相似三角形模型分析大全 (1)
中考数学相似三角形重要模型一线三等角模型

相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1 图2 图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.例1.(2023·山东东营·统考中考真题)如图,A B C为等边三角形,点D,E分别在边B C,A B上,60A D E∠=︒,若4B D D C=, 2.4D E=,则A D的长为()A.1.8B.2.4C.3D.3.2例2.(2023·湖南·统考中考真题)如图,,C A ADE D A D⊥⊥,点B是线段A D上的一点,且C B B E⊥.已知8,6,4A B A C D E===.(1)证明:A B C D E B∽△△.(2)求线段B D的长.例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,∠BAC=90°,A BA C=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:B DA E=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,A BA C=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,A BA E =A CA G=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.例4.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,A B A C=,D 、A 、E 三点都在直线m 上,并且有B D AA E CB AC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设C P Qβ∠=.当β在许可范围内变化时,α取何值总有△ABP ∽△PCQ ?当α在许可范围内变化时,β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在A B C中,90A C B ∠=︒,A C B C=,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:A D C C E B△≌△.(1)探究问题:如果A CB C≠,其他条件不变,如图②,可得到结论;A D CC E B△∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x=与直线C D 交于点()2,1M ,且两直线夹角为α,且3ta n 2α=,请你求出直线C D 的解析式.(3)拓展应用:如图④,在矩形A B C D 中,3A B=,5B C=,点E为B C 边上—个动点,连接A E ,将线段A E 绕点E 顺时针旋转90︒,点A 落在点P 处,当点P 在矩形A B C D外部时,连接P C ,P D .若D P C △为直角三角形时,请你探究并直接写出B E 的长.Rt ABD中,上一动点,连接折叠得H E F,延长②B E M H E M≅;③当M2B,则正确的有(九年级校考阶段练习)已知A B C是等边三角形,E F和B D F∠,将B C E沿B则A F=P C D△;九年级校考阶段练习)如图,在A B C中,12.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P,Q,(1)如图1.观察图1可知:与NQ相等的线段是______________,与N R Q∠相等的角是_____(2)问题探究直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF 和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.(3)拓展延伸:直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3.如果A C kC E=,试探究TE与TH=,C D kC H之间的数量关系,并证明你的结论.将.A B P沿着这样的点P,使得点问题解决(3)15.(2023春·四川广安·九年级校考阶段练习)如图1和图2,在平面直角坐标系中,点C的坐标为(0,4),A是x轴上的一个动点,M是线段AC的中点.把线段AM以A为旋转中心、按顺时针方向旋转90°得到AB.过B作x轴的垂线、过点C作y轴的垂线,两直线交于点D,直线DB交x轴于点E.设A点的横坐标为m.(1)求证:△AOC∽△BEA;(2)若m=3,则点B的坐标为;若m=﹣3,则点B的坐标为;(3)若m>0,△BCD的面积为S,则m为何值时,S=6?(4)是否存在m,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时m的值;若不存在,请说明理由.16.(2020·四川雅安·中考真题)如图,已知边长为10的正方形A B C D E、不重,是B C边上一动点(与B C 合),连结A E G,是B C延长线上的点,过点E作A E的垂线交D C G∠的角平分线于点F,若F G B G⊥.(1)求证:A B E E G FE C=,求C E F△△;(2)若2∽△的△的面积;(3)请直接写出E C为何值时,C E F面积最大.的何位置时有B E H B A E∽?B C。
相似三角形常见模型(总结材料)

第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)ABCDE(平行)CBA DE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型ABCDCAD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。
8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.AC D E B2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。
求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。
求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。
相似三角形常见模型[总结]
![相似三角形常见模型[总结]](https://img.taocdn.com/s3/m/0f74ba59f46527d3240ce0c0.png)
②当 时,求BP的长.
4、如图,已知边长为 的等边 ,点 在边 上, ,点 是射线 上一动点,以线段 为边向右侧作等边 ,直线 交直线 于点 ,
(1)写出图中与 相似的三角形;
(2)证明其中一对三角形相似;
共享型相似三角形
1、△ABC是等边三角形,D、B、C、E在一条直线上,∠DAE= ,已知BD=1,CE=3,,求等边三角形的边长.
2、已知:如图,在Rt△ABC中,AB=AC,∠DAE=45°.
求证:(1)△ABE∽△ACD;(2) .
