三角形性质及概念重点考点归纳
专题16 全等三角形的核心知识点精讲(讲义)-备战2024年中考数学一轮复习考点帮

专题16 全等三角形的核心知识点精讲1.熟悉全等三角形常考5种模型2.掌握全等三角形性质,并运用全等三角形性质解答。
考点1:全等三角形的概念及性质考点2:全等三角形的判定模型一:平移型模型分析:此模型特征是有一组边共线或部分重合,另两组边分别平行,常要在移动的方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.模型示例概念两个能完全重合的三角形叫做全等三角形.性质1.两全等三角形的对应边相等,对应角相等.2.全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.3.全等三角形的周长、面积相等.模型二:轴对称模型模型分析:所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意隐含条件,即公共边或公共角相等.模型三:旋转型模型解读:将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形.旋转后的图形与原图形存在两种情况:①无重叠:两个三角形有公共顶点,无重叠部分,一般有一对隐含的等角②有重叠:两个三角形含有一部分公共角,运用角的和差可得到等角.模型四:一线三垂直型模型解读:一线:经过直角顶点的直线;三垂直:直角两边互相垂直,过直角的两边向直线作垂直,利用“同角的余角相等”转化找等角【题型1:平移型】【典例1】(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.1.(2022•淮安)已知:如图,点A、D、C、F在一条直线上,且AD=CF,AB=DE,∠BAC=∠EDF.求证:∠B=∠E.2.(2022•柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=D F,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【题型2:对称型】【典例2】(2023•福建)如图,OA=OC,OB=OD,∠AOD=∠COB.求证:AB=CD.1.(2023•长沙)如图,AB=AC,CD⊥AB,BE⊥AC,垂足分别为D,E.(1)求证:△ABE≌△ACD;(2)若AE=6,CD=8,求BD的长.2.(2022•西藏)如图,已知AD平分∠BAC,AB=AC.求证:△ABD≌△ACD.【题型3:旋转型】【典例3】(2023•大连)如图,AC=AE,BC=DE,BC的延长线与DE相交于点F,∠ACF+∠AED=180°.求证:AB=AD.1.(2023•乐山)如图,已知AB与CD相交于点O,AC∥BD,AO=BO,求证:AC=BD.2.(2023•泸州)如图,点B在线段AC上,BD∥CE,AB=EC,DB=BC.求证:AD=EB.3.(2023•西藏)如图,已知AB=DE,AC=DC,CE=CB.求证:∠1=∠2.【题型4:一线三等角】【典例4】(2023•陕西)如图,在△ABC中,∠B=90°,作CD⊥AC,且使CD=AC,作DE⊥BC,交BC 的延长线于点E.求证:CE=AB.1.(2021•南充)如图,∠BAC=90°,AD是∠BAC内部一条射线,若AB=AC,BE⊥AD于点E,CF⊥A D于点F.求证:AF=BE.一.选择题(共8小题)1.下列各组图案中,不是全等形的是()A.B.C.D.2.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°3.如图,△ABC≌△DEC,点E在AB边上,∠B=70°,则∠ACD的度数为()A.30°B.40°C.45°D.50°4.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10B.6C.4D.25.如图,点B、F、C、E在一条直线上,∠A=∠D=90°,AB=DE,添加下列选项中的条件,能用HL 判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠ACB=∠DFE D.BC=EF6.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE7.如图,BE⊥AC于点E,CF⊥AB于点F,若BE=CF,则Rt△BCF≌Rt△CBE的理由是()A.AAS B.HL C.SAS D.ASA8.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC =()A.28°B.59°C.60°D.62°二.填空题(共4小题)9.如图是两个全等三角形,图中的字母表示三角形的边长,那么∠1的度数为.10.已知:如图,△ABC和△BAD中,∠C=∠D=90°,再添加一个条件就可以判断△ABC ≌△BAD.11.请仔细观察用直尺和圆规作一个角∠A'O'B'等于已知角∠AOB的示意图.请你根据所学的三角形全等的有关知识,说明画出∠A'O'B'=∠AOB的依据是.12.如图,若AC平分∠BCD,∠B+∠D=180°,AE⊥BC于点E,BC=13cm,CD=7cm,则BE=.三.解答题(共4小题)13.如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠D=45°,求∠EGC的大小.14.如图,∠ACB=90°,∠BAC=45°,AD⊥CE,BE⊥CE,垂足分别是D,E,BE=0.8,DE=1.7,求AD的长.15.如图,点A,B,C在一条直线上,△ABD、△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q.(1)求证:△ABE≌△DBC;(2)求∠DMA的度数.16.如图,AC=DC,E为AB上一点,EC=BC,并且∠1=∠2.(1)求证:△ABC≌△DEC;(2)若∠B=75°,求∠3的度数.一.选择题(共7小题)1.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤S△PBA:S△PCA=AB:AC,其中正确的个数是()个.A.5B.4C.3D.22.