最新人教版六年级数学下册5.1.2 鸽巢问题优秀教案
六年级下册数学教案-5.1数学广角——鸽巢问题|人教版(5)

六年级下册数学教案5.1 数学广角——鸽巢问题|人教版 (5)一、教学内容今天我们要学习的是人教版六年级下册数学的第五章第一节《数学广角——鸽巢问题》。
这一节主要让我们了解鸽巢问题的概念,学会用一种全新的思路去解决问题。
我们会通过生活中的实例,了解鸽巢问题的实质,以及如何运用它来解决实际问题。
二、教学目标通过这一节课的学习,我希望同学们能够理解并掌握鸽巢问题的解题思路,能够运用它来解决实际问题。
同时也希望同学们能够提高自己的逻辑思维能力,增强自己的解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的解题思路。
难点在于如何让学生理解并接受这种全新的解决问题的方法。
四、教具与学具准备为了更好地进行课堂教学,我已经准备好了相关的教具和学具,包括PPT、鸽巢模型等。
五、教学过程1. 通过一个实际问题引入:假设有一个鸽巢,里面有n只鸽子,我们要如何计算出最多能有多少只鸽子在同一个鸽巢里?2. 引导学生思考,尝试用自己的方法解决问题。
3. 引导学生发现,当我们解决问题的方法不够科学时,可能会得出错误的结论。
4. 引入鸽巢问题的概念,讲解鸽巢问题的解题思路。
5. 通过例题讲解,让学生理解并掌握鸽巢问题的解题思路。
6. 通过随堂练习,让学生运用所学的知识解决实际问题。
六、板书设计板书设计主要包括鸽巢问题的定义、解题思路等关键信息。
七、作业设计作业题目:1. 如果有5只鸽子,最多能有多少只鸽子在同一个鸽巢里?2. 如果有10只鸽子,最多能有多少只鸽子在同一个鸽巢里?答案:1. 5只鸽子2. 10只鸽子八、课后反思及拓展延伸通过这一节课的学习,我发现同学们对鸽巢问题的理解还有待提高。
在今后的教学中,我需要更加深入地引导同学们理解并掌握鸽巢问题的解题思路,提高他们的解决问题的能力。
同时,我也可以尝试引入更多实际问题,让学生更好地理解鸽巢问题的应用。
重点和难点解析一、实际问题引入在教学过程中,我使用了实际问题引入的方法,这是非常重要的一个步骤。
六年级下册数学教案-5.1《鸽巢原理》人教新课标

《鸽巢原理》是六年级下册数学教材中的一节内容,属于人教新课标。
本节内容旨在通过学习鸽巢原理,培养学生的逻辑思维能力和数学推理能力。
以下是本节课的教案设计。
一、教学目标1. 知识与技能目标:理解鸽巢原理的含义,能够运用鸽巢原理解决实际问题。
2. 过程与方法目标:通过实际操作和观察,引导学生发现鸽巢原理,培养学生的逻辑思维能力和数学推理能力。
3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生合作学习的意识。
二、教学重点与难点1. 教学重点:理解鸽巢原理的含义,能够运用鸽巢原理解决实际问题。
2. 教学难点:引导学生发现鸽巢原理,培养学生的逻辑思维能力和数学推理能力。
三、教学方法1. 启发式教学法:通过提问、引导学生观察和思考,激发学生的思维。
2. 实践操作法:通过实际操作,让学生亲身体验鸽巢原理。
3. 小组合作法:分组讨论,培养学生的合作学习能力。
四、教学过程1. 导入新课通过一个有趣的故事引入鸽巢原理:小明有10个鸽巢,他的朋友小华送给他11只鸽子,请问小明如何将这11只鸽子安置在10个鸽巢中,使得每个鸽巢中至少有一只鸽子?2. 探究新知(1)引导学生观察和思考:如果每个鸽巢中最多只能容纳一只鸽子,那么小明最多能将几只鸽子安置在鸽巢中?(2)学生进行实践操作:让学生用10个鸽巢和11只鸽子进行实际操作,观察结果。
(3)引导学生发现鸽巢原理:通过观察和实践,引导学生发现鸽巢原理:如果有n个鸽巢和n 1只鸽子,那么至少有一个鸽巢中至少有两只鸽子。
3. 巩固练习(1)让学生运用鸽巢原理解决实际问题,如:有13个小朋友,每人至少有一个玩具,共有15个玩具,请问至少有几个小朋友的玩具是相同的?(2)小组讨论:让学生分组讨论,如何运用鸽巢原理解决生活中的问题。
4. 课堂小结通过本节课的学习,学生应掌握鸽巢原理的含义,并能够运用鸽巢原理解决实际问题。
同时,培养学生合作学习的意识,激发学生对数学的兴趣。
五、课后作业1. 根据本节课所学内容,完成课后练习题。
人教版数学六年级下册鸽巢问题教案模板(推荐3篇)