一线三等角型相似三角形
例1:如图,等边△ABC中,边长为6,D是BC上动点,∠EDF=60°
求证:EB·DF=AE·DB
4.在 中,AB=AC,高AD与BE交于H, ,垂足为F,延长AD到G,使DG=EF,M是AH的中点。
求证:
5.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)
已知:如图,在Rt△ABC中,∠C=90°,BC=2,AC=4,P是斜边AB上的一个动点,PD⊥AB,交边AC于点D(点D与点A、C都不重合),E是射线DC上一点,且∠EPD=∠A.设A、P两点的距离为x,△BEP的面积为y.
【练习1】
在直角 中, ,点D是BC的中点,点E是AB边上的动点, 交射线AC于点F
(1)、求AC和BC的长
(2)、当 时,求BE的长。
(3)、连结EF,当 和 相似时,求BE的长。
【练习2】
在直角三角形ABC中, 是AB边上的一点,E是在AC边上的一个动点,(与A,C不重合), 与射线BC相交于点F.
例3:已知在梯形ABCD中,AD∥BC,AD<BC,且AD=5,AB=DC=2.
初中数学相似三角形模型(题型)大全-值得收藏

初中数学相似三角形模型(题型)大全-值得收藏一、比的性质:特征:比的基本性质,合比性质,等比性质 例1:已知,3==d c b a ,则ddc b b a 22+=+=( ) 例2:如果P 是线段AB 的黄金分割点,且AP >PB ,则下列各等式①AB 2=AP •PB , ②AP 2=PB •AB ,③BP 2=AP •PB ,④AP /AB=PB /AP 中,正确的是( )例3:已知k cba a cb bc a =+=+=+,则k 的值为( ) 二、平行A 字型如图(1)DE//BC ,则△ADE ∽△ABC 特征:△ADE ∽△ABC ⇒AD AE DEAB AC BC==应用1:(求线段的长)例1. 如图(2)DE//BC,且DB=AE,若AB=5,AC=10,则AE 的长为(103) 角度:平行产生比例 DE ∥BC 51051010,103AB AC AE BD EC AE EC AE AE ⇒=∴=∴==- PB例2.如图(3)△ABC 中,BC = a 是AB 边的五等分点;1234,,,C C C C 是AC 边的五等分点,则11223344B C B C B C B C +++=(2a )应用2:(证明比例线段)例3.如图(4),DE//BC//AF ,求证:111DE AF BC=+ 证明:分析:此题用了两个平行A 字型 在△ABC 中,DE//BC ,AD DE⇒= ①在△ABF 中,DE//AF ,DB DEAB AF⇒=② ①+②得AD DB DE DEAB BC AF+=+111()111DE BC AFDE BC AF ∴=+∴=+应用3:(证明线段相等) 例4.如图(5),一直线与△ABC 的边AB ,AC 及BC 的延长线分别交于D 、E 、F 。
求证:若AE BFEC CF=,则D 是AB 的中点。
证明:作CM//BA 与EF 交于M ,则△ADE ∽△CME//AD AEAE BF AD BFBD BFCM BD CM ECEC CF CM CFCM CF∴==∴=∴=因此,.AB AD BDAD BD CM CMD ==∴从而是的中点。
相似三角形模型(全)课件

在解题过程中,可以根据题目的条件 选择适当的方法来证明或推导结论。
全等三角形可以用来证明两个三角形 完全重合,而相似三角形则可以用来 研究两个三角形的形状和大小关系。
05
相似三角形的证明方法
利用角角相似的证明方法
01
02
03
总结词
通过比较两个三角形的对 应角,如果两个三角形有 两组对应的角相等,则这 两个三角形相似。
相似三角形的对应角相等
总结词
如果两个三角形相似,则它们的 对应角相等。
详细描述
根据相似三角形的定义,如果两 个三角形对应的角都相等,则这 两个三角形是相似的。因此,相 似三角形的对应角必然相等。
相似三角形的对应边成比例
总结词
如果两个三角形相似,则它们的对应边之间存在一定的比例关系。
详细描述
由于两个三角形相似,它们的对应角相等,根据三角形的性质,对应的边之间 必然存在一定的比例关系,这个比例关系是固定的,与三角形的形状和大小无 关。
相似三角形的面积比等于边长比的平方
总结词
如果两个三角形相似,则它们的面积之比等于对应边长之比 的平方。
详细描述
根据相似三角形的性质,两个相似三角形的对应边长之比是 固定的,设为k。那么它们的面积之比就是k的平方,即k^2 。这意味着相似三角形的面积比等于边长比的平方。
相似三角形的周长比等于边长比
相似三角形模型(全)课件
目 录
• 相似三角形的基本概念 • 相似三角形的性质和定理 • 相似三角形的应用 • 相似三角形与全等三角形的关系 • 相似三角形的证明方法
01
相似三角形的基本概念
相似三角形的定义
相似三角形的定义
相似三角形的性质
如果两个三角形对应的角相等,则这 两个三角形相似。
(完整版)相似三角形模型分析大全(精).doc

第一部分相似三角形知识要点大全知识点 1. .相似图形的含义把形状相同的图形叫做相似图形。
