2015-2016学年第一学期八年级数学期中试题

合集下载

2015-2016学年上海市黄浦区八年级(上)期中数学试卷

2015-2016学年上海市黄浦区八年级(上)期中数学试卷

2015-2016学年上海市黄浦区八年级(上)期中数学试卷一、选择题1.下列二次根式中,最简二次根式是( )A.B.C.D.2.的一个有理化因式是( )A.B.C.+D.﹣3.下列方程是一元二次方程的是( )A.ax2﹣2x+=0(a是已知数)B.3x2+2x﹣4=3x2C.5x2﹣2x=0 D.=14.下列二次根式中与是同类二次根式的是( )A. B. C. D.5.下列语句中哪个是命题( )A.联结A、B两点B.等角的余角相等吗?C.对顶角相等D.代数式(a≥0)叫二次根式6.如图,已知AB=AC,AD=BD=BC,那么下列结论中,错误的是( )A.∠BAC=36°B.BD平分∠ABCC.若取BC边上的中点M,联结AM交BD于N,那么∠MNB=54°D.点N是BD的中点二、填空题(每小题2分,共24分)7.计算:﹣=__________.8.如果有意义,那么a的取值范围是__________.9.化简:(b>0)=__________.10.某种商品原价100元,经过两次降价后,该种商品的利润减少了36元,那么该商品平均每次降价的百分比是__________.11.将命题“同角的补角相等”改写成“如果…那么…”形式为__________.12.若x=﹣1是方程x2﹣mx﹣3=0的一个根,则m的值为__________.13.在实数范围内因式分解:x2﹣4x﹣3=__________.14.若|b﹣1|与互为相反数,则(a+b)2015=__________.15.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为__________.16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__________度.17.如图,AB⊥AC,AB=AC=cm,D为AC中点,CF∥AB,AF⊥BD,垂足为E.则CF=__________cm.18.已知等腰△ABC,AB=AC,∠C=30°,如果将△ABC绕着点B旋转,使点C正好落在直线AB上的点C′处,那么∠BC′C=__________度.三、简答题(每小题7分,共56分)19.计算:.20.解方程:(x+3)(x﹣1)﹣5=0.21.解方程:y﹣=﹣.22.用配方法解方程:2x2﹣4x+1=0.23.化简求值:当x=3,y=4时,求代数式+的值.24.已知关于x的一元二次方程(m﹣1)x2﹣(2m﹣1)x+m+1=0(m为常数)有两个实数根,求m的取值范围.25.如图,要建一个面积为150㎡的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一边墙,墙长为18m,另三边用篱笆围成.若篱笆长度为35m,且要求用完.问:(1)求鸡场的长和宽各为多少米?(2)若将题中条件“墙长为18米”换为“墙长为a米”,且增加条件“离墙9m开外鸡场一侧准备修条小路”,其他条件不变,则墙长a米至少要多少米?26.如图,在△ABC中,CD⊥AB于D,BE⊥AC于E,且AB=CG,AC=BF.(1)求证:△ABF≌△GCA;(2)求证:AG⊥AF.四、解答题27.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2015-2016学年上海市黄浦区八年级(上)期中数学试卷一、选择题1.下列二次根式中,最简二次根式是( )A.B.C.D.【考点】最简二次根式.【专题】计算题;二次根式.【分析】利用最简二次根式的定义判断即可.【解答】解:A、是最简二次根式,正确;B、=2,错误;C、=|a|b2,错误;D、=,错误,故选A【点评】此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.2.的一个有理化因式是( )A.B.C.+D.﹣【考点】分母有理化.【专题】计算题;二次根式.【分析】找出原式的一个有理化因式即可.【解答】解:的一个有理化因式是,故选B【点评】此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.3.下列方程是一元二次方程的是( )A.ax2﹣2x+=0(a是已知数)B.3x2+2x﹣4=3x2C.5x2﹣2x=0 D.=1【考点】一元二次方程的定义.【专题】计算题;一元二次方程及应用.【分析】利用一元二次方程的定义判断即可.【解答】解:5x2﹣2x=0是一元二次方程,故选C【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.4.下列二次根式中与是同类二次根式的是( )A. B. C. D.【考点】同类二次根式.【专题】计算题.【分析】根据化简成最简二次根式,被开方数相同的二次根式是同类二次根式,可得答案.【解答】解:,A、,故A不正确;B、被开方数不同,故B不正确;C、,故C正确;D、,故D不正确;故选:C.【点评】本题考查了同类二次根式,先化成最简二次根式,再比较被开方数.5.下列语句中哪个是命题( )A.联结A、B两点B.等角的余角相等吗?C.对顶角相等D.代数式(a≥0)叫二次根式【考点】命题与定理.【分析】判断一件事情的语句,叫做命题.根据命题的定义进行判断.【解答】解:A、不能判断其真假,不构成命题,故本选项错误;B、不能判断其真假,不构成命题,故本选项错误;C、是,因为能够判断真假,故本选项正确;D、代数式(a≥0)叫二次根式,是定义,不是命题,故本选项错误.故选C.【点评】本题主要考查了命题的定义:判断一件事情的语句是命题,一般有“是”,“不是”等判断词,比较简单.6.如图,已知AB=AC,AD=BD=BC,那么下列结论中,错误的是( )A.∠BAC=36°B.BD平分∠ABCC.若取BC边上的中点M,联结AM交BD于N,那么∠MNB=54°D.点N是BD的中点【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠C=∠BDC,∠BAC=∠ABD,由三角形的外角的性质得到∠BDC=∠BAC+∠ABD=2∠BAC,推出∠ABC=∠C=2∠BAC,根据三角形的内角和列方程即可得到∠BAC=36°,故A正确;由∠ABD=∠BAC=36°,∠ABC==72°,即可得到BD平分∠ABC,故B正确;根据直角三角形的性质和等腰三角形的性质即可得到∠BNM=54°,故C正确;根据三角形的中位线的性质即可判断D错误,【解答】解:∵AB=AC,AD=BD=BC,∴∠ABC=∠C=∠BDC,∠BAC=∠ABD,∵∠BDC=∠BAC+∠ABD=2∠BAC,∴∠ABC=∠C=2∠BAC,∴∠BAC+∠ACB+∠ABC=∠BAC+2∠BAC+2∠BAC=180°,∴∠BAC=36°,故A正确;∴∠ABD=∠BAC=36°,∠ABC==72°,∴∠ABC=2∠ABD,∴BD平分∠ABC,故B正确;∵AB=AC,BM=CM,∴AM⊥BC,∴∠AMB=90°,∵∠DBC=36°,∴∠BNM=54°,故C正确;∵AM不平行于AC,BM=CM,∴BN≠DN,∴D错误,故选D.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.二、填空题(每小题2分,共24分)7.计算:﹣=.【考点】二次根式的加减法.【专题】计算题;二次根式.【分析】原式各项化简后,合并即可得到结果.【解答】解:原式=4﹣3=,故答案为:【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.8.如果有意义,那么a的取值范围是a≥.【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数是非负数列出不等式,解不等式即可.【解答】解:由题意得,2a﹣1≥0,解得,a≥,故答案为:a≥.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.9.化简:(b>0)=.【考点】二次根式的性质与化简.【专题】计算题;二次根式.【分析】原式利用二次根式性质化简即可得到结果.【解答】解:原式=,故答案为:【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.10.某种商品原价100元,经过两次降价后,该种商品的利润减少了36元,那么该商品平均每次降价的百分比是20%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】设每次降价的百分比为x,第一次降价后价格变为100(1﹣x),第二次在第一次降价后的基础上再降,变为100(x﹣1)(x﹣1),从而列出方程,求出答案.【解答】解:设每次降价的百分比为x,根据题意得:100(x﹣1)2=100﹣36,解得:x1=1.8,x2=0.2.因x=1.8不合题意,故舍去,所以x=0.1.答:该商品平均每次降价的百分比是20%.故答案为:20%.【点评】此题考查了一元二次方程的应用,解答本题的关键在于分析降价后的价格,要注意降价的基础,另外还要注意解的取舍.11.将命题“同角的补角相等”改写成“如果…那么…”形式为如果两个角是同一个角的补角,那么这两个角相等.【考点】命题与定理.【分析】“同角的补角相等”的条件是:两个角是同一个角的补角,结论是:这两个角相等.据此即可写成所要求的形式.【解答】解:“同角的补角相等”的条件是:两个角是同一个角的补角,结论是:这两个角相等.则将命题“同角的补角相等”改写成“如果…那么…”形式为:如果两个角是同一个角的补角,那么这两个角相等.故答案是:如果两个角是同一个角的补角,那么这两个角相等.【点评】本题考查了命题的叙述,正确分清命题的条件和结论是把命题写成“如果…那么…”的形式的关键.12.若x=﹣1是方程x2﹣mx﹣3=0的一个根,则m的值为2.【考点】一元二次方程的解.【分析】把x=﹣1代入已知方程可以得到关于m的一元一次方程,通过解一元一次方程来求m的值.【解答】解:把x=﹣1代入方程x2﹣mx﹣3=0,得(﹣1)2﹣(﹣1)•m﹣3=0,解得m=2.故答案是:2.【点评】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.13.在实数范围内因式分解:x2﹣4x﹣3=(x﹣2+)(x﹣2﹣).【考点】实数范围内分解因式.【专题】计算题.【分析】令原式值为0列出方程,求出方程的解即可得到分解的结果.【解答】解:令x2﹣4x﹣3=0,解得:x==2±,则原式=(x﹣2+)(x﹣2﹣),故答案为:(x﹣2+)(x﹣2﹣).【点评】此题考查了实数范围内分解因式,令原式值为0求出x的值是解本题的关键.14.若|b﹣1|与互为相反数,则(a+b)2015=﹣1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出a、b的值,根据乘方的意义计算即可.【解答】解:由题意得,b﹣1=0,a+2=0,解得,a=﹣2,b=1,(a+b)2015=﹣1,故答案为:﹣1.【点评】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.15.如图,已知点D,E是BC上的三等分点,△ADE是等边三角形,那么∠BAC的度数为120°.【考点】等边三角形的性质.【分析】利用等边三角形的性质以及等腰三角形的性质得出∠B=∠BAD=∠C=∠EAC=30°,进而利用三角形内角和定理求出即可.【解答】解:∵E是BC的三等分点,且△ADE是等边三角形,∴BD=DE=EC=AD=AE,∠ADE=∠AED=60°,∴∠B=∠BAD=∠C=∠EAC=30°,∴∠BAC=180°﹣∠B﹣∠C=120°.故答案为:120°.【点评】此题主要考查了等边三角形的性质与等腰三角形的性质等知识,得出∠B=∠C的度数是解题关键.16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.【点评】考查三角形内角之和等于180°.17.如图,AB⊥AC,AB=AC=cm,D为AC中点,CF∥AB,AF⊥BD,垂足为E.则CF=cm.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】求出∠BAD=∠ACF=90°,根据三角形内角和定理求出∠BAD=∠CAF,根据ASA 推出△ABD≌△CDF,根据全等三角形的性质得出AD=CF即可.【解答】解:∵AB⊥AC,CF∥AB,∴CF⊥AC,∴∠BAD=∠ACF=90°,∵AF⊥BD,∴∠AEB=∠AED=90°,∴∠ABD+∠ADB=∠CAF+∠ADB=90°,∴∠BAD=∠CAF,在△ABD和△CAF中,,∴△ABD≌△CDF(ASA),∴AD=CF,∵AC=cm,D为AC中点,∴AD=AC=,∴CF=,故答案为:.【点评】本题考查了全等三角形的性质和判定,平行线的性质,三角形内角和定理的应用,能推出△ABD≌△CDF是解此题的关键,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应角相等,对应边相等.18.已知等腰△ABC,AB=AC,∠C=30°,如果将△ABC绕着点B旋转,使点C正好落在直线AB上的点C′处,那么∠BC′C=15或75度.【考点】旋转的性质.【分析】分成顺指针和逆时针两种情况进行讨论,利用等腰三角形的性质:等边对等角以及三角形内角和定理求解.【解答】解:当顺时针旋转时,C落在C'1的位置,∵B'1C=BC,∴∠BC'1C=∠BCC'1,又∵∠ABC=∠BC'1C+∠BCC'1=30°,∴∠BC'1C=15°;当逆时针旋转时,C落在C'2的位置,∵BC'2=BC,则∠BC'2C=∠BCC'2===75°.故答案是:15或75.【点评】本题考查了旋转的性质以及等腰三角形的性质,注意到分两种情况进行讨论是本题的关键.三、简答题(每小题7分,共56分)19.计算:.【考点】二次根式的加减法.【分析】分母有理化的同时,运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2(+1)+3﹣2=2+2+3﹣2=2+3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.20.解方程:(x+3)(x﹣1)﹣5=0.【考点】解一元二次方程-因式分解法.【分析】整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:整理得:x2+2x﹣8=0,(x+4)(x﹣2)=0,x+4=0,x﹣2=0,x1=﹣4,x2=2,所以原方程的根是x1=﹣4,x2=2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.21.解方程:y﹣=﹣.【考点】解一元二次方程-公式法.【分析】先去分母,整理后求出b2﹣4ac的值,再代入公式求出即可.【解答】解y﹣=﹣,去分母,得6y﹣3(y2﹣1)=﹣2,整理,得3y2﹣6y﹣5=0,b2﹣4ac=(﹣6)2﹣4×3×(﹣5)=96,y=,y1=,y2=.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.22.用配方法解方程:2x2﹣4x+1=0.【考点】解一元二次方程-配方法.【专题】配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用,把左边配成完全平方式,右边化为常数.【解答】解:原方程化为配方得即开方得∴,.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.23.化简求值:当x=3,y=4时,求代数式+的值.【考点】二次根式的化简求值.【分析】首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解答】解:原式=+=+3++=2+4,当x=3,y=4时,原式=2+4=2+8.【点评】本题考查了二次根式的化简求值,正确理解平方差公式和完全平方公式对分子进行变形是关键.24.已知关于x的一元二次方程(m﹣1)x2﹣(2m﹣1)x+m+1=0(m为常数)有两个实数根,求m的取值范围.【考点】根的判别式.【分析】根据一元二次方程有两个实数根可知,△>0,列出关于m的不等式,解答即可.【解答】解:∵关于x的一元二次方程(m﹣1)x2﹣(2m﹣1)x+m+1=0有两个实数根,∴△=b2﹣4ac=[﹣(2m﹣1)]2﹣4(m﹣1)(m+1)=﹣4m+5>0,又∵(m﹣1)x2﹣(2m﹣1)x+m+1=0是一元二次方程,∴(m﹣1)≠0,故m的取值范围是m≤且m≠1.【点评】此题考查了一元二次方程根的判别式,解题的关键是要明确:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.25.如图,要建一个面积为150㎡的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一边墙,墙长为18m,另三边用篱笆围成.若篱笆长度为35m,且要求用完.问:(1)求鸡场的长和宽各为多少米?(2)若将题中条件“墙长为18米”换为“墙长为a米”,且增加条件“离墙9m开外鸡场一侧准备修条小路”,其他条件不变,则墙长a米至少要多少米?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设鸡场的宽为x米,平行于墙的边长为35﹣2x米,根据面积为150平方米,可列方程求解.(2)如果离墙9米开外准备修路,那么宽就要小于9米,可选定墙长为9米,由此进一步分析得出答案即可.【解答】解:(1)设养鸡场靠墙的边长为x米,则平行于墙的边长为(35﹣2x)米,由题意得:(35﹣2x)x=150,即(2x﹣15)(x﹣10)=0,解得:x=7.5或x=10,当x=10时,35﹣2x=15<18,符合实际意义;当x=7.5时,35﹣2x=20>18,不符合实际意义,舍去.答:养鸡场的长是15米,宽是10米;(2))求出的平行于墙的一条边应小于墙长a;如果a大于等于20,则方程有两个解,如果a小于20,大于等于15,则有一个解,如果a 小于15,则无解.根据离墙9米开外准备修路,那么长不小于20米,即a≥20米,此时养鸡场的长至少为20米,宽为7.5米.【点评】本题考查一元二次方程的实际运用,利用长方形的面积得出等量关系建立方程解决问题.26.如图,在△ABC中,CD⊥AB于D,BE⊥AC于E,且AB=CG,AC=BF.(1)求证:△ABF≌△GCA;(2)求证:AG⊥AF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据垂直定义得出∠BDC=∠GEC=90°,根据等角的余角相等求出∠ABF=∠ACG,根据全等三角形的判定推出即可;(2)根据全等三角形的性质得出∠F=∠GAC,求出∠GAC+∠FAE=90°,即可得出答案.【解答】证明:(1)∵CD⊥AB,BE⊥AC,∴∠BDC=∠GEC=90°,∵∠DGB=∠EGC,∴∠ABF=∠ACG(等角的余角相等),在△ABF和△GCA中,,∴△ABF≌△GCA;(2)由(1)△ABF≌△GCA,∴∠F=∠GAC,∵BE⊥AC,∴∠AEB=∠F+∠FAE=90°,∴∠GAC+∠FAE=90°,∴AG⊥AF.【点评】本题考查了全等三角形的性质和判定,垂直定义的应用,能求出△ABF≌△GCA 是解此题的关键,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应角相等,对应边相等.四、解答题27.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【考点】全等三角形的判定与性质.【专题】动点型.【分析】(1)①先求得BP=CQ=3,PC=BD=5,然后根据等边对等角求得∠B=∠C,最后根据SAS即可证明;②因为V P≠V Q,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4,根据全等得出CQ=BD=5,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【解答】解:(1)①∵t=3(秒),∴BP=CQ=3(厘米)∵AB=10,D为AB中点,∴BD=5(厘米)又∵PC=BC﹣BP=8﹣3=5(厘米)∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,,∴△BPD≌△CQP(SAS),②∵V P≠V Q,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4,∵△BPD≌△CPQ,∴CQ=BD=5.∴点P的运动时间t==4(秒),此时V Q==1.25(厘米/秒).(2)因为V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程设经过x秒后P与Q第一次相遇,依题意得1.25x=x+2×10,解得x=80(秒),此时P运动了80×1=80(厘米),又∵△ABC的周长为28厘米,80=28×2+24,∴点P、Q在AB边上相遇,即经过了80秒,点P与点Q第一次在AB边上相遇.【点评】本题考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用,解题的根据是熟练掌握三角形全等的判定和性质.。