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)人教版数学六年级下册鸽巢问题教案模板【第1篇】第2课时教学内容教科书P69例2,完成教科书P71“练习十三”中第2、3、6题。
教学目标1.经历“鸽巢原理”的探究过程,进一步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
2.经历从直观到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力,渗透模型思想。
3.在探究过程中,经历将具体数学问题数学化的过程,培养学生的模型思维。
教学重点掌握“鸽巢原理”的一般形式,会运用除法算式来解决实际问题。
教学难点对“把多于kn(k是正整数)个物体任意分放入n个空抽屉,总有一个抽屉里至少有(k+1)个物体”形成一般性理解。
教学准备课件。
教学过程一、复习导入,揭示课题课件出示教科书P69“做一做”第2题。
【学情预设】预设1:我们把4把椅子看成4个“鸽巢”,把5个人放进4个“鸽巢”中,总有1个“鸽巢”里至少有2个人,即总有一把椅子上至少坐2人。
预设2:我用算式表示:5÷4=1……1,1+1=2,所以总有一把椅子上至少坐2人。
师:同学们研究了物体数比盛放物体的工具数多1的情况,得出了总有一个盛放物体的工具里至少放有两个物体。
“鸽巢原理”真是这样吗今天我们继续来研究相关问题。
【设计意图】通过复习,帮助学生回忆例1学习的有关知识,并直接揭示课题,为新课学习作准备。
二、自主探究,建立模型1.课件出示教科书P69例2。
师:请你试着证明这个结论。
(学生用自己的方式证明。
)【学情预设】预设1:我随便放放看,一个抽屉1本,一个抽屉2本,一个抽屉4本。
可以证明总有一个抽屉里至少放进3本书。
预设2:我用假设法来思考,如果每个抽屉最多放2本,那么3个抽屉最多放6本,最后的1本书一定会放到3个抽屉中的任何一个,可以证明总有一个抽屉里至少放进3本书。
预设3:我用算式来证明:7÷3=2……1,2+1=3。
师:你能理解这道算式表示的意思吗?(板书算式:7÷3=2……1,2+1=3)【学情预设】指导学生规范表达:把7本书平均放进3个抽屉,每个抽屉里放2本,还剩一本。
六年级数学下册教案-5鸽巢问题-人教版

六年级数学下册教案5 鸽巢问题人教版今天我要为大家分享的是六年级数学下册的教案,第五单元的内容——鸽巢问题。
人教版教材在这一单元中引导学生探究鸽巢问题的规律,提高他们的逻辑思维能力。
一、教学内容我们使用的教材是六年级数学下册,人教版。
本节课的主要内容是第五单元的鸽巢问题。
在这一部分,学生们将学习到鸽巢问题的基本概念,掌握求解鸽巢问题的方法,并能够运用这一方法解决实际问题。
二、教学目标1. 理解鸽巢问题的含义,掌握求解鸽巢问题的基本方法。
2. 能够运用鸽巢问题的方法解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解鸽巢问题的含义,掌握求解鸽巢问题的基本方法。
难点是让学生能够运用这一方法解决实际问题。
四、教具与学具准备为了帮助学生更好地理解和掌握鸽巢问题,我准备了一些教具和学具,包括黑板、粉笔、多媒体教具以及一些实际的物品,如鸽子模型等。
五、教学过程1. 实践情景引入:我会先给学生展示一个实际的情景,比如有10只鸽子要放在5个鸽巢里,让学生观察和思考。
2. 讲解鸽巢问题的定义和基本方法:然后我会向学生解释鸽巢问题的定义,并讲解求解鸽巢问题的基本方法。
4. 随堂练习:在讲解完例题后,我会给学生一些随堂练习题,让学生自己动手解决实际问题。
5. 学生展示和讨论:在学生完成随堂练习后,我会让学生展示他们的解题过程和答案,并进行讨论。
六、板书设计在教学过程中,我会利用黑板和粉笔进行板书,将鸽巢问题的定义、基本方法和求解步骤等内容展示给学生。
七、作业设计作业题目:1. 有8只鸽子要放在3个鸽巢里,每个鸽巢至少要放几只鸽子?2. 有12只鸽子要放在4个鸽巢里,每个鸽巢至少要放几只鸽子?答案:1. 每个鸽巢至少要放3只鸽子。
2. 每个鸽巢至少要放3只鸽子。
八、课后反思及拓展延伸通过本节课的学习,学生们对鸽巢问题有了更深入的了解和掌握。
在教学过程中,我发现学生们对鸽巢问题的求解方法掌握得比较好,但在解决实际问题时,有些学生还缺乏一定的逻辑思维能力。
六年级下册数学人教版鸽巢问题(例1)教学设计