(即对应角相等、对应边的比也相等的图形)解读 :( 1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.( 2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.( 3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.例 1.放大镜中的正方形与原正方形具有怎样的关系呢?分析:要注意镜中的正方形与原正方形的形状没有改变. 解:是相似图形。
因为它们的形状相同,大小不一定相同.例 2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角 80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是 100°的两个等腰三角形,其中一定是相似图形的是_________( 填序号 ) .解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形, 而圆、正多边形、 顶角为 100°的等腰三角形的形状不唯一, 它们都相似. 答案:②⑤⑥.知识点 2.比例线段对于四条线段 a,b,c,d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a c(或a:b=c:d )那么这四条线段叫做成比例线段,简称比例线段.bd解读 :( 1)四条线段 a,b,c,d成比例,记作a c(或 a:b=c:d ),不能写成其他形式,即比例线段b d有顺序性.( 2)在比例式a c(或 a:b=c:d )中,比例的项为 a,b,c,d,其中 a,d 为比例外项, b,c 为比例内项, dbd是第四比例项.( 3)如果比例内项是相同的线段,即a bb或 a:b=b:c ,那么线段 b 叫做线段和的比例中项。
c(4) 通常四条线段 a,b,c,d 的单位应一致,但有时为了计算方便, a 和 b 统一为一个单位,c 和d 统一为另一个单位也可以,因为整体表示两个比相等.例 3.已知线段 a=2cm, b=6mm, 求 a. b分析:求a即求与长度的比,与的单位不同,先统一单位,再求比.b例 4.已知 a,b,c,d成比例,且 a=6cm,b=3dm,d= 3dm ,求 c 的长度.2分析:由 a,b,c,d成比例,写出比例式a:b=c:d ,再把所给各线段a,b,,d统一单位后代入求c .知识点 3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读 :( 1)正确理解相似多边形的定义,明确“对应”关系. ( 2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.例 5.若四边形 ABCD 的四边长分别是 4, 6,8, 10,与四边形 ABCD 相似的四边形 A 1B 1C 1D 1 的最大边长为 30,则四边形 A 1B 1C 1D 1 的最小边长是多少?分析:四边形 ABCD 与四边形 A 1B 1C 1D 1 相似,且它们的相似比为对应的最大边长的比,即为1,再根据相似3多边形对应边成比例的性质,利用方程思想求出最小边的长. 知识点 4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读 :( 1)相似三角形是相似多边形中的一种;( 2)应结合相似多边形的性质来理解相似三角形; ( 3)相似三角形应满足形状一样,但大小可以不同; ( 4)相似用“∽”表示,读作“相似于” ;( 5)相似三角形的对应边之比叫做相似比.注意 :①相似比是有顺序的,比如△ABC ∽△ A 1B 1C 1,相似比为 k, 若△ A 1B 1C 1∽△ABC ,则相似比为1。
相似三角形模型分析大全

欢迎阅读相似三角形的基本模型(一)A 型、反A 型(斜A 型)ABCDE(平行)CBA DE(不平行)自己在《课堂精练》中找几道相应的题目。
例1:(2008湘潭市)如图,已知D 、E 分别是的△ABC 的AB 、AC 边上的点,DE ∥BC ,且△ADE 与四边形DBCE 的面积比为1:8,那么AE :AC 等于() A .1:9B .1:3C .1:8 D .1:2例2:(2008江苏盐城)如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足条件(写出一个即可)时,△ADE ∽△ACB .(二)X 型蝴蝶型(平行)(8字型)(不平行)(蝴蝶型) 自己在《课堂精练》中找几道相应的题目。
例1:如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形. (1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.例2:(2013?内江)如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( ) A . 2:5 B . 2:3 C . 3:5 例3:(哈尔滨)在平行四边形ABCD 中,E 为直线CD 上一点,DE=2CE ,F 是AD 的中点,连接EF 交BD 交于点P ,则DP :PB=____________(三)共边共角型母子型自己在《课堂精练》中找几道相应的题目。