2015-2016年四川省成都七中育才学校八年级上学期数学期中试卷与答案

2015-2016年四川省成都七中育才学校八年级上学期数学期中试卷与答案

第1页(共25页)页)赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt △ABC 中,∠ACB =90°,以斜边AB 为底边向外作等腰三角形P AB ,连接PC . (1)如图,当∠APB =90°时,若AC =5,PC =62,求BC 的长;的长;(2) 当∠APB =90°时,若AB =45,四边形APBC 的面积是36,求△ACB 的周长.PC BA2.已知:如图,B 、C 、E 三点在一条直线上,AB =AD ,BC =CD.(1)若∠B =90°,AB =6,BC =23,求∠A 的值;的值; (2)若∠BAD +∠BCD =180°,cos ∠DCE =35,求AB BC 的值.EDABC3.如图,在四边形ABCD 中,AB=AD ,∠DAB=∠BCD=90°, (1)若AB =3,BC +CD =5,求四边形ABCD 的面积的面积(2)若p = BC +CD ,四边形ABCD 的面积为S ,试探究S 与p 之间的关系。

之间的关系。

DBA C试卷一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符号题目要求,答案涂在答题卡上)1.(3分)9的平方根是(的平方根是( )A.±3 B.± C.3 D.﹣32.(3分)下列各组线段中,能够组成直角三角形的一组是(分)下列各组线段中,能够组成直角三角形的一组是( ) A.1,2,3 B.2,3,4 C.4,5,6 D.1,,3.(3分)如图,点A(﹣2,1)到y轴的距离为(轴的距离为( )A.﹣2 B.1 C.2 D.4.(3分)估计介于(介于( )A.5与6之间之间 D.8与9之间之间 B.6与7之间之间 C.7与8之间5.(3分)在函数y=,自变量x的取值范围是(的取值范围是( )A.x≥﹣1 B.x>0且x≠1 C.x≥1 D.x>16.(3分)下列说法正确的有(分)下列说法正确的有( )(1)实数与数轴的点是一一对应的:(2)无限小数都是无理数:(3)正比例函数是特殊的一次函数:(4)=a.A.3个 B.2个 C.1 D.0个7.(3分)下列二次根式中属于最简二次根式的是(分)下列二次根式中属于最简二次根式的是( )A. B. C. D.8.(3分)下列函数中,是正比例函数的是(分)下列函数中,是正比例函数的是( )A.y= B.y= C.y=2x2+1 D.y=x﹣19.(3分)若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()在( ) A.第四象限.第二象限 D.第一象限.第四象限 B.第三象限.第三象限 C.第二象限10.(3分)如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点)边上的高长为(上,则AB边上的高长为(A. B. C. D.二.填空题(本大题共4小题,每小题4分,共16分)11.(4分)在实数、、、0、、﹣1.414中,有理数有中,有理数有 个. 12.(4分)在平面直角坐标系内点P(3,4)关于原点O对称点的坐标对称点的坐标 ,.)到原点的距离是点P(3,4)到原点的距离是13.(4分)﹣27的立方根是的立方根是 ,的算术平方根是的算术平方根是 . 14.(4分)如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A.(结果则小虫爬行的最短路程是点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是保留根号)三、解答题(54分)15.(10分)计算:(1)2;(2).16.(10分)(1)解方程:(2)解不等式组解集在数轴上表示出来.17.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于y对称轴对称的△A1B1C1.(2)将△A1B1C1向右平移2个单位,向下平移1个单位作出平移后的△A2B2C2. (3)在x轴上求作一点P,使PB1+P A2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)18.(6分)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.19.(10分)已知关于x,y的方程组的解满足不等式x+2y>1,求满足条件的m的负整数值.20.(10分)如图Rt△ABC,AB=AC=6,D为AC上一点,连接BD,AF⊥BD交BD 于H,交BC于F,CE⊥AC交AF的延长线于E,(1)求证:△ABD≌△CAE;(2)当D为AC上离A点最近的三等分点时,连接DE,求DE的长;(3)当D为AC上离A点最近的n等分点时,连接BE,求S△BDC :S△BEC(用含n的代数式表示,直接写出答案)一、填空题(每小题4分,共20分)21.(4分)若y=(m﹣1)x2﹣|m|+m+1是关于x的一次函数,则m= .22.(4分)已知a,b,c满足1+2a+a2+=0,那么a+2b﹣c= .23.(4分)若关于x的不等式组无解,则a的取值范围是的取值范围是 . 24.(4分)如图,如图,△△ABC中,∠BAC=90°,AD为BC边上中线,边上中线,若若AD=,△ABC 周长为6+2,则△ABC的面积为的面积为.25.(4分)如图,在平面直角坐标系中,A点坐标为(3,0),线段OA绕原点O每次按逆时针方向旋转60°,并且每旋转一次长度增加两倍,例如:OA1=3OA,∠A1OA=60°,那么按照此规律,A2的坐标为的坐标为,A100的坐标为的坐标为.二、解答题(共30分)26.(8分)已知a=,b=.求: (1)a2b﹣ab2的值;(2)a 3﹣5a2﹣6a﹣b+2015的值.27.(10分)如图,在长方形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在线段AC上的点E、F处,折痕分别为CM、AN.(1)求证:DN=MB;(2)如果AB=4、BC=3时,求线段MN的长度;(3)在(2)的条件下,求△NEM的面积.28.(12分)如图,以长方形OABC的顶点O为原点,OA所在直线为x轴,OC 所在直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,连结BD,点A关于BD的对称点恰好落在线段BC边上的点F 处.(1)直接写出点E,F的坐标;(2)在线段CB上是否存在一点P,使△OEP为等腰三角形?若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.(3)在x轴、y轴上是否分别存在点M、N,使四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.2015-2016学年四川省成都七中育才学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符号题目要求,答案涂在答题卡上)1.(3分)9的平方根是(的平方根是( )A.±3 B.± C.3 D.﹣3【解答】解:9的平方根是:±=±3.故选:A.2.(3分)下列各组线段中,能够组成直角三角形的一组是(分)下列各组线段中,能够组成直角三角形的一组是( )A.1,2,3 B.2,3,4 C.4,5,6 D.1,,【解答】解:A、12+22≠32,不能组成直角三角形,故错误;B、22+32≠42,不能组成直角三角形,故错误;C、42+52≠62,不能组成直角三角形,故错误;D、12+()2=()2,能够组成直角三角形,故正确.故选:D.3.(3分)如图,点A(﹣2,1)到y轴的距离为(轴的距离为( )A.﹣2 B.1 C.2 D.【解答】解:点A的坐标为(﹣2,1),则点A到y轴的距离为2.故选:C.4.(3分)估计介于(介于( )A.5与6之间之间 D.8与9之间 之间 B.6与7之间之间 C.7与8之间【解答】解:∵36<41<49,∴6<<7.故选:B.5.(3分)在函数y=,自变量x的取值范围是(的取值范围是( ) A.x≥﹣1 B.x>0且x≠1 C.x≥1 D.x>1【解答】解:由题意,得x﹣1>0,解得x>1,故选:D.6.(3分)下列说法正确的有(分)下列说法正确的有( )(1)实数与数轴的点是一一对应的:(2)无限小数都是无理数:(3)正比例函数是特殊的一次函数:(4)=a.A.3个 B.2个 C.1 D.0个【解答】解:(1)实数与数轴的点是一一对应的,故(1)正确: (2)无限不循环小数都是无理数,故(2)错误:(3)正比例函数是特殊的一次函数,故(3)正确:(4)=|a|,故(4)错误;故选:B.7.(3分)下列二次根式中属于最简二次根式的是(分)下列二次根式中属于最简二次根式的是( ) A. B. C. D.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选:D.8.(3分)下列函数中,是正比例函数的是(分)下列函数中,是正比例函数的是( )A.y= B.y= C.y=2x2+1 D.y=x﹣1【解答】解:A、是正比例函数,故此选项正确;B、不是正比例函数,故此选项错误;C、不是正比例函数,故此选项错误;D、不是正比例函数,故此选项错误;故选:A.9.(3分)若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()在( ) A.第四象限.第二象限 D.第一象限.第四象限 B.第三象限.第三象限 C.第二象限【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选:C.10.(3分)如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点)上,则AB边上的高长为(边上的高长为(A. B. C. D.【解答】解:S=22﹣×1×2﹣×1×1﹣×1×2=,且S△ABC=AB•CD, △ABC∵AB==,∴AB•CD=, 则CD==.故选:A .二.填空题(本大题共4小题,每小题4分,共16分) 11.(4分)在实数、、、0、、﹣1.414中,有理数有中,有理数有 4 个. 【解答】解:因为,所以有理数有,0,,﹣1.414共4个.故答案为:412.(4分)在平面直角坐标系内点P (3,4)关于原点O 对称点的坐标对称点的坐标 (﹣3,﹣4) ,点P (3,4)到原点的距离是)到原点的距离是 5 .【解答】解:点P (3,4)关于原点O 对称点的坐标对称点的坐标 (﹣3,﹣4),点P (3,4)到原点的距离是到原点的距离是 5, 故答案为:(﹣3,﹣4),5.13.(4分)﹣27的立方根是的立方根是 ﹣3 ,的算术平方根是的算术平方根是 2 . 【解答】解:﹣27的立方根是﹣3,=4,4的算术平方根是2.故答案为:﹣3;2.14.(4分)如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C 点,则小虫爬行的最短路程是点,则小虫爬行的最短路程是 2 .(结果保留根号)【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=2,CB=2.∴AC===2,故答案为:2.三、解答题(54分)15.(10分)计算:(1)2;(2).【解答】解:(1)原式=2﹣6+=﹣6;(2)原式==.16.(10分)(1)解方程:(2)解不等式组解集在数轴上表示出来.【解答】解:(1)①+②得:3x=6,解得:x=2,把x=2代入①得:y=3,所以原方程组的解为:;(2)∵解不等式①得:x≥2,解不等式②得:x<4,∴不等式组的解集为2≤x<4,在数轴上表示为:.17.(8分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于y对称轴对称的△A1B1C1.(2)将△A1B1C1向右平移2个单位,向下平移1个单位作出平移后的△A2B2C2. (3)在x轴上求作一点P,使PB1+P A2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)如图,点P即为所求,P(2,0).18.(6分)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.【解答】解:在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=652﹣252=3600,所以,CD=±60(负值舍去),所以,CE=CD+DE=60+1.6=61.6米,答:风筝的高度CE为61.6米.19.(10分)已知关于x,y的方程组的解满足不等式x+2y>1,求满足条件的m的负整数值.【解答】解:解关于x,y的方程组,得,把它代入x+2y>1得,2m+2+2(m+2)>1,解得m>﹣,所以满足条件的m的负整数值为﹣1.20.(10分)如图Rt△ABC,AB=AC=6,D为AC上一点,连接BD,AF⊥BD交BD于H,交BC于F,CE⊥AC交AF的延长线于E,(1)求证:△ABD≌△CAE;(2)当D为AC上离A点最近的三等分点时,连接DE,求DE的长;(3)当D为AC上离A点最近的n等分点时,连接BE,求S△BDC :S△BEC(用含n的代数式表示,直接写出答案)【解答】解:(1)如图1,Rt△ABC中,∠BAD=90°,AH⊥BD,∴∠1+∠2=∠1+∠3=90°,∴∠2=∠3,又∵CE⊥AC,∴∠ACE=∠BAD=90°,在△ABD和△CAE中,,∴△ABD≌△CAE(ASA);(2)如图2,∵△ABD≌△CAE,∴CE=AD,∵D为AC上离A点最近的三等分点,AC=6,∴AD=2,CD=4,∴CE=2,∵∠DCE=90°,∴Rt△CDE中,DE===2;(3)如图3,∵△ABD≌△CAE,∴CE=AD,∵D为AC上离A点最近的n等分点,AC=6,∴AD=,CD=6﹣=,∴CE=,∴S△BDC=×CD×AB=××6=,S△BEC=×CE×AC=××6=,∴S△BDC :S△BEC=:=n﹣1.一、填空题(每小题4分,共20分)21.(4分)若y=(m﹣1)x2﹣|m|+m+1是关于x的一次函数,则m= ﹣1 . 【解答】解:∵y=(m﹣1)x2﹣|m|+m+1是关于x的一次函数,∴2﹣|m|=1,m﹣1≠0.解得:m=﹣1.故答案为:﹣1.22.(4分)已知a,b,c满足1+2a+a2+=0,那么a+2b﹣c= 4 .【解答】解:∵a,b,c满足1+2a+a2+=0,∴(a+1)2+|b﹣2|+=0,则,解得,所以a+2b﹣c=﹣1+4+1=4.故答案是:4.23.(4分)若关于x的不等式组无解,则a的取值范围是的取值范围是 a≤1 . 【解答】解:,解不等式①,得x>a+1,解不等式②,得x≤2a,∵关于x的不等式组无解,∴a+1≥2a,解得,a≤1,故答案为:a≤1.24.(4分)如图,如图,△△ABC中,∠BAC=90°,AD为BC边上中线,边上中线,若若AD=,△ABC4 .的面积为周长为6+2,则△ABC的面积为【解答】解:设AB长为a,AC长为b,∵在△ABC中,∠BAC=90°,AD为BC边上中线且AD=,∴BC=2,∴a2+b2=(2)2=20,又∵△ABC周长为6+2,∴a+b=6+2﹣2=6,∴ab=[(a+b)2﹣(a2+b2)]=[36﹣20]=8.∴△ABC的面积为:ab=×8=4.故答案为:4.25.(4分)如图,在平面直角坐标系中,A点坐标为(3,0),线段OA绕原点O每次按逆时针方向旋转60°,并且每旋转一次长度增加两倍,例如:OA1=3OA,(﹣,) ,A100的坐标∠A1OA=60°,那么按照此规律,A2的坐标为的坐标为为 .【解答】解:∵在平面直角坐标系中,A点坐标为(3,0),线段OA绕原点O 每次按逆时针方向旋转60°,每旋转一次长度增加两倍,∴,.∵线段OA绕原点O每次按逆时针方向旋转60°,∴点A2在第二象限.∴A2的坐标为:().即A2的坐标为:.∵线段OA绕原点O每次按逆时针方向旋转60°,∴OA旋转6次正好转一圈.∵100÷6=16…4,∴第100次,点A100在第三象限.∴A100的坐标为:.故答案为:,.二、解答题(共30分)26.(8分)已知a=,b=.求:(1)a2b﹣ab 2的值;(2)a3﹣5a2﹣6a﹣b+2015的值.【解答】解:(1)∵a==3+2,b==3﹣2,∴a2b﹣ab2=ab(a﹣b)=(3+2)(3﹣2)(3+2﹣3+2)=1×4=4.(2)a3﹣5a2﹣6a﹣b+2015=a(a2﹣5a﹣6)﹣b+2015=(3+2)(9+8+12﹣15﹣10﹣6)﹣(3﹣2)+2015=(3+2)(2﹣4)﹣(3﹣2)+2015=6﹣12+8﹣8﹣3+2+2015=2008.27.(10分)如图,在长方形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在线段AC上的点E、F处,折痕分别为CM、AN.(1)求证:DN=MB;(2)如果AB=4、BC=3时,求线段MN的长度;(3)在(2)的条件下,求△NEM的面积.【解答】(1)证明:如图1,由折叠的性质得出∠DAN=∠NAC,∠BCM=∠ACM,∵AD∥BC,∴∠DAC=∠BCA,∴∠DAN=∠BCM,在Rt△ADN和Rt△CBM中,,∴△ADN≌△CBM(ASA),∴DN=BM;(2)如图2中,作NH⊥AB于H.在Rt△ADC中,∵∠D=90°,AD=BC=3,CD=AB=4,∴AC===5,由折叠的性质得出可知,AD=AF=3,DN=NF,设DN=NF=x,则CN=4﹣x,CF=2, 在Rt△NFC中,∵CN2=CF2+NF2,∴(4﹣x)2=x2+22,∴x=,∴DN=NF=,∵∠D=∠DAH=∠AHN=90°,∴四边形ADNH是矩形,∴NH=AD=3,AH=DN=,HM=AM﹣AH=4﹣﹣=1,在Rt△MNH中,MN===.(3)如图3中,连接EN,FM.∵NF⊥AC,EM⊥AC,DN=NF=BM=EM,∴NF∥EM,NF=EM,∴四边形MENF是平行四边形,∴S=S平行四边形MENF=S△EFN=•EF•NF=×(6﹣5)×=.△MNE28.(12分)如图,以长方形OABC的顶点O为原点,OA所在直线为x轴,OC 所在直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,连结BD,点A关于BD的对称点恰好落在线段BC边上的点F 处.(1)直接写出点E,F的坐标;(2)在线段CB上是否存在一点P,使△OEP为等腰三角形?若存在,求出所有满足条件的P点坐标;若不存在,请说明理由.(3)在x轴、y轴上是否分别存在点M、N,使四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.【解答】解:(1)∵OC=2,四边形OABC是矩形,∴AB=OC=2,∵点E是AB的中点,∴AE=1,∵AO=3,∴E(3,1),根据折叠可得DA=DF,∴DF=CO=2,∴AD=2,∴DO=3﹣2=1,∴F(1,2),(2)存在,理由:由(1)知,E(3,1),O(0,0)设P(a,2)(0≤a≤3),∴PE=,PO=,EO=,∵△OEP为等腰三角形,∴①当PE=PO时,∴=,∴a=1,∴P(1,2);②当PE=EO时,∴=,∴a=0或a=6(舍),∴P(0,2),③当PO=EO时,∴=,∴a=或a=﹣(舍),∴P(,2),即:满足条件的点P的坐标为(1,2)或(0,2)或(,2). (3)如图2,作点E关于x轴的对称点Eʹ,作点F关于y轴的对称点Fʹ,连接EʹFʹ,分别与x轴、y轴交于点M、N,连接FN、NM、ME,此时四边形MNFE的周长最小.∴Eʹ(3,﹣1),Fʹ(﹣1,2),设直线EʹFʹ的解析式为y=kx+b,有,解这个方程组,得,∴直线EʹFʹ的解析式为y=﹣x+.当y=0时,x=,∴M点的坐标为(,0).当x=0时,y=,∴N点的坐标为(0,).∵E与Eʹ关于x轴对称,F与Fʹ关于y轴对称, ∴NF=NFʹ,ME=MEʹ.FʹB=4,EʹB=3.在Rt△BEʹFʹ中,F'E'==5.∴FN+NM+ME=FʹN+NM+MEʹ=FʹEʹ=5.在Rt△BEF中,EF==.∴FN+NM+ME+EF=F'E'+EF=5+,即四边形MNFE的周长最小值是5+.。