4.学习兴趣:部分学生对数学学习兴趣不足,需要通过生动有趣的情境和实际问题,激发他们的学习兴趣。
针对以上学情,教师在教学过程中应关注学生的个体差异,因材施教,创设有趣的学习情境,引导学生主动参与,培养他们的抽象思维、问题解决能力和合作精神,提高学生的数学素养。同时,关注学生的学习情感,激发学习兴趣,使他们在轻松愉快的氛围中学习数学。
6.课后作业,分层设计
根据学生的个体差异,设计不同难度的课后作业,使学生在课后能够有针对性地巩固所学知识。
7.教学评价,关注成长
采用多元化评价方式,关注学生在知识掌握、能力提升、情感态度等方面的全面发展。
四、教学内容与过程
(一)导入新课,500字
1.教师出示一张图片,展示一群鸽子飞入鸽巢的场景,并提出问题:“同学们,你们观察这张图片,如果每个鸽巢里只能住一只鸽子,那么这群鸽子都能找到自己的家吗?”
1.必做题:
a.请学生运用鸽巢原理,解决以下问题:一个班级有25名学生,每位学生都要参加至少一项体育项目,如果共有4项体育项目,证明至少有一项体育项目有7名或以上的学生参加。
b.设计一个生活中的鸽巢问题,并运用鸽巢原理给出解决方案。
2.选做题(任选一题):
a.如果有10个苹果要分给4个小朋友,每个小朋友至少要分到2个苹果,那么最多有多少个苹果可以分给其中一个小朋友?
(二)过程与方法
在教学过程中,采用以下方法:
1.创设情境:通过生活中的实例,引导学生发现鸽巢原理的实际意义。
2.探究式学习:鼓励学生独立思考,合作交流,通过实践操作,发现并验证鸽巢原理。
3.问题驱动:设置一系列有层次、有挑战性的问题,激发学生的学习兴趣,培养学生解决问题的能力。
2023年人教版数学六年级下册鸽巢问题优秀教案(优选3篇)

人教版数学六年级下册鸽巢问题优秀教案(优选3篇)〖人教版数学六年级下册鸽巢问题优秀教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
六年级下册数学教案-5.1数学广角(鸽巢问题)人教新课标版

