段,我们对桩数、桩径、桩长和桩型进行了优化,以提高设计方案的经济性和合理性。
桩基础课程设计计

Mk
,
1.2建筑场地资料
市郊,地势平坦,已完成场地平整,建 筑位于非地震区,不考虑地震作用。 1.3主要材料 砼:垫层C10,承台C30, C10 C30 钢筋:受力钢筋采用HRB335,箍筋采用 HPB235
2.选择桩型
2.1选择桩的类型 根据地质勘察报告,本工程地质情况从 上至下分布为:填土、粘土、粉土,砂层, 砾石,卵石层,埋深5∼8米处为卵石层,厚 度较大,分布连续稳定,以中密密实卵石层 为主,承载力高。本工程采用打入式砼预制 桩,桩端持力层为中密卵石层。根据地区经 验采用端承桩,不考虑侧阻力,中密卵石层 极限端阻力标准值为 qpk =
4.2桩数计算
××轴线××柱独立承台基础预制桩桩 数计算
n=
5.桩位布置并确定承台尺寸 5.1确定桩的中心距
3d~ 4d
5.2确定承台平面尺寸及承台埋深 5.2.1承台平面尺寸 5.2.2承台埋深 因本工程总高度在15m左右,根据工艺 要求同时综合考虑承台顶标高为室外地坪 以下 −0.8m。
6.桩基础承载力验算 6.1 计算公式 6.2验算桩基承载力 7.承台设计 承台高度 H = 500 ∼ 900 7.1受弯计算 7.2受冲切验言 • 课程设计的重要性 • 课程设计的目的及要求 任务与分析 • 基础课程设计的题目 • 本课程设计的内容 • 本课程设计的要求与目的
1.设计资料 设计资料 1.1 上部结构 1.1.1 工程概况 参照单层工业厂房—工程概况 1.1.2 建筑平面布置 见图1-1(绘图,要求手绘) 1.1.3荷载资料 ××轴线××柱传至柱底内力值为
2.2确定桩的截面尺寸 确定桩的截面尺寸 04G361《预制钢筋混凝土方桩》 截面250×250或300×300 3.确定单桩竖向承载力特征值 确定单桩竖向承载力特征值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桩基础工程课程设计
(一):必要资料准备
1、建筑物的类型机规模:哈尔滨市郊某轮轴车间,其柱网布置如图。
2、工程概况:单层工业厂房,室内、外地面高差0.3m,室外设计地面与天然地面一致。
柱网布置图所图所示。
3
_1____
4、岩土工程勘察报告:土为三层水平土层,地下水位-2m ,各土层工程地质条件如下表。
1
2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =15.0m ,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、
c
f
=14.3MPa 、
t
f
=1.43MPa
4 )、由最小配筋率0.6% 得选用4φ16 y
f
=300MPa
5)、承台材料:混凝土强度C30、
c
f
=14.3MPa 、
t
f
=1.43MPa
(三):单桩承载力确定
1、 单桩竖向承载力的确定: 1)、根据桩身材料强度,按轴心受压构件计算承载力(稳定系数ϕ=0.375)
KN
A f A f R S p c 8.515)8043003003.14(375.09.0''9.02=⨯+⨯⨯=)
+(=ϕ 2)、根据地基基础规范公式计算:
1°、由桩长L=15m,故桩端在黏土层中,查表得kpa q pa 2500=: 2°、桩侧土摩擦力:
淤泥土:m l 1.8= kpa q sia 18= 黏土:m l 5.6= kpa q sia 65=
故kpa
l q U A q R i
sia p P pa a 16.938)659.6181.8(3.043.025002
=⨯+⨯⨯⨯+⨯=+=∑
3)、确桩数和桩的布置:
上部结构传来的垂直荷载KN F K 2580=
初选根数75.21
.9382580==>
a K R F n 取4=n ; 柱距m d s 2.1~9.03.0)4~3()4~3(=⨯== 取m s 1=;
承台尺寸取2
6.16.1m ⨯,暂取承台埋深2m ,承台高度h 为1m ,桩伸入承台50mm ,钢筋保护 取70mm ,则承台的有效高度为m h 93.00
7.00.10=-=
(四):单桩受力验算: 1、单桩所受平均力:
kN R kN n G F N a 9386.670420
26.16.12580=<=⨯⨯⨯+=+=
2、单桩所受最大及最小力: =⨯⨯⨯+±=+±+=∑2