河北省唐山市丰润区八年级数学上学期期中试题(含解析) 新人教版-新人教版初中八年级全册数学试题

河北省唐山市丰润区八年级数学上学期期中试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省某某市丰润区2015-2016学年八年级数学上学期期中试题一、选择题(本大题共12个小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填在括号内)1.下列图形是轴对称图形的有( )A.2个B.3个C.4个D.5个2.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为( )A.72° B.45° C.36° D.30°3.如图,∠BAC=90°,AD⊥BC,则图中互余的角有( )A.2对B.3对C.4对D.5对4.如图,已知△ABC≌△BAD,∠ABC=35°,∠BAC=105°,那么∠CAD的度数是( )A.60° B.65° C.70° D.105°5.已知点M(a,3),点N(2,b)关于x轴对称,则(a+b)2015=( )A.﹣3 B.﹣1 C.1 D.36.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( )A.11 B.16 C.17 D.16或177.能将三角形面积平分成相等两部分的是三角形的( )A.角平分线 B.高C.中线 D.外角平分线8.如图,下列条件不能证明△ABC≌△DCB的是( )A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.410.如图,在△ABC中,AB=AC,过点A作AD∥BC.若∠1=70°,则∠BAC的大小为( )A.30° B.40° C.50° D.70°11.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60° B.65° C.55° D.50°12.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对二、填空题(本大题共8个小题,每小题3分,共24分)13.已知直角三角形中30°角所对的直角边长是2cm,则斜边的长是__________.14.若正多边形的一个外角为30°,则这个多边形为正__________边形.15.如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为__________.16.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=__________.17.已知等腰三角形的一个外角等于100°,则它的顶角是__________.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=__________°.19.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=__________度.20.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是__________.三、解答题(本大题共7个小题,共52分)21.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.22.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上.(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.23.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.24.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.25.如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.26.如图,Rt△ABC中,∠ACB=90°,D是AB上的一点,过D作DE⊥AB交AC于点E,CE=DE.连接CD交BE于点F.(1)求证:BC=BD;(2)若点D为AB的中点,求∠AED的度数.27.已知,如图①,△ABC和△EDC都是等边三角形,点D,E分别在BC,AC上.(1)求证:AD=BE;(2)如图,将图①中的△EDC沿BC所在直线翻折(如图②所示),其它条件不变,(1)中结论是否还成立?请说明理由.2015-2016学年某某省某某市丰润区八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题2分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填在括号内)1.下列图形是轴对称图形的有( )A.2个B.3个C.4个D.5个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第1、3、5个图形是轴对称图形,共3个.故选B.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为( )A.72° B.45° C.36° D.30°【考点】三角形内角和定理.【分析】设∠A=x,则∠B=∠C=2x,再由三角形内角和定理求出x的值即可.【解答】解:设∠A=x,则∠B=∠C=2x,∵∠A+∠B+∠C=180°,∴x+2x+2x=180°,解得x=36°.故选C.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.如图,∠BAC=90°,AD⊥BC,则图中互余的角有( )A.2对B.3对C.4对D.5对【考点】直角三角形的性质.【分析】此题直接利用直角三角形两锐角之和等于90°的性质即可顺利解决.【解答】解:∵∠BAC=90°∴∠B+∠C=90°①;∠BAD+∠CAD=90°②;又∵AD⊥BC,∴∠BDA=∠CDA=90°,∴∠B+∠BAD=90°③;∠C+∠CAD=90°④.故共4对.故选C.【点评】本题主要考查了直角三角形的性质,根据互余定义,找到和为90°的两个角即可.4.如图,已知△ABC≌△BAD,∠ABC=35°,∠BAC=105°,那么∠CAD的度数是( )A.60° B.65° C.70° D.105°【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠DAB=∠ABC=35°,代入∠CAD=∠BAC﹣∠DAB求出即可.【解答】解:∵△ABC≌△BAD,∠ABC=35°,∠BAC=105°,∴∠DAB=∠ABC=35°,∴∠CAD=∠BAC﹣∠DAB=105°﹣35°=70°,故选C.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等.5.已知点M(a,3),点N(2,b)关于x轴对称,则(a+b)2015=( )A.﹣3 B.﹣1 C.1 D.3【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得a、b的值,根据负数的奇数次幂是负数,可得答案.【解答】解:由点M(a,3),点N(2,b)关于x轴对称,得a=2,b=﹣3.(a+b)2015=(﹣1)2015=﹣1,故选:B.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.6.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( )A.11 B.16 C.17 D.16或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】分6是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【解答】解:①6是腰长时,三角形的三边分别为6、6、5,能组成三角形,周长=6+6+5=17;②6是底边时,三角形的三边分别为6、5、5,能组成三角形,周长=6+5+5=16.综上所述,三角形的周长为16或17.故选D.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.7.能将三角形面积平分成相等两部分的是三角形的( )A.角平分线 B.高C.中线 D.外角平分线【考点】三角形的角平分线、中线和高;三角形的面积.【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分成相等两部分的是三角形的中线.故选C.【点评】此题考查了三角形的中线和三角形的面积,关键是明确等底同高的两个三角形的面积一定相等.8.如图,下列条件不能证明△ABC≌△DCB的是( )A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠A=∠D【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上内容逐个判断即可.【解答】解:A、AB=DC,AC=DB,BC=BC,符合全等三角形的判定定理“SSS”,即能推出△ABC≌△DCB,故本选项错误;B、AB=DC,∠ABC=∠DCB,BC=BC,符合全等三角形的判定定理“SAS”,即能推出△ABC≌△DCB,故本选项错误;C、在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=DC,∠ABO=∠DCO,∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠DCB,在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),即能推出△ABC≌△DCB,故本选项错误;D、具备条件AB=DC,BC=BC,∠∠A=∠D不能推出△ABC≌△DCB,故本选项正确.故选D.【点评】本题考查了全等三角形的性质和判定的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A.10 B.7 C.5 D.4【考点】角平分线的性质.【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.如图,在△ABC中,AB=AC,过点A作AD∥BC.若∠1=70°,则∠BAC的大小为( )A.30° B.40° C.50° D.70°【考点】平行线的性质.【分析】根据平行线的性质求出∠C,根据等腰三角形的性质得出∠B=∠C=70°,根据三角形内角和定理求出即可.【解答】解:∵AB=AC,∴∠B=∠C,∵AD∥BC,∠1=70°,∴∠C=∠1=70°,∴∠B=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣70°﹣70°=40°,故选B.【点评】本题考查了三角形内角和定理,等腰三角形的性质,平行线的性质的应用,解此题的关键是求出∠C的度数和得出∠B=∠C,注意:三角形内角和等于180°,两直线平行,内错角相等.11.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P 的度数是( )A.60° B.65° C.55° D.50°【考点】多边形内角与外角;三角形内角和定理.【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【解答】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【点评】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.12.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【考点】全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.【专题】压轴题.【分析】根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△A BD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.【点评】本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.二、填空题(本大题共8个小题,每小题3分,共24分)13.已知直角三角形中30°角所对的直角边长是2cm,则斜边的长是4cm.【考点】含30度角的直角三角形.【专题】计算题.【分析】根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵直角三角形中30°角所对的直角边长是2cm,∴斜边的长=2×2=4cm.故答案为:4cm.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.14.若正多边形的一个外角为30°,则这个多边形为正12边形.【考点】多边形内角与外角.【分析】根据外角的度数就可求得多边形的边数.【解答】解:正多边形的边数是:360÷30=12.故答案为:12.【点评】本题主要考查了多边形的外角和定理,任何多边形的外角和都是360度.15.如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为29°.【考点】平行线的性质;三角形的外角性质.【分析】根据AB∥CD,求出∠DFE=56°,再根据三角形外角的定义性质求出∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠A=56°,又∵∠C=27°,∴∠E=56°﹣27°=29°,故答案为29°.【点评】本题考查了平行线的性质、三角形的外角的性质,找到相应的平行线是解题的关键.16.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.【考点】全等三角形的判定与性质.【分析】由已知条件易证△ABE≌△ACD,再根据全等三角形的性质得出结论.【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.【点评】本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.17.已知等腰三角形的一个外角等于100°,则它的顶角是80°或20°.【考点】等腰三角形的性质.【专题】分类讨论.【分析】此外角可能是顶角的外角,也可能是底角的外角,需要分情况考虑,再结合三角形的内角和为180°,可求出顶角的度数.【解答】解:①若100°是顶角的外角,则顶角=180°﹣100°=80°;②若100°是底角的外角,则底角=180°﹣100°=80°,那么顶角=180°﹣2×80°=20°.故答案为:80°或20°.【点评】考查了等腰三角形的性质,当外角不确定是底角的外角还是顶角的外角时,需分两种情况考虑,再根据三角形内角和180°、三角形外角的性质求解.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=87°.【考点】线段垂直平分线的性质.【分析】根据DE垂直平分BC,求证∠DBE=∠C,再利用角平分线的性质和三角形内角和定理,即可求得∠A的度数.【解答】解:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=87°.故答案为:87.【点评】此题本题考查的知识点为线段垂直平分线的性质,关键是根据角平分线的性质,三角形内角和定理等知识点进行分析.19.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.【考点】等腰三角形的性质.【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BA D的度数,最后根据三角形的内角和定理求出∠ADC的度数.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.【点评】本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.20.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是6.【考点】等边三角形的性质;旋转的性质.【专题】计算题.【分析】根据∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO≌△COD,进而可以证明AP=CO,即可解题.【解答】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△APO和△COD中,,∴△APO≌△COD(AAS),即AP=CO,∵CO=AC﹣AO=6,∴AP=6.故答案为6.【点评】本题考查了等边三角形各内角为60°的性质,全等三角形的证明和全等三角形对应边相等的性质,本题中求证△APO≌△COD是解题的关键.三、解答题(本大题共7个小题,共52分)21.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ACB=∠DCE,再由SAS证明△ABC≌△DEC,得出对应角相等即可.【解答】证明:∵∠ACD=∠BCE,∴∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.22.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上.(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.【考点】作图-轴对称变换.【分析】(1)作出△ABC各点关于y轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)利用矩形的面积减去各顶点上三角形的面积即可.【解答】解:(1)如图所示;(2)由图可知,A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);(3)由图可知,S△ABC=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.23.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.【考点】作图—复杂作图;线段垂直平分线的性质.【专题】作图题.【分析】(1)利用线段垂直平分线的作法得出D点坐标即可;(2)利用线段垂直平分线的性质得出,∠BAD=∠B=37°,进而求出即可.【解答】解:(1)如图所示:点D即为所求;(2)在Rt△ABC中,∠B=37°,∴∠CAB=53°,又∵AD=BD,∴∠BAD=∠B=37°,∴∠CAD=53°﹣37°=16°.【点评】此题主要考查了复杂作图以及线段垂直平分线的性质,正确利用线段垂直平分线的性质得出∠BAD=∠B=37°是解题关键.24.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.【解答】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.25.如图在△A BC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=AB=×9=4.5,∴DF=4.5.【点评】本题考查了等腰三角形的性质,平行线的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.26.如图,Rt△ABC中,∠ACB=90°,D是AB上的一点,过D作DE⊥AB交AC于点E,CE=DE.连接CD交BE于点F.(1)求证:BC=BD;(2)若点D为AB的中点,求∠AED的度数.【考点】全等三角形的判定与性质.【分析】(1)直接证明Rt△DEB≌Rt△CEB,即可解决问题.(2)首先证明△ADE≌△BDE,进而证明∠AED=∠DEB=∠CEB,即可解决问题.【解答】证明:(1)∵DE⊥AB,∠ACB=90°,∴△DEB与△CEB都是直角三角形,在△DEB与△CEB中,,∴Rt△DEB≌Rt△CE B(HL),∴BC=BD.(2)∵DE⊥AB,∴∠ADE=∠BDE=90°;∵点D为AB的中点,∴AD=BD;在△ADE与△BDE中,,∴△ADE≌△BDE(SAS),∴∠AED=∠DEB;∵△DEB≌△CEB,∴∠CEB=∠DEB,∴∠AED=∠DEB=∠CEB;∵∠AED+∠DEB+∠CEB=180°,∴∠AED=60°.【点评】该命题以三角形为载体,以考查全等三角形的判定及其应用为核心构造而成;解题的关键是灵活运用全等三角形的判定及其性质,来分析、判断或推理.27.已知,如图①,△ABC和△EDC都是等边三角形,点D,E分别在BC,AC上.(1)求证:AD=BE;(2)如图,将图①中的△EDC沿BC所在直线翻折(如图②所示),其它条件不变,(1)中结论是否还成立?请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)根据等边三角形的性质得出∠CAB=∠CBA=60°,AC=BC,EC=DC,求出AE=BD,根据SAS推出△AEB≌△BDA即可;(2)根据等边三角形的性质得出AC=BC,EC=DC,∠ACD=∠BCE=60°,根据SAS推出△ACD≌△BCE即可.【解答】(1)证明:∵△ABC和△EDC是等边三角形,∴∠CAB=∠CBA=60°,AC=BC,EC=DC,∴AC﹣EC=BC﹣DC,即AE=BD,在△AEB和△BDA中,,∴△AEB≌△BDA(SAS),∴AD=BE;(2)解:成立,理由是:∵△ABC和△EDC是等边三角形,∴AC=BC,EC=DC,∠ACD=∠BCE=60°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.【点评】本题考查了等边三角形的性质,全等三角形的性质和判定的应用,能推出两三角形全等是解此题的关键.。

