化工原理 第五章 传热过程计算和换热器

合集下载

化工原理_17换热器的传热计算

化工原理_17换热器的传热计算
T2 T1 (T1 t1)
22
二、传热单元数法
(2)传热单元数 NTU 由换热器热平衡方程及总传热速率微分方程
dQ qm,hcphdT qm,ccpcdt K (T t)dS
对于冷流体 dt KdS
T t qm,ccpc
23
二、传热单元数法
积分上式得
t2 dt S KdS
(NTU )c t1 T t 0 qm,ccpc
11
一、平均温度差法
逆流:
采用逆流操作,若换热介质流量一定,则可 以节省传热面积,减少设备费;若传热面积一定, 则可减少换热介质的流量,降低操作费,因而工 业上多采用逆流操作。
并流:
若对流体的温度有所限制,如冷流体被加热 时不得超过某一温度,或热流体被冷却时不得低 于某一温度,则宜采用并流操作。
12
Qmax (qmcp )min (T1 t1)
较小者具 有较大温

换热器中可 能达到的最
大温差
式中 qmCp 称为流体的热容量流率,下标 min表 示两流体中热容量流率较小者,并称此流体为最
小值流体。
20
二、传热单元数法
若热流体为最小值流体,则传热效率为
qm,hcph (T1 T2 ) T1 T2
通常在换热器的设计中规定,t 值不应小
于0.8,否则值太小,经济上不合理。若低于此
值,则应考虑增加壳方程数,将多台换热器串
联使用,使传热过程接近于逆流。
18
二、传热单元数法
1. 传热效率ε 换热器的传热效率ε定义为
实际的传热量QT
最大可能的传热量Qmax
19
二、传热单元数法
定义最大可能传热量
基于冷流体的传热单元数

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。

本文将介绍化工原理课程设计中换热器的设计过程和要点。

2. 设计目标在进行换热器设计之前,首先要确定设计的目标。

设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。

3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。

这些参数可以通过实验测定或者查阅相关文献获得。

3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。

传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。

3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。

传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。

3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。

常见的换热器类型包括管壳式换热器、板式换热器等。

3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。

3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。

性能评价主要包括换热器的传热效率、压降以及经济性等方面。

4. 实例分析下面通过一个实例来说明换热器的设计过程。

实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。

根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。

化工原理第五章传热过程计算与换热器

化工原理第五章传热过程计算与换热器

5.4 传热效率和传热单元数
• 当传热系数K和比热cpc为常数时,积分上式可得
• 式中NTUc(Number of Transfer Unit)称为对冷流体而言的传热单 元数,Dtm为换热器的对数平均温差。
• 同理,以热流体为基准的传热单元数可表 示
• 在换热器中,传热单元数定义 为
5.4 传热效率和传热单元数
• 2.由选定的换热器型式计算传热系数K;
• 3.由规定的冷、热流体进出口温度计算参数e、CR; • 4.由计算的e、CR值确定NTU。由选定的流动排布型
式查取e—NTU算图。可能需由e—NTU关系反复计算 NTU;
• 5.计算所需的传热面积

5.5 换热器计算的设计型和操作型问题
• 例5-2 一列管式换热器中,苯在换热器的管内 流动,流量为1.25 kg/s,由80℃冷却至30℃; 冷却水在管间与苯呈逆流流动,冷却水进口温 度为20℃,出口温度不超过50℃。若已知换热 器的传热系数为470 W/(m2·℃),苯的平均 比热为1900 J/(kg·℃)。若忽略换热器的散 热损失,试分别采用对数平均温差法和传热效 率—传热单元数法计算所需要的传热面积。
• 如图5-4所示,按照冷、热流 体之间的相对流动方向,流体之 间作垂直交叉的流动,称为错流 ;如一流体只沿一个方向流动, 而另一流体反复地折流,使两侧 流体间并流和逆流交替出现,这
种情况称为简单折流。
•图 P2
•55
5.3 传热过程的平均温差计算
•通常采用图算法,分三步: •① 先按逆流计算对数平均温差Dtm逆; •② 求出平均温差校正系数φ;
•查图 φ
•③ 计算平均传热温差: • 平均温差校正系数 φ <1,这是由于在列管式换热器内增设了

化工原理5.1-5.2化工生产中的传热过程及传导传热

化工原理5.1-5.2化工生产中的传热过程及传导传热

r1
d1
Q

2Lt
b

r2 r1 ln r2

2Lt
b
rm

r1

多层圆筒壁的传导传热:
Q
2Lt
1 ln d n1
n
dn

例题
5-1 若炉灶的炉壁顺序地由厚24cm耐火砖(=0.90 W.m-1. K-1)、12cm绝热砖(=0.20 W.m-1.K-1)和24cm建筑砖( = 0.63W.m-1.K-1)砌成,传热稳定后,耐火砖的内壁面温度为 940℃,建筑砖的外壁面温度为50 ℃.试求每秒钟每平方米 壁面因传导传热所散失的热量,并求各砖层交界面的温度.
对数平均值:rm (r2 r1 )
ln( r2 ) r1
Q