课本P90第4题:已知:如图,在Rt △ABC 中,AB=AC ,∠DAE=45°. 求证:(1)△AB E ∽△ACD ;(2)BC 2=2BE ×CD 例:在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点D,BC=3,AB=5,写出其中的一对相似三角形_______________;并写出它的面积比(四)一线三等角模型:以等腰三角形(等腰梯形)或者等边三角形为背景 包括“三垂直”模型:例1:(2013·天津)如图所示,在边长为9的正三角形ABC 中,BD =3,∠ADE =60°,则AE 的长为例1图例2图例2:如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD (2)当BD =1,FC =3时,求BECADB EF例3:在△ABC 中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠. ①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长;②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出x 的取值范围;例4:正方形ABCD的边长为5(如下图),点P 、Q分别在直线..CB 、直线..DC 上(点P 不与点C 、点B 重合),且保持︒=∠90APQ .当1=CQ 时,求出线段BP 的长.例5:已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.(1)如果P 为AD 上的一点,满足∠BPC =∠A .求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出x 的取值范围;②当CE =1时,写出AP 的长.例6:如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠. (1)求证:△ABD ∽△DCE ;(2)如果x BD =,y AE =,求y 与x 的函数解析式,并写出x 的取值范围;(3)当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.EBCADP例7:已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,求y 关于x 的函数关系式,并写出x 的取值范围。
中考中相似三角形的常见模型及典型例题

(1)A字、8字; (3)角平分线; (5)一线三等角; (7)内接矩形;
2.基本辅助线:
(2)反A、反8; (4)旋转型; (6)线束模型; (8)相似比与面积比。
(1)作平行线构造A字、8字; (2)作垂线构造直角三角形相似
3.基本问题类型:
(1)证明相似;
(2)求线段长;
(1)若点P在线段CB上,且BP=6,求线段CQ的长; (2)若BP=x,CQ=y,求y与x的关系式,并求出自变量x的取值范围。
例 9 如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CD,
AD与BE相交于点F. (1)求证:△ABD≌△BCE; (2)求证:△ABE∽△FAE;
(3)当AF=7,DF=1时,求BD的长。
(量得BN=70cm)
C
C
DME
DME
A PN F
B
A PN F
B
1.如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80 毫米,要把它加工成正方形零件,使正方形的一边在BC上,其 余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?
A
A
M
EN
H
KG
∟
B Q DPC
B
E
DF C
E
AB AC BC
B
C (2)公共边平方=共线边之积:AC 2 AE • AB
反A字 型 【模型2】反“A”字型&反“8”字型
(Ⅱ)DE拉下来经过点C,又称之为母子型,为相似常考模型:
A
A
E
B
C
AC2 AED • BC
AC2 CD • CB
AD2 BD • CD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的基本模型
(一)A 型、反A 型(斜A 型)
B
C
D
E
(平行)
C
B
D
E
(不平行)
自己在《课堂精练》中找几道相应的题目。
例1:(2008湘潭市) 如图,已知D 、E 分别是的△ABC 的AB 、 AC 边上的点,DE ∥BC ,且△ADE 与四边形DBCE 的面积比为1:8,那么AE :AC 等于( ) A .1 : 9 B .1 : 3 C .1 : 8 D .1 : 2
例2:(2008江苏盐城)如图,D 、E 两点分别在△ABC 的边AB 、 AC 上,DE 与BC 不平行,当满足 条件(写出一个即可)时,△ADE ∽△ACB .
(二)X 型 蝴蝶型
(平行)(8字型) (不平行)(蝴蝶型)
自己在《课堂精练》中找几道相应的题目。
例1:如图,在梯形ABCD 中,若AB ∥DC ,AD=BC ,对角线BD 、AC 把梯形分成了四个小三角形.
(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例) (2)请你任选一组相似三角形,并给出证明.
例2:(2013?内江)如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( ) A . 2:5 B . 2:3 C . 3:5 D .