上海市奉贤区2015-2016学年八年级上期中考试数学试题

上海市奉贤区2015-2016学年八年级上期中考试数学试题

2015学年第一学期期中考试八年级数学试卷(考试时间:90分钟,满分100分)命题者:鹤北中学秦志强1.下列二次根式中最简根式是……………………………………………()(A;(B)8;(C;(D2.ba-的有理化因式可以是……………………………………………()(A)ba-;(B)ba+(C)ba+;(D)ba-.3.下列运算一定正确的是………………………………………………………()(A(B1;(C)2a=;(D)aaa243=.4.用配方法解方程0142=+-xx时,配方后所得的方程是………………()(A)2(2)3x-=;(B)2(2)3x+=;(C)2(2)1x-=;(D)2(2)1x-=-.5.如果一元二次方程02=++cbxax的两个实数根为1x、2x,则二次三项式cbxax++2在实数范围内的分解式是…………………………………()(A)))((21xxxx--;(B)))((21xxxxa--;(C)))((21xxxx++;(D)))((21xxxxa++.6.下列命题中,假命题是……………………………………………………()(A)有两边及其中一边上的中线对应相等的两个三角形全等;(B)有三边对应相等的两个三角形全等;(C)有两角及其中一角的平分线对应相等的两个三角形全等;(D)有两边和一角对应相等的两个三角形全等.二、填空题:(本大题共12题,每题2分,满分24分)学校_____________________班级__________准考证号_________姓名______________…………密○………………………………………封○………………………………………○线…………………………7.分母有理化:=51 .8.计算:=÷312 . 9.121的同类二次根式可以是 (写一个即可). 10.当20152+=x 时,代数式442+-x x 的值是 .11.方程x x 42=的根是 .12.已知一个关于y 的一元二次方程,它的常数项是-6,且有一个根为2,请你写出一个符合上述条件的方程: . 13.如果代数式32+x 有意义,那么x 的取值范围是 .14.不等式32>-x 的解集是 .15.在△ABC 中,AB =3,∠A=∠B = 60°,那么BC = .16.将“对顶角相等”改写成“如果……,那么……”的形式是 . 17.有一群即将毕业的大四学生在一起聚会,每两个人之间互送一张照片,共送出132张,那么这群大四学生中有多少人.如果设这群大四学生中共有x 人,那么根据题意可列一元二次方程是 . 18.已知a 、b 、c 是等腰△ABC 的三条边,其中a =2,如果b 、c 是关于x 的一元二次方程062=+-m x x 的两个根,则m 的值是 . 三、解答题:(本大题共7题,满分58分) 19.(本题满分10分,其中每小题各5分)(1)计算:27)26(2321--+-. (2) 计算:y x xy8213÷⋅20.(本题满分10分,其中每小题各5分)解方程:(1)10)4)(1(=--x x (2)x xx =+-231221.(本题满分6分)已知关于x 的一元二次方程0)12()2(2=+-+-k x k x k 有两个不相等的实数根,求k 的取值范围. 22.(本题满分6分)某公司市场营销部的某营销员的个人月收入与该营销员每月的销售量的关系如表格所示. 根据以上表格提供的信息,解答下列问题: 如果两个月内该营销员的销售量从2万件猛增到5万件,月收入两个月大幅度增长,且连续两个月的月收入的增长率是相同的,试求这个增长率(2取1.41). 23.(本题满分8分)如图,已知在△ABC 中,AB =AC ,点D 、E 分别在边AB 、AC 上,且AD =AE . (1) 求证:DE // BC ;(2) 如果F 是BC 延长线上一点,且∠EBC =∠EFC ,求证:DE =CF .(第23题图)F24.(本题满分8分,每小题4分)如图,在△ABC 中, D 为AB 的中点,F 为BC 上一点,DF // AC ,延长FD 至E ,且DE =DF ,联结AE 、AF .(1)求证:∠E =∠C ;(2)如果DF 平分∠AFB ,求证:AC ⊥AB .25.(本题满分10分,第(1)小题3分,第(2)小题5分、第(3)小题2分) 如图,正方形ABCD 的面积为10,点E 为边BC 上一动点(点E 不与B 、C 重合),联结AE ,以CE 为边长作小正方形CEFG ,点G 在边CD 上.设BE =x .(1) 当△ABE 的面积是5时,求正方形CEFG 的边长;(2) 如果正方形CEFG 的面积与△ABE 的面积相等,求BE 的长;(3) 联结AF 、DF ,当△ADF 是等腰三角形时,请你直接写出x 的值.(第24题图)A B C D E F(第25题图)ABDF…密○………………………………………封○………………………………………○线…………………………。