2Lt
b
r2 r1 ln r2

2Lt
b
rm

r1

r
r2 r1
Q
t1
t2
圆筒壁的传导传热
多层圆筒壁的传导传热:
Q
2L(t1 t4 )
1 ln r2 1 ln r3 1 ln r4
1 r1 2 r2 3 r3
显热(sensible heat) = 物质质量×比定压热容×温度变化
= m×cp×△t (无相变)
定态传热和非定态传热
定态传热(steady heat transfer):传热面各点的温度不随
时间而改变。
均衡的连续操作
t t(x, y, z)
非定态传热(non-steady heat transfer):传热面各点温度 随时间而变化。
热层,第一层是40mm厚的矿渣棉(=0.07 W.m-1.K-1),第二层

化工原理第五章传热

化工原理第五章传热

第五章传热一、基本知识1. 下列关于传热与温度的讨论中正确的是。

①绝热物系温度不发生变化②恒温物体与外界(环境)无热能交换③温度变化物体的焓值一定改变④物体的焓值改变,其温度一定发生了变化2. 下列关于温度梯度的论断中错误的是。

①温度梯度决定于温度场中的温度分布②温度场中存在温度梯度就一定存在热量的传递③热量传递会引起温度梯度的变化④热量是沿温度梯度的方向传递的3. 传热的目的为。

①加热或冷却②换热,以回收利用热量③保温④萃取4. 根据冷、热两流体的接触方式的不同,换热器包括()等类型。

①直接混合式②蓄热式③间壁式④沉降式5. 热量传递的基本方式为。

①热传导(简称导热)②对流传热③热辐射④相变传热6. 下列有关导热系数论断中正确的是——。

①导热系数入是分子微观运动的一种宏观表现②导热系数入的大小是当导热温差为「C、导热距离为1m导热面积为lm2 时的导热量,故入的大小表示了该物质导热能力的大小,入愈大,导热越快③一般来说,金属的导热系数数值最大,固体非金属次之,液体较小,气体最小④大多数金属材料的导热系数随温度的升高而下降,而大多数非金属固体材料的导热系数随温度的升高而升高⑤金属液体的导热系数大于非金属液体的导热系数,非金属液体中除水和甘油外,绝大多数液体的导热系数随温度的升高而减小,一般情况下,溶液的导热系数低于纯液体的导热系数⑥气体的导数系数随温度的升高而增大,在通常压力下,导热系数与压力变化的关系很小,故工程计算中可不考虑压力的影响7. 气体的导热系数值随温度的变化趋势为。

①T升高,入增大②T升高,入减小③T升高,入可能增大或减小④T变化,入不变8. 空气、水、金属固体的导热系数分别为入l、入2、入3,其大小顺序。

①入l >入2>入3 ②入l <入2<入3 ③入2>入3>入l ④入2<入3<入l9. 水银、水、软木的导热系数分别为入l、入2、入3其大小顺序为。

①入l>入2>入3 ②入l<入2<入3 ③入l>入3>入2 ④入3>入l>入210. 下列比较铜、铁、熔化的铁水三种物质导热系数的大小论断中正确的是。

传热过程计算

传热过程计算

dQ K0 (T t)dA0
Km (T t)dAm
Ki (T t)dAi
如无特别说明,手 册中的K指Ko
K0 dAi di Ki dA0 d0
K0 dAm dm
Km dA0 d0
4
1.3 总传热系数(Overall Heat-transfer Coefficient)
一、总传热系数的计算 间壁传热包括三个步骤:
2
例3-7
结论: 其他条件一定时,逆流Δtm并流大,可节省传热面积。 若有一方恒温,不必考虑流动方向
11
1.4 总传热速率方程与传热平均温差
2. 错流和折流时的平均温差—Underwood-Bowman图算法
tm t tm
tm — 按逆流计算的平均温差
t — 温差校正系数 t f (R、P)
P t2 t1 T1 t1
R T1 T2 t2 t1
通常在换热器的设计中规定,t值不应小于0.8,
否则应考虑增加壳方程数,或将多台换热器串联。
12
1.4 总传热速率方程与传热平均温差
单壳程
13
1.4 总传热速率方程与传热平均温差
双壳程
14
1.5 传热计算应用举例
设计型:根据工艺要求的传热量,确定传热面积。 操作型:判断某一换热器能否满足生产要求,或预测
16
1.5 传热计算应用举例
2.在新工况下
W1C p1(120 T2 ') W2C p2 (t2 '20)
t2 '20 W1Cp1 0.8(a) 120 T2 ' W2Cp2
Q' W1C p1(120 T2 ') 2KAtm '
120 T2 ' KA 10 2tm ' W1C p1 11