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CE F.其中正确的是()A.①③B.②③④C.①③④D.①②③④3.如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠EAD=90°,BD,CE交于点F,连接A F,下列结论:①BD=CE②∠AEF=∠ADF③BD⊥CE④AF平分∠CAD⑤∠AFE=45°其中结论正确的序号是()A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤4.如图,在Rt△AEB和Rt△AFC中,∠E=∠F=90°,BE=CF,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠EAC=∠F AB.有下列结论:①∠B=∠C;②ED=FD;③AC=BE;④△ACN≌△ABM.其中正确结论的个数是()A.1个B.2个C.3个D.4个5.在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+2S2+2S3+S4=()A.6B.8C.10D.126.如图,△ABC和△CDE都是等边三角形,B,C,D三点在一条直线上,AD与BE相交于点P,AC、B E相交于点M,AD、CE相交于点N,则下列四个结论:①AD=BE;②∠BMC=∠ANC;③∠APM=60°;④CP平分∠MCN.其中,一定正确的结论的个数是()A.1B.2C.3D.47.如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB 交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③MD平分∠E DF;④若AE=3,则AB+AC=6.其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题)8.如图,以△ABC的每一条边为边,在边AB的同侧作三个正三角形△ABD、△BCE和△ACF.已知这三个正三角形构成的图形中,甲、乙阴影部分的面积和等于丙、丁阴影部分的面积和.则∠FCE=°.9.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣8,3),点B的坐标是.10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,则下列结论中,正确的是(填序号).①∠AED=90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD.11.如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②△OPC是等边三角形;③A C=AO+AP;④S△ABC=S四边形AOCP,其中正确的是.(填序号)12.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,点D是AB的中点,E、F在射线AC 与射线CB上运动,且满足AE=CF,则在运动过程中△DEF面积的最小值为.三.解答题(共4小题)13.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°,求证:AD=BE;(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.14.如图所示,等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:AP=AQ;(2)试判断△APQ是什么形状的三角形?并说明你的理由.15.(1)【模型启迪】如图1,在△ABC中,D为BC边的中点,连接AD并延长至点H,使DH=AD,连接BH,则AC与BH的数量关系为,位置关系为.(2)【模型探索】如图2,在△ABC中,D为BC边的中点,连接AD,E为AC边上一点,连接BE交A D于点F,且BF=AC.求证:AE=EF.16.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.1.(2023•甘孜州)如图,AB与CD相交于点O,AC∥BD,只添加一个条件,能判定△AOC≌△BOD的是()A.∠A=∠D B.AO=BO C.AC=BO D.AB=CD2.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB <BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③3.(2022•黑龙江)如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,请你添加一个条件,使△AOB≌△COD.4.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.5.(2023•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC上一点,连接AD.过点B 作BE⊥AD于点E,过点C作CF⊥AD交AD的延长线于点F.若BE=4,CF=1,则EF的长度为3.6.(2023•南通)如图,四边形ABCD的两条对角线AC,BD互相垂直,AC=4,BD=6,则AD+BC的最小值是.7.(2023•淮安)已知:如图,点D为线段BC上一点,BD=AC,∠E=∠ABC,DE∥AC.求证:DE=B C.8.(2023•吉林)如图,点C在线段BD上,△ABC和△DEC中,∠A=∠D,AB=DE,∠B=∠E.求证:AC=DC.9.(2022•兰州)如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠B AD=∠EAC,∠C=50°,求∠D的大小.10.(2022•安顺)如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt△ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.。