2015-2016年浙江省杭州市江干区文海实验学校八年级(上)数学期中试卷及参考答案

2015-2016年浙江省杭州市江干区文海实验学校八年级(上)数学期中试卷及参考答案

2015-2016学年浙江省杭州市江干区文海实验学校八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是()A.B.C.D.2.(3分)若x<y成立,则下列不等式成立的是()A.4x<3y B.﹣x<﹣y C.>D.x+6<y+63.(3分)下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A.5 B.2 C.4 D.84.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF5.(3分)不等式2x﹣7<5﹣2x正整数解有()A.1个 B.2个 C.3个 D.4个6.(3分)如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为()A.16 B.14 C.20 D.187.(3分)一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是()A.115°B.120°C.125° D.130°8.(3分)若在△ABC所在平面上求作一点P,使P到∠A的两边的距离相等,且PA=PB,那么下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为AC、AB两边上的高的交点C.P为∠A的角平分线与AB的垂直平分线的交点D.P为∠A的角平分线与AB边上的中线的交点9.(3分)已知不等式组的解为x≥﹣b,则下列各式正确的是()A.a>b B.a<b C.b≤a D.a≤b10.(3分)如图,在△ABC中,∠BCA=90°,CA=CB,AD为BC边上的中线,CG ⊥AD于G,交AB于F,过点B作BC的垂线交CG于E.现有下列结论:①△ADC ≌△CEB;②DF=CD;③∠ADC=∠BDF;④F为EG中点.其中结论正确的为()A.①②B.①②③C.①③D.①③④二、填空题(共6小题,每小题4分,共24分)11.(4分)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为cm.12.(4分)爆破施工时,导火索燃烧的速度是0.8m/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要.13.(4分)已知关于x的不等式组的整数解有5个,则a的取值范围是.14.(4分)如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC 的延长线于点E,已知∠B=50°,则∠CAF的度数为.15.(4分)若不等式组无解(a≠b),则不等式组的解是.16.(4分)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,若∠ACD=60°,则∠AFB=;如图2,若∠ACD=90°,则∠AFB=;(2)如图3,若∠ACD=β,则∠AFB=(用含β的式子表示)三、解答题(共66分)17.(10分)(1)解不等式4(x﹣1)+3≥3x,并把解集在数轴上表示出来.(2)解不等式组,并求不等式组的所有整数解.18.(8分)如图,在△ABC中,AE是BC边上的高,AD是角平分线,∠B=42°,∠C=68°,分别求∠BAC、∠DAE的度数.19.(10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).20.(8分)如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF.21.(10分)如图,点D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,请探究在点D的运动过程中,∠DAE的度数是否会发生变化?如果发生变化,请说明理由;如果不发生变化,请求出这个度数.22.(10分)“污水共治,人人有责”为了更好的治理江山母亲河,江山市污水处理厂决定购买A、B两型污水处理设备,共10台,其信息如下表:(1)设购买A型设备x台,则购买B型设备台,所需资金共为万元,每月处理污水总量为吨(用含x的代数式表示).(2)经预算,市污水处理厂购买设备的资金不超过112万元,月处理污水量不低于2080吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?23.(10分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC 绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?2015-2016学年浙江省杭州市江干区文海实验学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列“表情图”中,属于轴对称图形的是()A.B.C.D.【解答】解:A不属于轴对称图形,故错误;B不属于轴对称图形,故错误;C不属于轴对称图形,故错误;D属于轴对称图形,故正确;故选:D.2.(3分)若x<y成立,则下列不等式成立的是()A.4x<3y B.﹣x<﹣y C.>D.x+6<y+6【解答】解:A、由x<y,无法比较4x<3y,故此选项错误;B、∵x<y,∴﹣x>﹣y,故此选项错误;C、∵x<y,∴<,故此选项错误;D、∵x<y,∴x+6<y+6,故此选项正确.故选:D.3.(3分)下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是()A.5 B.2 C.4 D.8【解答】解:A.5,∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例;故答案A错误;B.2,∵2不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是2,故答案B正确;C.4,∵4是偶数,且是4的倍数,∴不能作为假命题的反例;故答案C错误;D.8,∵8是偶数,且也是4的倍数,∴不能作为假命题的反例;故答案D错误;故选:B.4.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选:B.5.(3分)不等式2x﹣7<5﹣2x正整数解有()A.1个 B.2个 C.3个 D.4个【解答】解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选:B.6.(3分)如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为()A.16 B.14 C.20 D.18【解答】解:∵△ABC中,∠C=90°,AB=10,AC=6,∴BC===8,∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=6+8=14.故选:B.7.(3分)一个三角形的两个内角分别为55°和65°,这个三角形的外角不可能是()A.115°B.120°C.125° D.130°【解答】解:∵三角形的内角和为180°,已知三角形的两个内角分别为55°和65°,所∴第三个内角为180°﹣55°﹣65°=60°.那么55°角相邻的外角为125°,65°相邻的外角为115°,60°相邻的外角为120°;所以这个三角形的外角不可能是130°.故选:D.8.(3分)若在△ABC所在平面上求作一点P,使P到∠A的两边的距离相等,且PA=PB,那么下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为AC、AB两边上的高的交点C.P为∠A的角平分线与AB的垂直平分线的交点D.P为∠A的角平分线与AB边上的中线的交点【解答】解:∵P到∠A的两边的距离相等,∴点P在∠A的平分线上,∵PA=PB,∴点P在线段AB的垂直平分线上,∴P为∠A的角平分线与AB的垂直平分线的交点.故选:C.9.(3分)已知不等式组的解为x≥﹣b,则下列各式正确的是()A.a>b B.a<b C.b≤a D.a≤b【解答】解:∵不等式组的解为x≥﹣b,∴﹣a<﹣b,∴a>b,故选:A.10.(3分)如图,在△ABC中,∠BCA=90°,CA=CB,AD为BC边上的中线,CG ⊥AD于G,交AB于F,过点B作BC的垂线交CG于E.现有下列结论:①△ADC ≌△CEB;②DF=CD;③∠ADC=∠BDF;④F为EG中点.其中结论正确的为()A.①②B.①②③C.①③D.①③④【解答】解:∵∠BCA=90°,CG⊥AD,∴∠ECD+∠ADC=∠E+∠ECD=90°,∴∠E=∠ADC,∵BE⊥BC,∴∠EBC=∠ACD,在△ADC和△CEB中∴△ADC≌△CEB(AAS),∴①正确;∵AD为BC边上的中线,∴BD=CD,∵AG⊥CE,∴∠AFB≠90°,∴DF≠CB,∴DF≠CD,∴②不正确;∵△ADC≌△CEB,且D为BC中点,∴BE=CD=BD,∵AC=BC,∠ACB=90°,∴∠DBF=∠EBF=45°,在△BEF和△BDF中∴△BEF≌△BDF(SAS),∴∠E=∠BDF,又∠E=∠ADC,∴∠ADC=∠BDF,∴③正确;∵△BEF≌△BDF,∴EF=DF,在R△DFG中,DF>FG,∴EF>FG,∴F不是EG的中点,∴④不正确;综上可知正确的有①③共两个,故选:C.二、填空题(共6小题,每小题4分,共24分)11.(4分)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.【解答】解:①14cm为腰,7cm为底,此时周长为14+14+7=35cm;②14cm为底,7cm为腰,则两边和等于第三边无法构成三角形,故舍去.故其周长是35cm.故答案为:35.12.(4分)爆破施工时,导火索燃烧的速度是0.8m/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要16m以上.【解答】解:设导火索的长为x米,根据题意得:5×>100.解得:x>16,答:导火索的长至少要16米以上.故答案为:16m以上.13.(4分)已知关于x的不等式组的整数解有5个,则a的取值范围是﹣4<a≤﹣3.【解答】解:解不等式①得x≥a,解不等式②得x<2,因为不等式组有5个整数解,则这5个整数是1,0,﹣1,﹣2,﹣3,所以a的取值范围是﹣4<a≤﹣3.14.(4分)如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC 的延长线于点E,已知∠B=50°,则∠CAF的度数为50°.【解答】解:∵AD的垂直平分线交BC的延长线于点E,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B=50°.故答案为:50°.15.(4分)若不等式组无解(a≠b),则不等式组的解是2﹣a <x<2﹣b.【解答】解:∵不等式组无解,∴a≥b,∴不等式组的解是2﹣a<x<2﹣b,故答案为:2﹣a<x<2﹣b.16.(4分)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,若∠ACD=60°,则∠AFB=120°;如图2,若∠ACD=90°,则∠AFB=90°;(2)如图3,若∠ACD=β,则∠AFB=180°﹣β(用含β的式子表示)【解答】解:(1)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∵,∴△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∵∠ACD=60°,∴∠CDB+∠DBC=∠ACD=60°,∴∠CAE+∠DBC=60°,∴∠AFB=180°﹣60°=120°;当∠ACD=90°时,∵∠ACD=90°,∴∠CDB+∠DBC=∠ACD=90°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=90°,∴∠AFB=180°﹣90°=90°;故答案为:120°,90°;(2)解:当∠ACD=β时,∠AFB=180°﹣β,理由是:∵∠ACD=β,∴∠CDB+∠DBC=∠ACD=β,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=β,∴∠AFB=180°﹣(∠CAE+∠DBC)=180°﹣β;故答案为:180°﹣β.三、解答题(共66分)17.(10分)(1)解不等式4(x﹣1)+3≥3x,并把解集在数轴上表示出来.(2)解不等式组,并求不等式组的所有整数解.【解答】解:(1)4(x﹣1)+3≥3x,4x﹣4+3≥3x,4x﹣3x≥4﹣3,x≥1,在数轴上表示为;(2),∵解不等式①得:x≥1,解不等式②得:x<4,∴不等式组的解集为1≤x<4,∴不等式组的所有整数解为1,2,3.18.(8分)如图,在△ABC中,AE是BC边上的高,AD是角平分线,∠B=42°,∠C=68°,分别求∠BAC、∠DAE的度数.【解答】解:∵∠B=42°,∠C=68°,∴∠BAC=180°﹣∠B﹣∠C=70°,∵AD是角平分线,∴∠EAC=∠BAC=35°.∵AE是高,∠C=68°,∴∠DAC=90°﹣∠C=22°,∴∠EAD=∠DAC﹣∠EAC=35°﹣22°=13°.19.(10分)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).【解答】解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.如答图的△ABC即为满足条件的三角形.20.(8分)如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF.【解答】证明:连接AC,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS).∴∠DAC=∠BAC.又∵CE⊥AD,CF⊥AB,∴CE=CF(角平分线上的点到角两边的距离相等).21.(10分)如图,点D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,请探究在点D的运动过程中,∠DAE的度数是否会发生变化?如果发生变化,请说明理由;如果不发生变化,请求出这个度数.【解答】解:不发生变化,∠DAE=120°;理由如下:∵△ABC和△EDC中,∴BC=AC,∠B=∠ACB=∠BAC=∠DCE=60°,CD=CE,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠DBC=∠EAC=60°,∴∠DAE=∠BAC+∠CAE=120°.22.(10分)“污水共治,人人有责”为了更好的治理江山母亲河,江山市污水处理厂决定购买A、B两型污水处理设备,共10台,其信息如下表:(1)设购买A型设备x台,则购买B型设备10﹣x台,所需资金共为2x+100万元,每月处理污水总量为20x+2000吨(用含x的代数式表示).(2)经预算,市污水处理厂购买设备的资金不超过112万元,月处理污水量不低于2080吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?【解答】解:(1)设购买A型设备x台,则购买B型设备(10﹣x)台,根据题意得:所需资金为12x+10(10﹣x)=2x+100;每月处理污水总量为220x+200(10﹣x)=20x+2000.故答案为:10﹣x;2x+100;20x+2000.(2)根据题意得:,解得:4≤x≤6,∴符合题意的购买方案有:方案一:购买A型设备4台,购买B型设备6台;方案二:购买A型设备5台,购买B型设备5台;方案三:购买A型设备6台,购买B型设备4台.当x=4时,所需资金为2×4+100=108(万元);当x=5时,所需资金为2×5+100=110(万元);当x=6时,所需资金为2×6+100=112(万元).∵108<110<112,∴购买A型设备4台,购买B型设备6台时,所需资金最低,最低资金为108万元.23.(10分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC 绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形?【解答】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠OAD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.。

2015-2016学年江苏省常州市金坛二中初二第一学期期中数学试卷(Word答案)

2015-2016学年江苏省常州市金坛二中初二第一学期期中数学试卷(Word答案)

2015-2016学年江苏省常州市金坛二中初二第一学期期中数学试卷一、选择题1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.2.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.6,8,10 C.2,3,4 D.1,1,23.(3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或204.(3分)9的平方根是()A.3 B.±3 C.2 D.±25.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠B=∠D=90°B.∠BCA=∠DCA C.∠BAC=∠DAC D.CB=CD6.(3分)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SSS)B.(SAS)C.(ASA)D.(AAS)7.(3分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A.+1 B.C.D.8.(3分)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.二、填空题9.(3分)=.10.(3分)比较大小:(填“>”“<”“=”).11.(3分)若等腰三角形的一个角为80°,则底角为.12.(3分)如图,长方形OABC中,OC=2,OA=1.以原点O为圆心,对角线OB 长为半径画弧交数轴于点D,则数轴上点D表示的数是.13.(3分)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.14.(3分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD ≌△COB,你补充的条件是.15.(3分)如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD 折叠后,点C落在C′的位置上,那么BC′为.16.(3分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.17.(3分)把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是cm2.18.(3分)如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)求下列各式中的x:(1)5x2=10(2)(x+4)3=﹣64.20.(6分)计算:(1)(﹣3)2﹣+;(2)+(π﹣3)0﹣|1﹣|.21.(6分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.四、操作与探究22.如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1,l2,l3之间的距离为2,点A、C分别在直线l2,l1上,(1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法);(2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.23.如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.(1)请在6×8的网格纸图2中画出运动时间t为2秒时的线段PQ并求其长度;(2)在动点P、Q运动的过程中,△PQB能否成为PQ=BQ的等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.24.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B向点B运动,设运动时间为t秒(t>0),(1)在AC上是否存在点P使得PA=PB?若存在,求出t的值;若不存在,说明理由;(2)若点P恰好在△ABC的角平分线上,请直接写出t的值.25.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M 为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.26.如图,△ABC中,AB=AC,BAC=90,BC=6cm,直线CM⊥BC,在射线CB上取点D,在直线CM上取点E,使CD=2CE.(1)若△ABD的面积为6cm,求CD的长;(2)若△ABC≌△ACE,求CD的长.(可在备用图中画出具体图形)2015-2016学年江苏省常州市金坛二中初二第一学期期中数学试卷参考答案与试题解析一、选择题1.(3分)下列图形中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.2.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.6,8,10 C.2,3,4 D.1,1,2【解答】解:A、42+52≠62,故不是直角三角形;B、62+82=102,故是直角三角形;C、22+32≠42,故不是直角三角形;D、12+12≠22,故不是直角三角形.故选:B.3.(3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.4.(3分)9的平方根是()A.3 B.±3 C.2 D.±2【解答】解:∵(±3)2=9,∴9的平方根是±3.故选:B.5.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.∠B=∠D=90°B.∠BCA=∠DCA C.∠BAC=∠DAC D.CB=CD【解答】解:A、∵∠B=∠D=90°,∴在Rt△ABC和Rt△ADC中∴Rt△ABC≌Rt△ADC(HL),故本选项错误;B、根据AB=AD,AC=AC,∠BCA=∠DCA不能推出△ABC≌△ADC,故本选项正确;C、∵在△ABC和△ADC中∴△ABC≌△ADC(SAS),故本选项错误;D、∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),故本选项错误;故选:B.6.(3分)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SSS)B.(SAS)C.(ASA)D.(AAS)【解答】解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS,故选:A.7.(3分)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为()A.+1 B.C.D.【解答】解:如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∴当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,∴OE=AE=AB=1,DE===,∴OD的最大值为:+1.故选:A.8.(3分)如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.【解答】解:∵Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,根据折叠的性质可知AC=CD,∠A=∠CDE,CE⊥AB,∴B′D=BC﹣CD=4﹣3=1,∵∠B′DF=∠CDE,∴∠A=∠B′DF,∵∠B=∠B′,∴△ABC∽△DB′F,∴==,∴B′F=,故选:B.二、填空题9.(3分)=﹣4.【解答】解:∵(﹣4)3=﹣64,∴=﹣4,故答案为﹣4,10.(3分)比较大小:>(填“>”“<”“=”).【解答】解:∵﹣1>1,∴>.故填空结果为:>.11.(3分)若等腰三角形的一个角为80°,则底角为80°或50°.【解答】解:由题意知,分两种情况:(1)当这个80°的角为底角时,则另一底角也为80°;(2)当这个80°的角为顶角时,则底角=(180°﹣80°)÷2=50°.故本题答案为:80°或50°.12.(3分)如图,长方形OABC中,OC=2,OA=1.以原点O为圆心,对角线OB 长为半径画弧交数轴于点D,则数轴上点D表示的数是﹣.【解答】解:∵OC=2,BC=1,∴OB==,∴OD=OB=,∵点D在原点的左侧,∴点D表示的数是﹣.故答案为:﹣.13.(3分)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.【解答】解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.14.(3分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD ≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.15.(3分)如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD 折叠后,点C落在C′的位置上,那么BC′为2.【解答】解:根据题意:BC=4,D为BC的中点;故BD=DC=2.由轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=2,则∠BDC′=60°,故△BDC′为等边三角形,即可得BC′=BD=BC=2.故答案为:2.16.(3分)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.17.(3分)把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是 5.1cm2.【解答】解:设AE=A′E=x,则DE=5﹣x;在Rt△A′ED中,A′E=x,A′D=A B=3cm,ED=AD﹣AE=5﹣x;由勾股定理得:x2+9=(5﹣x)2,解得x=1.6;=S梯形A′DFE﹣S△A′DE=(A′E+DF)•A′D﹣A′E•A′D∴①S△DEF=×(5﹣x+x)×3﹣×x×3=×5×3﹣×1.6×3=5.1(cm2);=ED•AB÷2=(5﹣1.6)×3÷2=5.1(cm2).或②S△DEF故答案为:5.118.(3分)如图:已知在Rt△ABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为15°、30°、75°、120°.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,∴当AB=BP1时,∠BAP1=∠BP1A=30°,当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×30°=15°,当AB=AP2时,∠ABP2=∠AP2B=×(180°﹣30°)=75°,当AP4=BP4时,∠BAP4=∠ABP4,∴∠AP4B=180°﹣30°×2=120°,∴∠APB的度数为:15°、30°、75°、120°.故答案为:15°、30°、75°、120°.三、解答题(本大题共3小题,每小题6分,共18分)19.(6分)求下列各式中的x:(1)5x2=10(2)(x+4)3=﹣64.【解答】解:(1)方程变形得:x2=2,开方得:x=±;(2)开立方得:x+4=﹣4,解得:x=﹣8.20.(6分)计算:(1)(﹣3)2﹣+;(2)+(π﹣3)0﹣|1﹣|.【解答】解:(1)原式=9﹣3+3=12﹣3;(2)原式=﹣1+1﹣+1=1﹣.21.(6分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.四、操作与探究22.如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1,l2,l3之间的距离为2,点A、C分别在直线l2,l1上,(1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法);(2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.【解答】解:(1)如图1所示:△ABC即为所求.(2)如图2,过点C作CD⊥l3于D,过点A作AE⊥l3于E,则∠BCD+∠CBD=90°,∵△ABC为等腰直角三角形,∴∠ABE+∠CBD=180°﹣90°=90°,∴∠ABE=∠BCD,在△ABE和△BCD中,,∴△ABE≌△BCD(AAS),∴AE=BD,∵l1,l2之间的距离为1,l2,l3之间的距离为2,∴BD=2,CD=1+2=3,在Rt△BCD中,BC===,∵△ABC是等腰直角三角形,∴AC=BC=.23.如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.(1)请在6×8的网格纸图2中画出运动时间t为2秒时的线段PQ并求其长度;(2)在动点P、Q运动的过程中,△PQB能否成为PQ=BQ的等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.【解答】解:(1)∵点Q的运动速度为每秒1个单位,和运动时间t为2秒,运动时间t为2秒,∴由图中可知PQ的位置如下图2,则由已知条件可得PD=4,AQ=2,QE=2,PE=6,∴PQ===2,(2)能.设时间为t,则在t秒钟,P运动了2t格,Q运动了t格,由题意得PQ=BQ (2t﹣t)2+62=(8﹣t)2解得t=.答:(1)PQ的长为2;(2)能,运动时间t为.24.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B向点B运动,设运动时间为t秒(t>0),(1)在AC上是否存在点P使得PA=PB?若存在,求出t的值;若不存在,说明理由;(2)若点P恰好在△ABC的角平分线上,请直接写出t的值.【解答】解:(1)如图1,设存在点P,使得PA=PB,此时PA=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在点C或点B处时,一定在△ABC的角平分线上,此时t=2或t=3.5秒;当点P在∠ABC的角平分线上时,作PM⊥AB于点M,如图2,此时AP=2t,PC=PM=4﹣2t,∵△APM∽△ABC,∴AP:AB=PM:BC,即:2t:5=(4﹣2t):3,解得:t=;当点P在∠CAB的平分线上时,作PN⊥AB,如图3,此时BP=7﹣2t,PN=PC=(2t﹣4),∵△BPN∽△BAC,∴BP:BA=PN:AC,即:(7﹣2t):5=(2t﹣4):4,解得:t=.综上,当t=2、3.5、、秒时,点P在△ABC的角平分线上.25.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M 为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.【解答】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,第21页(共25页)∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.26.如图,△ABC中,AB=AC,BAC=90,BC=6cm,直线CM⊥BC,在射线CB上取点D,在直线CM上取点E,使CD=2CE.(1)若△ABD的面积为6cm,求CD的长;(2)若△ABC≌△ACE,求CD的长.(可在备用图中画出具体图形)【解答】解:(1)如图1,作AM⊥BC于M,∵AB=AC,∴BM=CM,∵∠BAC=90,∴AM=BC=3cm,∵△ABD的面积为6cm,∴BD•AM=6,即BD•3=6,∴BD=4,∴CD=BC﹣BD=2cm或CD=BC+BD=6cm;(2)如图2,∵△ABC≌△ACE,∴CE=BC=6cm,∵CD=2CE,∴CD=12cm.第23页(共25页)第25页(共25页)。