化工原理第五章传热过程计算与换热器

化工原理第五章传热过程计算与换热器

一.恒温差传热
T
t
tm T t
t
二.变温差传热
T
t1 0
T1
t1 浙江大学0本科生课程
过程工程原理
t
并流 t
0
T1 t2
t
A0 T1
T2 t2 t2
t
逆流 t
A0 第五章 传热过程计算与换热器
A T2
A T2 t1
A
13/25
§5.2.4 tm的计算
T1 t1
以冷、热流体均无相变、逆流流动为例:
t
T
11/2t5
1 1 b 1
T
KA 1 A1 Am 2 A2
Tw tw
考虑到实际传热时间壁两侧还有污垢热
阻,则上式变为:
t
1 1
KA 1 A1
Ra1
b
Am
Ra2
1
2 A2
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
12/25
§5.2.4 tm的计算
Q KAtm
T1
T
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
25/25
幻灯片2目录
习题课
浙江大学本科生课程 化工原理
第五章 传热过程计算与换热器
26/14
设 计 型
习题课 操作型 t1
LMTD法:
对数平均温差法
Q Ktm A
(1) T1
T2
Q mhc ph T1 T2 (2)
Q mc c pc t2 t1
浙江大学本科生课程
过程工程原理
第五章 传热过程计算与换热器
14/25
§5.2.4 tm的计算