3:2 例3:(哈尔滨)在平行四边形ABCD 中,E 为直线CD 上一点,DE=2CE ,F 是AD 的中点,连接EF 交BD 交于点P ,则DP :PB=____________ (三)共边共角型 母子型
自己在《课堂精练》中找几道相应的题目。
课本P90第4题:已知:如图,在Rt △ABC 中,AB=AC ,∠DAE=45°. 求证:(1)△AB E ∽△ACD ; (2)BC 2=2BE ×CD
例:在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点D,BC=3,AB=5,写出其中的一对相似三角形 _______________;并写出它的面积比
(四)一线三等角模型: 以等腰三角形(等腰梯形)或者等边三角形为背景 包括“三垂直”模型: 例1:(2013·天津)如图所示,在边长为9的正三角形ABC 中,BD =3,∠ADE =60°,则AE 的长为
例1图 例2图
例2:如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD (2)当BD =1,FC =3时,求BE
例3:在△ABC 中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠.
①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长;
②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出x 的取值范围;
例4:正方形ABCD
的边长为5(如下图),点P 、Q
分别在直线..CB 、直线..DC 上(点P 不与点C 、点B 重合),且保持︒=∠90APQ .当1=CQ 时,求出线段BP 的长.
C
A
D
B E
F
A
B
C
备用图
A
B
C P
Q
A
B
C
备用图
例5:已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2.
(1)如果P 为AD 上的一点,满足∠BPC =∠A .求AP 的长. (2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么
①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,
并写出x 的取值范围;
②当CE =1时,写出AP 的长.
例6:如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠. (1) 求证:△ABD ∽△DCE ;
(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出x 的取值范围; (3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.
E B
C
A
D
P
例7:已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,求y 关于x 的函数关系式,并写出x 的取值范围。
例8:如图所示,在矩形AOBC 中,点A 的坐标是﹙-2,1﹚,点C 的纵坐标是4,则B,C 两点的坐标分别是( )
A.32,3,,423⎛⎫⎛⎫- ⎪ ⎪⎝
⎭⎝
⎭
B .31
,3,,422⎛⎫⎛⎫- ⎪ ⎪⎝
⎭⎝
⎭
C.772
,,,4423⎛⎫⎛⎫
- ⎪ ⎪⎝
⎭⎝
⎭
D.771
,,,4422⎛⎫⎛⎫
- ⎪ ⎪⎝
⎭⎝
⎭
例9:在平面直角坐标系中,点C ﹙-3,0﹚,点A,B 分别在x 轴,y 轴的正半轴上,且
满足2310OB OA -+-=.
(1)求点A ,点B 的坐标.
(2)是否存在点P ,使以点A B P ,,为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.
例10、在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在
两坐标轴上,点C 为(-1,0).如图所示,B 点在抛物线y=21x 2+2
1
x-2图象上,过点
B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BD
C ≌△COA ;
(2)求BC 所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由. (五)燕尾型
例1:已知:如图,= 求证:△ADB ∽△AEC
例2:如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED (六)旋转型:(由A 字型旋转得到) 《课堂精练》91页第8题。
例:(2008扬州)如图,在△ABD 和△ACE 中,AB=AD ,AC=AE ,∠BAD=∠CAE ,连结BC 、DE 相交于点F ,BC 与AD 相交于点G . (1)试判断线段BC 、DE 的数量关系,并说明理由
(2)如果∠ABC=∠CBD ,那么线段FD 是线段FG 和FB 的比例中项吗?为什么? (七)山字型
例:(2013·乌鲁木齐)如图所示,AB ∥GH ∥CD ,点H 在BC 上,A C 与BD 交于点G,AB =2,CD =3,则GH 的长为 .
(八)金字塔模型 沙漏模型
①
AD AE DE AF
AB AC BC AG
===
; ②22::ADE ABC S S AF AG =△△。
例1:如图,DE ∥BC ,若AD=3,BD=2,AG ⊥BC ,交DE 于 F,,则AG:AF= : , 计算线段长度,常见的圆中相似情形如下:
A
B
C
D
E
A
B
C
D
A
B
C
D
A
B
C
D
C D
A P
如图,在Rt △ABC 中∠C=90°,放置边长分别为4、6、x 的三个正方形,则x 的值为__
如图,三个正方形的边长分别为2,6,8;则图中阴影部分的面积为___(先求梯形的上
下底)
如图直角三角形中,三个正方形的边长分别为a ,b ,c ,请证明:b=a+c
P
O C
D
A。