八年级上期中数学试卷(2)含答案解析A卷

八年级上期中数学试卷(2)含答案解析A卷

八年级(上)期中数学试卷一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.105.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+10.若x、y为实数,,则4y﹣3x是.二、填空题11.16的平方根是,=.12.等腰三角形一个角为50°,则此等腰三角形顶角为.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=,这个正数是.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=cm.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为cm.18.若,且ab<0,则a+b=.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是cm.20.若,则b c+a的值为.三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?2015-2016学年江苏省无锡市宜兴市XX中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.下列等式正确的是()A.=﹣3 B.=±12 C.=﹣7 D.=2 【考点】二次根式的性质与化简.【分析】直接利用二次根式的定义以及二次根式的性质分别化简求出答案.【解答】解:A、,无意义,故此选项错误;B、=12,故此选项错误;C、=7,故此选项错误;D、(﹣)2=2,正确.故选:D.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.2.下列说法正确的是()A.等腰三角形的高,中线,角平分线互相重合B.顶角相等的两个等腰三角形全等C.面积相等的两个三角形全等D.等腰三角形的两个底角相等【考点】等腰三角形的性质;全等三角形的判定.【分析】由等腰三角形的性质得出A不正确、D正确;由全等三角形的判定方法得出B、C 不正确;即可得出结果.【解答】解:∵等腰三角形的底边上的高、底边上的中线、顶角平分线互相重合,∴A不正确;∵顶角相等的两个等腰三角形相似,不一定全等,∴B不正确;∵面积相等的两个三角形不一定全等,∴C不正确;∵等腰三角形的两个底角相等,∴D正确;故选D.【点评】本题考查了等腰三角形的性质、全等三角形的判定方法;熟练掌握等腰三角形的性质和全等三角形的判定方法是解决问题的关键.3.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9 cm B.12 cm C.15 cm或12 cm D.15 cm【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故选D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.4.如图,∠ACD=90°,∠D=15°,B点在AD的垂直平分线上,若AC=4,则BD=()A.4 B.6 C.8 D.10【考点】线段垂直平分线的性质.【分析】先根据线段垂直平分线的性质得到AB=BD,∠D=∠DAB,由三角形内角与外角的关系得到∠ABC的度数,再根据直角三角形的性质求解即可.【解答】解:∵B点在AD的垂直平分线上,∠D=15°,∴AB=BD,∠D=∠DAB=15°,∴∠ABC=∠D+∠DAB=30°,∴AB=2AC,∵AC=4,∴AB=8,∵AB=BD,∴BD=8.故选C.【点评】本题考查的是线段垂直平分线的性质及三角形内角与外角的关系,熟知线段的垂直平分线上的点到线段的两个端点的距离相等是解答此题的关键.5.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【考点】线段垂直平分线的性质.【分析】利用线段的垂直平分线的性质计算.通过已知条件由∠B=90°,∠BAE=10°⇒∠AEB,∠AEB=∠EAC+∠C=2∠C.【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.【点评】此题主要考查线段的垂直平分线的性质、直角三角形的两锐角互余、三角形的一个外角等于它不相邻的两个内角和.6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【考点】等腰三角形的性质.【分析】此题需对每一个选项进行验证从而求解.【解答】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.【点评】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质7.如图,BI,CI分别是∠ABC和∠ACB的平分线,DE过I点且DE∥BC,则下列结论错误的是()A.AI平分∠BAC B.I到三边的距离相等C.AI=ID D.DE=BD+CE【考点】角平分线的性质;平行线的性质;等腰三角形的判定与性质.【分析】根据三角形的角平分线相交于一点,根据角平分线上的点到角的两边的距离相等,角平分线的定义,平行线的性质对各选项分析判断后利用排除法求解.【解答】解:A、∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC正确,故本选项错误;B、I为△ABC角平分线的交点,I到三边的距离相等正确,故本选项错误;C、AI与DI的大小无法判断,故本选项正确;D、∵BI,CI分别是∠ABC和∠ACB的平分线,∴∠DBI=∠CBI,∠ECI=∠BCI,∵DE∥BC,∴∠DIB=∠CBI,∠EIC=∠BCI,∴∠DBI=∠DIB,∠ECI=∠EIC,∴BD=DI,CE=EI,∴DE=DI+EI=BD+CE,即DE=BD+CE正确,故本选项错误.故选C.【点评】本题考查了角平分线的性质,平行线的性质,等腰三角形的判定,熟记三角形的角平分线相交于一点,角平分线上的点到角的两边的距离相等的解题的关键.8.△ABC是等边三角形,M是AC上一点,N是BC上的一点,且AM=BN,∠MBC=25°,AN与BM交于点O,则∠MON的度数为()A.110°B.105°C.90°D.85°【考点】等边三角形的性质.【分析】根据等边三角形的性质可得∠A=∠B=60°,又因为AM=BN,AB=AB,所以△AMB ≌△BNA,从而得到∠NAB=∠MBA=60°﹣∠MBC=35°,则∠MON=∠AOB=180°﹣2×35°=110°.【解答】解:∵△ABC是等边三角形∴∠A=∠B=60°∵AM=BN,AB=AB∴△AMB≌△BNA∴∠NAB=∠MBA=60°﹣∠MBC=35°∴∠AOB=180°﹣2×35°=110°∵∠MON=∠AOB∴∠MON=110°故选A.【点评】考查了等腰三角形的性质,根据等边三角形的性质,结合全等三角形求解.9.如图,一个无盖的正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是()A.B.C.1 D.2+【考点】平面展开-最短路径问题.【分析】根据已知得出蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,蚂蚁爬行的最短距离是如图BM的长度,进而利用勾股定理求出即可.【解答】解:∵蚂蚁从盒外的B点沿正方形的表面爬到盒内的M点,∴蚂蚁爬行的最短距离是如图BM的长度,∵无盖的正方体盒子的棱长为2,BC的中点为M,∴A1B=2+2=4,A1M=1,∴BM==.故选B.【点评】此题主要考查了平面展开﹣最短路径问题,利用图形得出最短路径为BM是解题关键.10.若x、y为实数,,则4y﹣3x是6.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x2﹣4≥0且4﹣x2≥0,根据分式有意义的条件可得x﹣2≠0,再解不等式即可.【解答】解:由题意得:x2﹣4≥0且4﹣x2≥0,x﹣2≠0,解得:x=﹣2,则y=0,4y﹣3x=6,故答案为:6.【点评】此题主要考查了二次根式有意义和分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二次根式中的被开方数是非负数.二、填空题11.16的平方根是±4,= 1.2.【考点】算术平方根;平方根.【分析】一个正数的平方根有两个,它们互为相反数;算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵(±4)2=16,∴16的平方根是±4;=1.2.【点评】此题主要考查了平方根与算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为90.【考点】勾股定理.【分析】连续自然数,两数的差是1,较大的是斜边,根据勾股定理就可解得.【解答】解:设另一直角边为a,斜边为a+1.根据勾股定理可得,(a+1)2﹣a2=92.解之得a=40.则a+1=41,则直角三角形的周长为9+40+41=90.故答案为:90.【点评】本题综合考查了勾股定理,解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.14.若一个正数的两个平方根是2a﹣1和﹣a+2,则a=﹣1,这个正数是9.【考点】平方根.【分析】由于一个正数的平方根有两个,且它们互为相反数,由此即可列出方程求解.【解答】解:依题意得,2a﹣1+(﹣a+2)=0,解得:a=﹣1.则这个数是(2a﹣1)2=(﹣3)2=9.故答案为:﹣1,9【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数.15.若|x﹣1|+(y﹣2)2+=0,则x+y+z=6.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可.【解答】解:∵|x﹣1|+(y﹣2)2+=0,∴x﹣1=0,y﹣2=0,z﹣3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,在Rt△ABC中,BE平分∠ABC,ED⊥AB于D,AC=3cm,则AE+DE=3cm.【考点】角平分线的性质.【分析】要求AE+DE,现知道AC=3cm,即AE+CE=3cm,只要CE=DE则问题可以解决,而应用其它条件利用角平分线的性质正好可求出CE=DE.【解答】解:∵∠ACB=90°,∴EC⊥CB,又BE平分∠ABC,DE⊥AB,∴CE=DE,∴AE+DE=AE+CE=AC=3cm故答案为:3【点评】此题主要考查角平分线性质:角平分线上的任意一点到角的两边距离相等;做题时要认真观察各已知条件在图形上的位置,根据位置结合相应的知识进行思考是一种很好的方法.17.若△ABC中,∠A:∠B:∠C=1:2:3,且最长边为10cm,则最短边长为5cm.【考点】含30度角的直角三角形.【分析】根据比例设∠A、∠B、∠C分别为k、2k、3k,然后根据三角形的内角和等于180°列式求出各角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵∠A:∠B:∠C=1:2:3,∴设∠A、∠B、∠C分别为k、2k、3k,k+2k+3k=180°,解得k=30°,∴∠A=30°,∠B=60°,∠C=90°,∵最长边为10cm,∴最短边长=×10=5cm.故答案为:5.【点评】本题考查了含30°角的直角三角形,主要利用了30°角所对的直角边等于斜边的一半的性质,根据比例求出各角的度数是解题的关键.18.若,且ab<0,则a+b=﹣1.【考点】算术平方根.【分析】直接利用绝对值的性质以及二次根式的性质进而得出a,b的值,即可得出答案.【解答】解:∵|a|=5,=2,∴a=±5,b=4,∵ab<0,∴a=﹣5,b=4,∴a+b=﹣1.故答案为:﹣1.【点评】此题主要考查了绝对值的性质以及二次根式的性质,正确把握相关性质是解题关键.19.一长方形的一边长为3cm,面积为12cm2,那么它的一条对角线长是5cm.【考点】勾股定理.【分析】先根据面积求出三角形另一边的长,再根据勾股定理求出直角三角形斜边长即可.【解答】解:∵该长方形的一边长为3cm,面积为12cm2,∴另一边长为4cm,∴对角线长==5cm.【点评】此题主要涉及的知识点:长方形的面积公式和勾股定理的应用.20.若,则b c+a的值为﹣3.【考点】二次根式有意义的条件;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据二次根式的意义,被开方数是非负数.则a﹣5≥0,5﹣a≥0,求得a的值,再根据非负数的性质,求得b,c的值,代入计算即可.【解答】解:∵a﹣5≥0,5﹣a≥0,∴a=5,∴+|2c﹣6|=0,∴b+2=0,2c﹣6=0,解得b=﹣2,c=3,∴b c+a=(﹣2)3+5=﹣8+5=﹣3,故答案为﹣3.【点评】本题考查了二次根式有意义的条件和非负数的性质,同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0三、解答与证明21.解方程:(1)x2﹣25=0(2)(x﹣1)2=16.【考点】解一元二次方程-直接开平方法.【分析】(1)先移项,然后开平方即可;(2)将(x﹣1)看作一个整体,然后开平方求出(x﹣1),继而再求x的值.【解答】解:(1)x2﹣25=0,x2=25,x1=﹣5,x2=﹣﹣5;(2)(x﹣1)2=16,x﹣1=±4,x1=﹣3,x2=5.【点评】本题考查了解一元二次方程﹣﹣直接开平方法.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c (a,c同号且a≠0).22.如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD,过点D 作DF⊥BE,垂足为F.试说明:BF=EF.【考点】等边三角形的性质.【分析】【分析】因为△ABC是等边三角形,所以∠ABC=∠ACB=60°,点D是AC的中点,则∠DBC=30°,再由题中条件求出∠E=30°,易得△DBE为等腰三角形,由等腰三角形的性质可证得结论.【解答】证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点D是AC的中点,∴∠DBC=∠ABC=30°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBE=∠E,∴△DBE为等腰三角形,∵DF⊥BE,∴BF=EF.【点评】本题考查了等边三角形的性质,掌握等腰三角形“三线合一”是解答此题的关键.23.如图,A、D、E三点在同一直线上,∠BAE=∠CAE,∠BDE=∠CDE,(1)求证:AB=AC;(2)求证:AE⊥BC.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】由题中条件两角夹一边判定△ADC≌△ADB,得出AB=AC,进而亦可得出第二问的结论.【解答】证明:(1)∵∠BDE=∠CDE,∠BAE=∠CAE,∴∠ADB=∠ADC,又AD=AD,∴△ADC≌△ADB,∴AB=AC,(2)在△ABC中,AB=AC,∠BAE=∠CAE,∴AE⊥BC.【点评】本题主要考查了全等三角形的判定及性质以及等腰三角形的判定及性质问题,能够熟练掌握.24.已知,如图:A、E、F、B在一条直线上,AE=BF,∠C=∠B,CF∥DE,求证:AC∥BD.【考点】全等三角形的判定与性质;平行线的判定与性质.【分析】求出AF=BE,根据平行线性质求出∠CFE=∠BED,根据AAS推出△ACF≌△BDE 即可.【解答】证明:∵CF∥DE,∴∠CFE=∠BED,∵AE=BF,∴AF=BE,∵∠C=∠B,在△ACF和△BDE中,∴△ACF≌△BDE(AAS),∴∠A=∠B,∴AC∥BD【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,解此题的关键是推出△ACF≌△BDE,注意:全等三角形的对应边相等,对应角相等.25.已知等腰三角形的三边长a=5x﹣1,b=6﹣x,c=4,求x的值.【考点】等腰三角形的性质;三角形三边关系.【分析】分三种情况求解后利用三角形的三边关系验证.【解答】解:若a=b,则5x﹣1=6﹣x,得x=,三边长分别为,,5,符合三角形三边关系;若a=c,则5x﹣1=4,得x=1,三角形的三边长为4,5,4,符合三角形三边关系;若b=c,则6﹣x=4,得x=2,三角形的三边长为9,4,4,不构成三角形;综上所述,符合要求的x值为或1;【点评】本题考查了等腰三角形的性质及三角形的三边关系,解题的关键是分类讨论.26.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起?【考点】勾股定理的应用.【分析】本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.【解答】解:如图所示:根据题意,得AC=AD﹣BE=13﹣8=5m,BC=12m.根据勾股定理,得AB==13m.则小鸟所用的时间是13÷2=6.5(s).答:这只小鸟至少6.5秒才可能到达小树和伙伴在一起.【点评】此题主要考查勾股定理的运用.关键是构造直角三角形,同时注意:时间=路程÷速度.27.如图,一张等腰直角三角形纸片,其中∠C=90°,斜边AB=4,将纸片折叠,使点A恰好落在BC边的中点D处,折痕为EF,求出AE的长度.【考点】翻折变换(折叠问题).【分析】利用等腰直角三角形的性质得出BC的长,进而得出BH,DH的长,再利用勾股定理得出AE的长.【解答】解:作DH⊥AB于H,可得等腰Rt△DBH,由AB=4,可知BC=sin45°×AB=×4=2,于是BD=,BH=DH=×=1,设AE=DE=x,则EH=4﹣1﹣AE=3﹣x,在Rt△DEH中,(3﹣x)2+12=x2,解得:x=,故AE的长度为.【点评】此题主要考查了翻折变换以及勾股定理等知识,根据已知得出BH=DH的长是解题关键.28.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为14cm;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为35°;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.【考点】翻折变换(折叠问题).【分析】操作一利用对称找准相等的量:BD=AD,∠BAD=∠B,然后分别利用周长及三角形的内角和可求得答案;操作二利用折叠找着AC=AE,利用勾股定理列式求出AB,设CD=x,表示出BD,AE,在Rt△BDE中,利用勾股定理可得答案;【解答】解:操作一:(1)由折叠的性质可得AD=BD,∵△ACD的周长=AC+CD+AD,∴△ACD的周长=AC+CD+BD=AC+BC=8+6=14(cm);故填:14cm;(2)设∠CAD=4x,∠BAD=7x由题意得方程:7x+7x+4x=90,解之得x=5,所以∠B=35°;故填:35°;操作二:∵AC=9cm,BC=12cm,∴AB===15(cm),根据折叠性质可得AC=AE=9cm,∴BE=AB﹣AE=6cm,设CD=x,则BD=12﹣x,DE=x,在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2,解之得x=4.5,∴CD=4.5cm.【点评】本题考查了直角三角形中的勾股定理的应用及图形的翻折问题;解决翻折问题时一般要找着相等的量,然后结合有关的知识列出方程进行解答.29.如图①,长方形ABCD中,AB=6cm,BC=4cm,E为CD的中点.点P从A点出发,沿A﹣B﹣C的方向在长方形边上匀速运动,速度为1cm/s,运动到C点停止.设点P运动的时间为ts.(图②③为备用图)(1)当P在AB上,t为何值时,△APE的面积为长方形面积的?(2)整个运动过程中,t为何值时,△APE为直角三角形?(3)整个运动过程中,t为何值时,△APE为等腰三角形?【考点】四边形综合题.【分析】(1)设t秒后,△APE的面积为长方形面积的,根据题意得:△APE的面积= APAD=t×4=,从而求得t值;(2)当P运动到AB中点时AEP为直角三角形,此时角APE为直角,t=3;还有一种情况,当P运动到BC上时,角AEP为直角时利用相似三角形求得AP的长即可求得t值;(3))第一种情况,当P在AE垂直平分线上时,AP=EP;第二种情况,P运动到点B上时APE为等腰三角形,此时AE=EP,t=6;第三种情况,P在AB上,AP=PE;【解答】解:(1)设t秒后,△APE的面积为长方形面积的,根据题意得:AP=t,∴△APE的面积=APAD=t×4=,解得:t=4,∴4秒后,△APE的面积为长方形面积的;(2)显然当t=3时,PE⊥AB,∴△APE是直角三角形,当P在BC上时,△ADE∽△ECP,此时,解得:CP=,∴PB=BC﹣PC=4﹣=,∴t=6+=;(3)①当P在AE垂直平分线上时,AP=EP,过P作PQ⊥AE于Q,∵AD=4,DE=3,∴AE=5,∴AQ=2.5,由△AQP∽△EDA,得:,即:,解得:AP=,∴t=;.②当EA=EB时,AP=6,∴t=6,③当AE=AP时,∴t=5.∴当t=、5、6时,△APE是等腰三角形.【点评】本题考查了四边形的综合知识和动点问题,动点问题更是中考中的热点考题,有一定的难度,解题的关键是能够化动为静,利用等腰三角形的性质求解.。