化工原理.传热过程的计算

化工原理.传热过程的计算

管内对流:
dQ2 b dAm (Tw tw )
dQ3 2dA2(tw-t)
对于稳态传热 dQ dQ1 dQ2 dQ3
总推动 力
dQ T Tw Tw tw tw t
T t
1
b
1
1b 1
1dA1 dAm 2dA2 1dA1 dAm 2dA2
总热阻
dQ T t 1
KdA
第五节 传热过程的计算
Q KAtm
Q — 传热速率,W K — 总传热系数,W /(m20C) A — 传热面积,m2 tm — 两流体间的平均温度差,0 C
一、热量衡算
t2 , h2
热流体 qm1, c p1
T1, H1
T2 , H 2
冷流体 qm2, cp2,t1, h1
无热损失:Q qm1H1 H 2 qm2 h2 h1
变形:
dQ dT
qm1 c p1=常数
dQ dt
qm2c p2=常数
d (T t) dT dt 常数 dQ dQ dQ
斜率=dt t1 t2
dQ
Q
由于dQ KtdA
d(t) t1 t2
KtdA
Q
分离变量并积分:
Q KA t1 t2 ln t1 t2
tm
t1 t2 ln t1
t2
讨论:(1)也适用于并流 (2)较大温差记为t1,较小温差记为t2 (3)当t1/t2<2,则可用算术平均值代替
tm (t1 t2 ) / 2
(4)当t1=t2,tm t1=t2
结论: (1) 就提高传热推动力而言,逆流优于并流。 当换热器的传热量Q及总传热系数K相同的条 件下,采用逆流操作,所需传热面积最小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5-2 套管换热器中的传热 过程
据牛顿冷却定律和傅立叶定律 内 侧
t t dQi h wh 1 i dAi
(5-2a)
间 壁
dQm
t wh t wc b dAm
外 侧
后页
dQo
t wc tc 1 o dAo
前页
(5-2b)
8
(5-2c)
返回 主题
西 安 交 大 化 工 原 理 电 子 课 件
h wh wc c
5.1 传热过程分析
前页
2
后页
返回 主题
西 安 交 大 化 工 原 理 电 子 课 件
5.2 传热过程的基本方程
• 5.2.1 热量衡算方程 • 5.2.2 传热速率方程
• 5.2.3 总传热系数和壁温的计算
前页
3
后页
返回 主题
西 安 交 • 热量衡算方程反映了冷、热流体在传热过程中温度变化 的相互关系。根据能量守恒原理,在传热过程中,若忽 大 略热损失,单位时间内热流体放出的热量等于冷流体所 化 吸收的热量。 工 图5-2为一稳态逆流操作的 原 套管式换热器,热流体走管 内,冷流体走环隙。 理 对于整个换热器,其热量 电 的衡算式为 子 Q mh ( H h1 H h 2 ) mc ( H c 2 H c1 ) 图5-2 套管换热器中的传热过程 课 式中 Q为整个换热器的传热速率,或称为换热器的热负荷,W;H表示单 件 位质量流体焓值,kJ/kg;下标1和2分别表示流体的进口和出口。
西 安 交 • 将看作常数,因而求得的局部传热系数K‘亦为常数,不 随管长变化,而作为全管长上的总传热系数K ,故式 大 (5-5)可改写为 化 1 1 Ao b Ao 1 工 K o i Ai Am o 原 选取不同的传热面积作为传热过程计算基准时,其总传热系数的数值不 理 同。因此,在指出总传热系数的同时,还必须注明传热面的计算基准。 电 如对应于Ai的总传热系数Ki 子 课 1 1 b Ai 1 Ai 件 K i i Am o Ao
西 安 交 大 化 工 原 理 电 子 课 件
第五章 传热过程计算与换热器
• • • • • • • 5.1 传热过程分析 5.2 传热过程的基本方程 5.3 传热过程的平均温差计算 5.4 传热效率和传热单元数 5.5 换热器计算的设计型和操作型问题 5.6 传热系数变化的传热过程计算 5.7 换热器
5.2.2 传热速率方程
Q Kt A
前页
7
后页
主题
西 安 交 大 化 工 原 理 电 子 课 件
5.2.3 总传热系数与壁温计算
• 1.总传热系数的计算
如图5-2所示,设两流体通过间壁进行 换热。在换热器中任取一微元段dl,间 壁内、外侧的传热面积分别为dAi和dAo。 壁面的导热系数为l,壁厚为b。内、外 侧流体的温度分别为th和tc,对流传热 系数分别为ai和ao。间壁内侧、外侧的 温度分别为twh和twc。
(5-4)
式中Q为换热器总传热面积上的传热速率,W;为传热若以间壁外侧面为传热面积计算基准, 则其局部传热系数为 1 1 b 1 1 1 dAo b dAo 1 (5-5) dAo i dAi dAm o dAo 或 K o Ko i dAi dAm o 返回 前页 后页 9 主题
5.2.3 总传热系数与壁温计算
• 在稳态条件下
dQi dQm dQo dQ (5-3)
利用式(5-2)和(5-3),可得
dQ th twh twh twc twc tc t h tc t t h c 1 b 1 1 b 1 R i dAi dAm o dAo i dAi dAm o dAo
热量,W。
前页
5
5.2.1 热量衡算方程
后页
返回 主题
西 安 交 • 如前图5-2所示,在换热器中,任取一微元段dl, 对应于间壁的微元传热面积dAo,热流体对冷 大 流体传递热量的传热速率可表示为 化 工 t h tc dQ K (th tc )dAo 原 (5-1) 1 理 K dAo ——微分传热速率方程 电 子 式中K'表示局部传热系数,W/(m2· ℃);th、tc分 别为热流体和冷流体的局部平均温度,℃。 课 件
前页
4
5.2.1 热量衡算方程
后页
返回 主题
西 安 交 • 对于换热器的一个微元段,传热面积为dA,冷热流体 之间的热量传递满足 大 化 dQ mh dHh mc dHc 工 式中 m为冷热流体质量流率,kg/s;dH表示单位质量流体焓值增 原 量,kJ/kg;dQ为微元传热面积dA上的传热速率,W。下标h和c分 别表示热流体和冷流体。 理 电 如果在换热器中存在热损失,则在换热器中的传热速率为 mc ( H c 2 H c1 ) Qc Q mh ( H h1 H h 2 ) Qh 子 课 式中Q‘h为热流体对环境的散热量,W;Q’C为冷流体对环境的散 件
前页
1
后页
返回 主题
西 安 交 • 如图5-1所示,热流体通过间壁与冷流体进行 热量交换的传热过程分为三步进行: 大 化 t (1)热流体以对流传热方式将热 工 量传给固体壁面; Q 原 (2)热量以热传导方式由间壁的 Q t 热侧面传到冷侧面; 理 热流体 冷流体 t 电 (3)冷流体以对流传热方式将间 t 子 壁传来的热量带走。 对流 对流 课 热传导 图5-1中还示出了沿热量传递方向从 件 热流体到冷流体的温度分布情况。 图5-1 流体通过间壁的热量交换
前页
6
5.2.2 传热速率方程
后页
返回 主题
西 安 交 • 对于整个换热器,传热速率方程可写为 大 (5-1a) 化 m 式中K表示总平均传热系数,简称总传热系数或传 工 2· 热系数, W/ ( m ℃);A为换热器的总传热面积; 原 tm表示冷热流体的平均传热温差,℃。 理 电 • 由传热热阻的概念,传热速率方程还可以写为 tm tm 子 Q 1 课 R 件 KA 式中R=1/KA为换热器的总传热热阻,℃/W。 返回
相关文档
最新文档