六年级下册数学教案5.1数学广角(鸽巢问题)人教新课标版教案内容:一、教学内容今天我们要学习的教材是六年级下册的数学广角,主要涉及鸽巢问题。
这一章节主要让学生了解和掌握鸽巢问题的基本概念和解决方法。
二、教学目标通过本节课的学习,希望学生能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法,并能灵活运用到实际问题中。
三、教学难点与重点重点:掌握鸽巢问题的解决方法。
难点:如何理解和运用鸽巢问题的解决方法到实际问题中。
四、教具与学具准备教具:黑板、粉笔、PPT学具:笔记本、笔五、教学过程1. 实践情景引入:假设有一个鸽巢,里面有若干只鸽子,要求学生想办法计算出最多能有多少只鸽子。
2. 讲解鸽巢问题的概念和解决方法:通过PPT讲解鸽巢问题的定义和解决方法,并举例说明。
3. 例题讲解:给学生出一道鸽巢问题的例题,让学生独立解决,然后讲解答案和解决方法。
4. 随堂练习:给学生出一道类似的题目,让学生独立解决,然后互相交流答案和解决方法。
5. 板书设计:将鸽巢问题的解决方法用板书的形式呈现出来,方便学生理解和记忆。
六、作业设计答案:略2. 请找出一道类似的实际问题,运用今天学习的鸽巢问题的解决方法解决,并写出解题过程。
答案:略七、课后反思及拓展延伸通过本节课的学习,我发现学生们对鸽巢问题的理解还不够深入,需要在今后的教学中多做类似的练习,让学生们更好地理解和掌握鸽巢问题的解决方法。
同时,也可以让学生们尝试自己出一些类似的题目,提高他们的思维能力和解决问题的能力。
重点和难点解析一、教学内容细节在教学内容的设计上,我特别注重了教材章节的安排和详细内容的挑选。
六年级下册的数学广角,主要涉及鸽巢问题。
这一章节的内容,不仅仅是让学生了解和掌握鸽巢问题的基本概念和解决方法,更重要的是,我希望学生能够通过这个问题,培养他们的逻辑思维能力和解决实际问题的能力。
二、教学目标细节在教学目标上,我设定了两个主要目标。
第一,是希望学生能够理解鸽巢问题的实质,第二,是希望他们能够掌握解决鸽巢问题的基本方法,并能灵活运用到实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时鸽巢问题(2)
【教学内容】“鸽巢问题”的具体应用(教材第70页例3)。
【教学目标】
1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。
2.培养学生有根据、有条理的进行思考和推理的能力。
3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
【重点难点】
引导学生把具体问题转化为“鸽巢问题”,找出这里的“鸽巢”有几个,再利用“鸽巢问题”进行反向推理。
【教学准备】课件,1个纸盒,红球、蓝球各4个。
【情景导入】
教师讲《月黑风高穿袜子》的故事。
一天晚上,毛毛房间的电灯突然坏了,伸手不见五指,这时他又要出去,于是他就摸床底下的袜子,他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中不知道哪些袜子颜色是相同的。
毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的一双。
你们知道最少拿几只袜子出去吗?
在学生猜测的基础上揭示课题。
教师:这节课我们利用鸽巢问题解决生活中的实际问题。
板书:“鸽巢问题”的具体应用。
【新课讲授】
1.教学例3。
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,最少要摸出几个球?
(出示一个装了4个红球和4个蓝球的不透明盒子,晃动几下)师:同学们,猜一猜老师在盒子里放了什么?
(请一个同学到盒子里摸一摸,并摸出一个给大家看)
师:如果这位同学再摸一个,可能是什么颜色的?要想这位同学摸出的球,一定有2个同色的,最少要摸出几个球?
请学生独立思考后,先在小组内交流自己的想法,验证各自的猜想。
指名按猜测的不同情况逐一验证,说明理由。
摸2个球可能出现的情况:1红1蓝;2红;2蓝
摸3个球可能出现的情况:2红1蓝;2蓝1红;3红;3蓝
摸4个球可能出现的情况:2红2蓝;1红3蓝;1蓝3红;4红;4蓝
摸5个球可能出现的情况:4红1蓝;3蓝2红;3红2蓝;4蓝1红;5红;5蓝
教师:通过验证,说说你们得出什么结论。
小结:盒子里有同样大小的红球和蓝球各4个。
想要摸出的球一
定有2个同色的,最少要摸3个球。
2.引导学生把具体问题转化为“鸽巢问题”。
教师:生活中像这样的例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前面所讲的“鸽巢问题”联系起来进行思考呢?
思考:
a.“摸球问题”与“鸽巢问题”有怎样的联系?
b.应该把什么看成“鸽巢”?有几个“鸽巢”?要分放的东西是什么?
c.得出什么结论?
学生讨论,汇报。
教师讲解:因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“鸽巢”,“同色”就意味着“同一个鸽巢”。
这样,把“摸球问题”转化“鸽巢问题”,即“只要分的物体个数比鸽巢多,就能保证有一个鸽巢至少有两个球”。
从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个鸽巢里各拿了一个球,不管从哪个鸽巢里再拿一个球,都有两个球是同色,假设最少摸a个球,即(a)÷2=1……(b)当b=1时,a 就最小。
所以一次至少应拿出1×2+1=3个球,就能保证有两个球同色。
结论:要保证摸出有两个同色的球,摸出的数量至少要比颜色种数多一。
【课堂作业】
先完成第70页“做一做”的第2题,再完成第1题。
(1)学生独立思考。
(提示:把什么看做鸽巢?有几个鸽巢?要分的东西是什么?)(2)同桌讨论。
(3)汇报交流。
教师讲解:第2题:因为一共有红、黄、蓝、白四种颜色的球,可以把四种“颜色”看成四个“鸽巢”,“同色”就意味着“同一鸽巢”。
把“摸球问题”转化成“鸽巢问题”,即“只要分的物体个数比鸽巢数多一,就能保证至少有一个鸽巢有两个球,摸出的球的数量至少比颜色的种数多一,所以至少取5个球,才能保证有两个同色球。
第1题:他们说的都对,因为一年中最多有366天,所以把366天看做366个鸽巢,把370名学生放进366个鸽巢里,人数大于鸽巢数,因此总有一个鸽巢里至少有两个人,即他们的生日是同一天。
1年中有十二个月,如果把12个月看作是十二个鸽巢,把49名学生放进12个鸽巢里,49÷12=4……1,因此总有一个鸽巢里至少有5(即4+1)个人,也就是至少有5个人的生日在同一个月。
教师:上课时老师讲的故事你们还记得吗?(课件出示故事)谁能说说在外面借街灯配成同颜色的一双袜子,最少应该拿几只出去?
【课堂小结】本节课你有什么收获?
【课后作业】完成练习册中本课时的练习。
第2课时鸽巢问题(2)
要保证摸出两个同色的球,摸出的球的数量至少要比颜色的种类多一。
课前引入时,教师设计有关鸽巢问题在生活中运用的问题,使生活问题数学化、数学教学生活化,让学生在学习数学中得到发展。
活动化的数学课堂,使学生在活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
在教学例3时,教师充分利用学具操作,为学生提供主动参与的机会,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。
充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好地理解鸽巢问题。