江西省景德镇乐平市度八年级数学上学期期中试题(含解析) 新人教版-新人教版初中八年级全册数学试题

江西省景德镇乐平市度八年级数学上学期期中试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省某某乐平市2015-2016学年度八年级数学上学期期中试题一、选择题(本题共6小题,每小题3分,共18分)1.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,232.已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形的形状是()A.底与腰不相等的等腰三角形 B.等边三角形C.钝角三角形D.直角三角形3.如果点A(﹣3,a)是点B(3,﹣4)关于原点的对称点,则a的值是()A.﹣4 B.4 C.4或﹣4 D.无法确定4.点P到x轴的距离为3,到y轴的距离为2,则点P的坐标一定为()A.(3,2)B.(2,3)C.(﹣3,﹣2)D.以上都不对5.结合正比例函数y=4x的图象回答:当x>1时,y的取值X围是()A.y=1 B.1≤y<4 C.y=4 D.y>46.如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边RP在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP为半径画弧交数轴负半轴于点P1,则P1表示的是()A.﹣2 B.﹣2C.1﹣2D.2﹣1二、填空题(本题共8小题,每小题3分,共24分)7.在﹣,,,﹣,3.14,0,﹣1,,||中,其中:整数有;无理数有;有理数有.8.一次函数y=3x+b的图象过坐标原点,则b的值为.9.算术平方根等于它本身的数是.10.如图,Rt△AOB的斜边长为5,一直角边OB长为4,则点A的坐标是,点B的坐标是.11.的平方根是.12.将一根26cm的筷子,置于底面直径为9cm,高12cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的最小值是cm.13.若x3=256,则x=;若x3=﹣216,则x=.14.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形面积等于20,则a的值是.三、(本大题共4小題,每小题6分,共24分)15.(+)(﹣)﹣.16.如图是一个边长为6的正方体木箱,点Q在上底面的棱上,AQ=2,一只蚂蚁从P点出发沿木箱表面爬行到点Q,求蚂蚁爬行的最短路程.17.某校办工厂现在的年产值是15万元,计划今后毎年增产2万元.(1)写出年产值y(万元)与年数x之间的函数关系式并画出其图象;(2)求6年后的产值.18.在平面直角坐标系中,描出下列各点:A(﹣2,﹣1),B(4,﹣1),C(3,2),D(0,2),并计算四边形ABCD的面积.四、(本大題共4小题,每小题8分.共32分)19.(1)在6×6的网格中(每个小正方形边长均为1).画出一个面积为10的正方形;(2)在数轴上找到表示﹣的点.20.已知,如图,折叠长方形的一边AD,使点D落在BC边上的点F处,如AB=8,BC=10.求EC的长.21.(1)观察探索:===2,即=2;===3,即=3(2)大胆猜想:等于多少?(3)灵活运用:再举一个例子并通过计算验证:猜想并写出一般表达式.22.某次火灾事故中,消防员架起一架AB=25米长的云梯.如图斜靠在一面墙上,梯子底端B离墙7米.(1)求这个梯子的顶端A距地面有多高?(2)如果消防员接到命令,要求梯子的顶端下降9米至A′(云梯长度不变),那么云梯的底部B′在水平方向应滑动多少米?五、(本大题共10分)23.“十一”黄金周期间,朱老师织织朋友去某影视城旅游.现有两家旅行社.报价都为520元.且提供服务完全相同.但针对组团游的游客,甲旅行社表示,每人都按八折收费;乙旅行社表示,若人数不超过18人,每人都按八折收费.若超过18人,則超出部分按七五折收费,假设组团参加甲乙两家旅行社旅游的人数均为x人.(1)请分别写出甲,乙两家旅行社收取组团游的总费用y(元)与x(人)之间的函数关系式.(2)如果朱老师和朋友一共有30人去旅游.那你计算下,在甲、乙两家旅行社中,朱老师应选择哪家?六、(本大题12分)24.观察如图,A点为正比例函数y=x与一次函数y=﹣x+7的图象的交点(1)求点A的坐标;(2)设x轴上一点P(a,b),过点P作x轴的垂线(垂线位于点A的右侧)分别交y=x和y=﹣x+7的图象于点B,C,连接OC,若BC=OA,求△OBC的面枳.某某省某某乐平市2015~2016学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题(本题共6小题,每小题3分,共18分)1.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23【考点】勾股定理的逆定理.【专题】计算题.【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.2.已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形的形状是()A.底与腰不相等的等腰三角形 B.等边三角形C.钝角三角形D.直角三角形【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【解答】解:∵(a﹣6)2≥0,≥0,|c﹣10|≥0,又∵(a﹣b)2+=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故选D.【点评】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.3.如果点A(﹣3,a)是点B(3,﹣4)关于原点的对称点,则a的值是()A.﹣4 B.4 C.4或﹣4 D.无法确定【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y),求出即可.【解答】解:∵点A(﹣3,a)是点B(3,﹣4)关于原点的对称点,故选:B.【点评】此题主要考查了关于原点对称点的坐标性质,熟练掌握相关性质是解题关键.4.点P到x轴的距离为3,到y轴的距离为2,则点P的坐标一定为()A.(3,2)B.(2,3)C.(﹣3,﹣2)D.以上都不对【考点】点的坐标.【分析】点P到x轴的距离为3,则这一点的纵坐标是3或﹣3;到y轴的距离为2,那么它的横坐标是2或﹣2,从而可确定点P的坐标.【解答】解:∵点P到x轴的距离为3,∴点的纵坐标是3或﹣3;∵点P到y轴的距离为2,∴点的横坐标是2或﹣2.∴点P的坐标可能为:(2,3)或(2,﹣3)或(﹣2,3)或(﹣2,﹣3),故选D.【点评】本题考查了点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离.5.结合正比例函数y=4x的图象回答:当x>1时,y的取值X围是()A.y=1 B.1≤y<4 C.y=4 D.y>4【考点】正比例函数的性质.【分析】首先画出正比例函数y=4x的图象,经过原点和(1,4)点,然后再根据图象可直接得到答案.【解答】解:如图所示:当x>1时,y>4,故选:D.【点评】此题主要考查了画正比例函数的图象,关键是掌握正比例函数y=kx(k≠0)图象经过(0,0)和(1,k).6.如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边RP在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP为半径画弧交数轴负半轴于点P1,则P1表示的是()A.﹣2 B.﹣2C.1﹣2D.2﹣1【考点】实数与数轴;勾股定理.【分析】首先利用勾股定理计算出QP的长,进而可得QP1的长度,再由点Q表示的数为1可得答案.【解答】解:QP===2,∵Q表示1,∴P1表示的是1﹣2,故选:C.【点评】此题主要考查了实数与数轴,以及勾股定理,关键是正确计算出PQ的长.二、填空题(本题共8小题,每小题3分,共24分)7.在﹣,,,﹣,3.14,0,﹣1,,||中,其中:整数有0,|﹣1| ;无理数有,,﹣1,;有理数有﹣,﹣,3.14,0,|| .【考点】实数.【分析】由于无限不循环小数是无理数;有理数包括整数和分数.整数包括正整数、负整数和0;所以根据以上实数的分类解答即可.【解答】解:整数:0,||;无理数:,,﹣1,;有理数:﹣,﹣,3.14,0,||.故答案为:0,||;,,﹣1,;﹣,﹣,3.14,0,||.【点评】此题主要考查了实数的分类,解答此题的关键是熟知以下概念:整数包括正整数、负整数和0;无限不循环小数是无理数;有理数包括整数和分数.8.一次函数y=3x+b的图象过坐标原点,则b的值为0 .【考点】待定系数法求一次函数解析式.【专题】计算题;待定系数法.【分析】可根据一次函数的特点求出b的值.【解答】解:解答本题有两种方法:(1)一次函数y=3x+b的图象过坐标原点,则函数为正比例函数,解析式为y=3x;(2)把(0,0)代入y=3x+b,得b=0;解析式为y=3x.故答案为0.【点评】本题要熟悉一次函数的性质,且明确正比例函数是一次函数的特殊情况.9.算术平方根等于它本身的数是0和1 .【考点】算术平方根.【专题】计算题.【分析】由于一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,算术平方根等于它本身的数是只能是0和1.由此即可求解.【解答】解:算术平方根等于它本身的数是0和1.【点评】此题主要考查了算术平方根的定义,解题需熟练掌握平方根和算术平方根的概念且区分清楚,才不容易出错.要熟悉特殊数字0,1,﹣1的特殊性质.10.如图,Rt△AOB的斜边长为5,一直角边OB长为4,则点A的坐标是(0,3),点B的坐标是(4,0).【考点】勾股定理;坐标与图形性质.【分析】先根据OB=4求出B点坐标,再根据勾股定理求出OA的长,进而可得出A点坐标.【解答】解:∵点B在x轴正半轴上,OB=4,∴B(4,0).∵AB=5,∴OA===3,∴A(0,3).故答案为:(0,3),(4,0).【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.11.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.将一根26cm的筷子,置于底面直径为9cm,高12cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的最小值是11 cm.【考点】勾股定理的应用.【分析】筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的最大长度,筷子总长度减去杯子里面的长度即露在外面的最小长度.【解答】解:设杯子底面直径为a,高为b,筷子在杯中的最大长度为c,根据勾股定理,得:c2=a2+b2,∴c===15(cm),∴h的最小值=26﹣15=11(cm).故答案为:11.【点评】本题考查了勾股定理的应用.熟练掌握勾股定理,善于观察题目的信息,由勾股定理求出c是解题的关键.13.若x3=256,则x= 4;若x3=﹣216,则x= ﹣6 .【考点】立方根.【专题】计算题;实数.【分析】两方程利用立方根定义开立方即可求出x的值.【解答】解:若x3=256,则x=4;若x3=﹣216,则x=﹣6.故答案为:4;﹣6.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形面积等于20,则a的值是±8.【考点】坐标与图形性质;三角形的面积.【专题】计算题.【分析】利用三角形面积公式得到•5•|a|=20,然后解绝对值方程即可得到a的值.【解答】解:根据题意得•5•|a|=20,解得a=8或a=﹣8.即a的值为±8.故答案为±8.【点评】本题考查了坐标与图形性质:利用点的坐标特征计算相应线段的长和判断线段与坐标轴的位置关系.三、(本大题共4小題,每小题6分,共24分)15.(+)(﹣)﹣.【考点】实数的运算.【分析】根据实数的运算法则先把二次根式化简,再运用平方差公式计算.【解答】解:原式=7﹣3﹣4=0.【点评】此题主要考查了实数的运算,比较简单,解答此类题目时要注意平方差公式的运用,需同学们熟练掌握.16.如图是一个边长为6的正方体木箱,点Q在上底面的棱上,AQ=2,一只蚂蚁从P点出发沿木箱表面爬行到点Q,求蚂蚁爬行的最短路程.【考点】平面展开-最短路径问题.【分析】画出正方体的侧面展开图,利用勾股定理求解即可.【解答】解:如图所示,∵PB=AB=6,AQ=2,∴BQ=6+2=8,∴PQ===10.答:蚂蚁爬行的最短路程是10.【点评】本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.17.某校办工厂现在的年产值是15万元,计划今后毎年增产2万元.(1)写出年产值y(万元)与年数x之间的函数关系式并画出其图象;(2)求6年后的产值.