2max max min
5.045.0)150260(
6.670)(i
k k x x h H M N G F N
相应于荷载效应基本组合时作用于桩底的荷载设计值为
kN F F k 3483258035.135.1=⨯== kN M M K 31526035.135.1=⨯== kN H H k 5.675035.135.1=⨯==
扣除承台的和其上填土自重后桩顶竖向力设计值
kN n F N 5.87043483===
=⨯⨯⨯+±=+±+=∑2
2max max
min 5.045.0)15.67351(5.870)(i
k k x x h H M N G F N 3、 单桩水平承载力计算:
kpa n H H k i 5.12450==
kpa n F N K i 64542580=== 由于 12
1
6455.12<<=i i F H
即
i
V
与
i
H
合力 与
i
V
的夹角小于
5
故 单桩水平承载力满足要求,不需要进一步的验算。
4、承台冲切验算: 1)、柱边冲切: 冲切力:kN N
F
Fl i
348303483=-==∑
受冲切承载力截面高度影响系数hp
β
的计算:
983.0)8001000()
8002000(9
.011=-⨯---
=hp β
冲夸比λ与系数α的计算:
h m a x 2.005.00<=故186.093.02.02.00=⨯==h a x 同理 186.00=y a
则
2
.093
.0186.02.093.0186
.0000000======
h a h a y
y x x λλ
故 1.22
.02.084.02.084.000=+=+==λββy
x
于是
[]
()[]kN
Fl kN h f a h a b t hp x c y c x 34831085093.01570983.0)2.08.0(1.22.06.01.22)()(20
000=>=⨯⨯⨯+⨯++⨯⨯=+++βββ 满足要求 5、角桩向上冲切:m c c 6.021== x x a a 10= x x 01λλ= y y a a 01= y y 01λλ=
则 4.12
.056
.011=+=
=x x y λββ 于是max
111121275893.01570983.02186.06.04.12186.06.04.122N kN h f a c a c t hp x y y
x >=⨯⨯⨯⎥⎦⎤⎢⎣
⎡
⎪⎭⎫ ⎝⎛
+⨯+⎪⎭⎫ ⎝⎛+
⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎪⎭
⎫ ⎝⎛+
βββ 满足要求
6、承台抗剪验算:
斜截面受剪承载力可按下面公式计算: 0
hs
t
V f b h
ββ
≤
, 1.75
1.0βλ=+,953.0930*******
14
10=⎪⎭⎫ ⎝
⎛=⎪⎪⎭⎫ ⎝⎛=h hs β 3.02.00<==x x λλ 故 λ取0.3 346.1=β
Ⅰ-Ⅰ截面处承台抗剪验算:
max
00268.2996930.06.11570346.1953.0N kN h b f V t hs >=⨯⨯⨯⨯==ββ满足要求
Ⅱ-Ⅱ截面处承台抗剪验算:
N
kN h b f V t hs 268.2996930.06.11570346.1953.000>=⨯⨯⨯⨯==ββ满足要求
5、承台弯矩计算及配筋计算: 1)、承台弯矩计算: 多桩承台的弯矩可在长,宽两个方向分别按单向受弯计算:
Ⅰ-Ⅰ截面,按2根桩计算:
∑•=⨯⨯==
m kM y
N M i
i
x 05.8705.05.8702
26
0347930
3009.01005.879.0mm h f M A y x S =⨯⨯⨯==
为满足钢筋的最小配筋率0.15%,故取2
'240010001600%15.0mm A s =⨯⨯=
故取1612Φ 2
'2.2413mm A S =沿平行于y 轴方向均匀布置。
Ⅱ-Ⅱ截面,按2根桩计算: ∑•=⨯⨯==
m kM x
N M i
i x 975.10705.075.10792
26
0431930
3009.010975.1079.0mm h f M A y x S =⨯⨯⨯==
同理,为满足钢筋的最小配筋率0.15%,故取2
'240010001600%15.0mm A s =⨯⨯= 故取1612Φ 2
'2.2413mm A S =沿平行于x 轴方向均匀布置。