【考点】一次函数的应用;一次函数的图象;根据实际问题列一次函数关系式.【专题】函数及其图像;一次函数及其应用.【分析】(1)根据等量关系:年产值=现产值+增产部分,列出函数关系式,根据关系式画出图象;(2)求6年后的年产值,就是当年数x=6时,代入函数式y=2x+15求出y的值即为年产值.【解答】解:(1)根据题意,现在年产值是15万元,计划今后每年增加2万元,则x年后增加2x 万元,∴年产值y与年数x之间的函数关系式y=2x+15(x≥0);函数图象如下:(2)将x=6代入解析式得:y=2x+15=2×6+15=27(x≥0).答:6年后的产值为27万元.【点评】本题考查理解题意能力,能够根据题意中的等量关系建立函数关系式,求出函数式根据函数式画图象以及代入x求y的值.18.在平面直角坐标系中,描出下列各点:A(﹣2,﹣1),B(4,﹣1),C(3,2),D(0,2),并计算四边形ABCD的面积.【考点】坐标与图形性质;三角形的面积.【专题】计算题.【分析】先描点得到四边形ABCD为等腰梯形,然后根据梯形的面积公式计算即可.【解答】解:如图,四边形ABCD的面积=×(3+6)×3=.【点评】本题考查了坐标与图形性质:利用点的坐标进行相应线段的长和判断线段与坐标轴的位置关系.解决本题的关键是画出几何图形得到四边形为等腰梯形.四、(本大題共4小题,每小题8分.共32分)19.(1)在6×6的网格中(每个小正方形边长均为1).画出一个面积为10的正方形;(2)在数轴上找到表示﹣的点.【考点】勾股定理;实数与数轴.【专题】作图题.【分析】(1)由正方形的性质和勾股定理即可得出结果;(2)根据勾股定理可以知道,一个直角三角形的斜边为2,一直角边为1时,另一直角边为,在数轴上画出即可,﹣在原点的左边.【解答】解:(1)∵面积为10的正方形的边长为,=,∴四边形ABCD即为所求,如图1所示:(2)如图2所示:以原点O为圆心,所画直角边的斜边OB为半径画弧,交数轴的负半轴于一点C,点C即为表示﹣的点.【点评】本题考查了勾股定理的应用、正方形的性质、实数与数轴;注意:在直角三角形中,两直角边的平方和等于斜边的平方.20.已知,如图,折叠长方形的一边AD,使点D落在BC边上的点F处,如AB=8,BC=10.求EC的长.【考点】翻折变换(折叠问题).【分析】首先根据勾股定理求出BF的长,借助翻转变换的性质及勾股定理求出DE的长即可解决问题.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8;∠B=∠C=90°;由题意得:AF=AD=10,EF=DE=λ,EC=8﹣λ;由勾股定理得:BF2=102﹣82,∴BF=6,CF=10﹣6=4;在△EFC中,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,EC=8﹣5=3.【点评】该题主要考查了翻折变换﹣折叠问题,勾股定理,解题的关键是灵活运用勾股定理等几何知识来分析、判断、推理或解答.21.(1)观察探索:===2,即=2;===3,即=3(2)大胆猜想:等于多少?(3)灵活运用:再举一个例子并通过计算验证:猜想并写出一般表达式.【考点】算术平方根.【专题】计算题;规律型.【分析】(1)观察已知等式,做出探索;(2)根据已知等式做出猜想即可;(3)举一个例子,验证,归纳总结得到一般性规律,写出即可.【解答】解:(1)观察探索:===2,即=2;===3,即=3;(2)根据题意猜想得:=5;(3)===6,得到一般性规律为=n(n为正整数).【点评】此题考查了算术平方根,弄清题中的规律是解本题的关键.22.某次火灾事故中,消防员架起一架AB=25米长的云梯.如图斜靠在一面墙上,梯子底端B离墙7米.(1)求这个梯子的顶端A距地面有多高?(2)如果消防员接到命令,要求梯子的顶端下降9米至A′(云梯长度不变),那么云梯的底部B′在水平方向应滑动多少米?【考点】勾股定理的应用.【分析】(1)利用勾股定理可以得出梯子的顶端距离地面的高度.(2)由(1)可以得出梯子的初始高度,下滑9米后,可得出梯子的顶端距离地面的高度,再次使用勾股定理,已知梯子的底端距离墙的距离为7米,可以得出,梯子底端水平方向上滑行的距离.【解答】解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===24(米);答:这个梯子的顶端A距地面有24m;(2)梯子下滑了9米即梯子距离地面的高度为OA′=24﹣9=15(米),根据勾股定理:OB′==20(米),所以当梯子的顶端下滑9米时,梯子的底端水平后移了20﹣7=13(米),答:当梯子的顶端下滑9米时,梯子的底端水平后移了13米.【点评】本题考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.五、(本大题共10分)23.“十一”黄金周期间,朱老师织织朋友去某影视城旅游.现有两家旅行社.报价都为520元.且提供服务完全相同.但针对组团游的游客,甲旅行社表示,每人都按八折收费;乙旅行社表示,若人数不超过18人,每人都按八折收费.若超过18人,則超出部分按七五折收费,假设组团参加甲乙两家旅行社旅游的人数均为x人.(1)请分别写出甲,乙两家旅行社收取组团游的总费用y(元)与x(人)之间的函数关系式.(2)如果朱老师和朋友一共有30人去旅游.那你计算下,在甲、乙两家旅行社中,朱老师应选择哪家?【考点】一次函数的应用;根据实际问题列一次函数关系式.【专题】计算题;分类讨论;函数思想;一次函数及其应用.【分析】(1)根据题意,甲旅行社收取的总费用=原价×折扣×人数,人数超过18人时,乙旅行社收取的总费用=前18人总费用+超出人数的费用,可列出函数关系式;(2)当x=30时,分别计算两旅行社费用,比较可知.【解答】解:(1)根据题意,甲旅行社收取的总费用y与x间的函数关系式为:y=520×0.8x=416x;当0≤x≤18时,乙旅行社收取的总费用y与x间的函数关系式为:y=520×0.8x=416x;当x>18时,乙旅行社收取的总费用y与x间的函数关系式为:y=520×0.8×18+520×0.75×(x﹣18)=390x+468;故乙旅行社收取的总费用y与x间的函数关系式为:;(2)当x=30时,甲旅行社收取的总费用y=416×30=12480(元),乙旅行社收取的总费用y=390×30+468=12168(元),∵12168<12480,∴朱老师应选择乙旅行社.【点评】本题考查了一次函数的实际应用,解答本题的关键是乙旅行社收费与人数之间的关系要分类讨论,属中档题.六、(本大题12分)24.观察如图,A点为正比例函数y=x与一次函数y=﹣x+7的图象的交点(1)求点A的坐标;(2)设x轴上一点P(a,b),过点P作x轴的垂线(垂线位于点A的右侧)分别交y=x和y=﹣x+7的图象于点B,C,连接OC,若BC=OA,求△OBC的面枳.【考点】两条直线相交或平行问题.【分析】(1)联立两一次函数的解析式求出x、y的值即可得出A点坐标;(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中根据勾股定理求出OA的长,故可得出BC的长,根据P(a,0)可用a表示出B、C的坐标,故可得出a的值,由三角形的面积公式即可得出结论.【解答】解:(1)由题意得,解得.则A(4,3);(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,OA===5.∴BC=OA=×5=14.∵P(a,0),∴B(a,a),C(a,﹣a+7),∴BC=a﹣(﹣a+7)=a﹣7,∴a﹣7=14,解得a=12,∴S△OBC=BC•OP=×14×12=84.word【点评】本题考查的是两条直线相交或平行问题,根据题意作出辅助线.构造出直角三角形是解答此题的关键.21 / 21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
D
E
C
B
A
2015-2016学年第一学期八年级数学
期 中 试 卷
一、选择题:(本大题共10题,每小题3分,共30分,每题给4个选项,其中只有一个是正确的.)
1、下列四副图案中,不是轴对称图形的是( )
2、下列图形不具有稳定性的是 ( )
3、下列命题正确的是( )
A.三角形的外角大于它的内角
B. 三角形的一个外角等于它的两个内角的和
C. 三角形的一个外角大于和它不相邻的任何一个内角
D. 三角形的外角的和是180° 4、一个三角形的两条边分别为3cm 和7cm ,第三边为整数,这样的三角形有 ( )
A.4个
B. 5个
C.6个
D.7个
5、如图, A B C D E ∠+∠+∠+∠+∠等于( )
A. 90 °
B.270°
C.360°
D. 180°
6、下列判定直角三角形全等的方法,不正确的是( )
A
.两条直角边对应相等
B .斜边和一锐角对应相等
C .两个直角三角形的面积相等
D .斜边和一直角边对应相等
7、如图,已知△ABC 中,AB = AC ,AE = AF ,AD ⊥
BC 于D ,且E 、F 在BC 上,则图中全等的直角三角形共有
( )对.
A .1
B .2
C .3
D .4
8、如图,△ABC ≌△CDA ,AC =7cm ,AB =5cm ,BC =8cm ,则AD 的
长是( )
A 、7cm
B 、8cm
C 、5cm
D 、6cm
9、如图,在△ABC 中,AB=AC ,∠A =30º,DE 垂直平分AC ,
则∠BCD 的度数为( )
A .80°
B .75°
C .65°
D .45°
10、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;
③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ).
A .①②③
B .①②④
C .①②③④
D .①③ 二、填空题:(本大题共10题,每小题3分,共30分)
11、在数字0、2、4、6、8中是轴对称图形的是 ;
12、等腰三角形是轴对称图形,其对称轴是_______________________________. 13、点(2, b )与(a ,- 4)关于y 轴对称,则a= ,b=
14、等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 __ . 15、如图,已知EB AD ⊥,垂足点为F ,若C 40E 25∠=∠= ,, 则A ∠= .
16、如图,已知∠C =90°,AD 平分∠BAC ,BD =2CD ,若点D 到AB 的距离等于5cm ,则BC 的长为_____cm .
15题图 16题图 17题图 18题图 17、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA
于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 ; 18、“三月三,放风筝”,如图是小明制作的风筝,他根据DE =DF,EH =FH,不用度量,就知道
∠DEH =∠DFH,小明是通过全等三角形的识别得到的结论,是 ;(用字母表示).
19、如图所示,以六边形的每个顶点为圆心,1为半径画圆,则图中的
阴影部分的面积之和为 ;
20、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学 知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的 依据是 ; 三、作图题 A. B. C. D.
第7题图 P2P 1P N
M
O B
A
2
21、(5分)已知:如图,在直线MN 上求作一点P ,使点P 到 ∠AOB 两边的距离相等(不写作法,保留作图痕迹)
四、解答题:(本大题共9题,总共55分) 22、(6分)如图,写出△ABC 的各顶点坐标,画出△ABC 关于Y 轴对称的△A 1B 1C 1,并写出△A 1B 1C 1各点坐标
23、(7分) 如图,在△ABC 中,D 为BC 边上的一点,
,1234BAC 72∠=∠∠=∠∠= ,,求DAC ∠的度数.
24、(6分) 如图,AB =DC ,AC =DB ,求证:∠A =∠D .
25、(6分)已知:如图AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .
26、(6分)如图, AB =CD ,CE =DF ,AE =BF ,求证:AE ∥BF
27、(8分)若一个多边形除了一个内角外,其余各内角之和为2570°,求这个内角的度数。

O N M B
A
E
3
28、(8分)已知:如图,CD ⊥AB 于D ,BE ⊥AC 于E ,CD 、BE 交于O ,∠1=∠2. 求证:OB =OC. 29、(8分)如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,
BD=CE 。

求证:△ABC 是等腰三角形.
C
F
B D
A。

相关文档
最新文档