人教版八年级上数学第十一章-三角形-知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边.三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部.但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部.④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点.(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角.—-常用来比较角的大小5.多边形的内角与外角多边形的内角和与外角和(识记)4题图B DC (1)多边形的内角和:(n —2)180° (2)多边形的外角和:360°引申:(1)从n 边形的一个顶点出发能作(n —3)条对角线;(2)多边形有2)3(-n n 条对角线。
三角形所有知识点总结

三角形所有知识点总结一、三角形的定义和性质1.1 三角形的定义三角形是由三条线段相互连接而成的闭合图形。
1.2 三角形的分类根据边长和角度的关系,三角形可以分为以下几类: - 等边三角形:三条边的长度相等。
- 等腰三角形:两条边的长度相等。
- 直角三角形:其中一个角是直角(90度)。
- 钝角三角形:其中一个角大于90度。
- 锐角三角形:三个角都小于90度。
1.3 三角形的性质三角形有许多重要性质需要了解: - 三角形的内角和为180度。
- 三角形任意两边之和大于第三边。
- 等边三角形的三个角都是60度。
- 等腰直角三角形的两个锐角都是45度。
二、三角形的重要定理2.1 三角形的重心定理重心定理指出,三角形的三条中线交于一点,该点被称为重心。
重心到三角形三个顶点的距离满足以下关系:重心到某个顶点的距离等于其他两个顶点到该顶点距离的和的一半。
2.2 三角形的垂心定理垂心定理指出,三角形的三条高交于一点,该点被称为垂心。
垂心到三角形三个顶点的距离满足以下关系:垂心到某个顶点的距离等于其他两个顶点到该顶点距离的和的一半。
2.3 三角形的外心定理外心定理指出,三角形的三条垂直平分线交于一点,该点被称为外心。
外心到三角形三个顶点的距离相等。
2.4 三角形的角平分线定理角平分线定理指出,三角形的三条角平分线交于一点,该点被称为角平分点。
角平分点到三角形的三个顶点的距离满足以下关系:角平分点到某个顶点的距离与该边对应边的长度之比等于另外两个顶点到对边的距离与对边长度的比值。
三、三角形的边长计算公式3.1 三角形的周长三角形的周长即三边之和,用公式表示为:周长 = 边1长 + 边2长 + 边3长。
3.2 三角形的面积根据海伦公式,可以计算三角形的面积。
海伦公式如下:设三角形的三边长分别为a、b、c,则三角形的面积S可通过以下公式计算:S = √(s * (s-a) * (s-b) * (s-c)),其中s=(a+b+c)/2。
决战中考之三角形专项突破专题01 三角形的基本概念和性质(老师版)

专题01 三角形的基本概念和性质知识对接考点一、三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任意一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.专项训练一、单选题1.(2021·福建九年级其他模拟)如图是由18根完全相同的火柴棒摆成的图形,如果拿掉其中的3根,剩下的图形中恰好有7个三角形,那么拿掉的3根火柴棒可能是()A.GD,EI,MH B.GF,EF,MF C.DE,GH,MI D.AD,AG,GD 【答案】A【分析】根据各选项画出相应图形,再数三角形的个数即可得.【详解】A、拿掉GD,EI,MH后,剩下的图形如下:图形中恰好有7个三角形,此项符合题意;B、拿掉GF,EF,MF后,剩下的图形如下:图形中有4个三角形,此项不符题意;C、拿掉DE,GH,MI后,剩下的图形如下:图形中有6个三角形,此项不符题意; D 、拿掉AD ,AG ,GD 后,剩下的图形如下:图形中有9个三角形,此项不符题意; 故选:A . 【点睛】本题考查了三角形的概念,正确画出剩下的图形是解题关键.2.(2021·黑龙江九年级三模)有长度分别为1,2,3cm cm cm 的小木棒若干,从中任取三根首尾顺次相接组成三角形,则能组成形状不同的三角形( ) A .4种 B .5种C .6种D .7种【答案】B 【分析】根据三角形三边的关系任意两边之和大于第三边与任意两边之差小于第三边进行分类讨论即可. 【详解】 解:∵1+2=3,∵三边长只能组成等边三角形或者等腰三角形,∵长度分别为1,1,1cm cm cm ,2,2,2cm cm cm ,3,3,3m cm cm 组成等边三角形,边长不等,但形状相同,则为一种;∵当两边长相等时有:2,2,1cm cm cm ,3,3,1cm cm cm ,2,2,3cm cm cm ,3,3,2cm cm cm ,4种形状不同的三角形; 因此共有5种,故选:B.【点睛】本题考查了三角形的三边关系,关键在于根据任意两边之和大于第三边与任意两边之差小于第三边进行分析.3.(2021·陕西西安·交大附中分校九年级其他模拟)锐角∵ABC中,∵B=45°,BC则AC的长可以是()A.1B C D【答案】D【分析】作CD∵AB于D,先利用等腰直角三角形的性质和三角函数求出BD=CD=1,然后利用勾股定理进行逐一判断四个选项是否满足题意即可.【详解】解:作CD∵AB于D,如图所示:∵∵B=45°,∵∵BCD是等腰直角三角形,∵BD=CD=sin=1BC B,∵BCD=45°,当AC=1时,点D与A重合,∵ABC是直角三角形,选项A不符合题意;当AC1AD CD==,则∵ACD是等腰直角三角形,∵ACD=45°,∵∵ACB=90°,∵ABC是直角三角形,选项B不符合题意;当AC AC<CD,∵∵ACD>∵A,则∵ABC是钝角三角形,选项C不符合题意;当AC时,12AD CD ==<∵∵ACD<∵A,则∵ABC是锐角三角形;选项D符合题意,故选D.【点睛】本题主要考查了等腰直角三角形的性质,解直角三角形,勾股定理,三角形角与边的关系,解题的关键在于能够熟练掌握相关知识进行求解.4.(2021·连云港市新海实验中学九年级二模)如图,在Rt ABC 中,∵ACB =90°,BC =2,∵BAC =30°,将ABC 绕顶点C 逆时针旋转得到∵A 'B 'C ', M 是BC 的中点,P 是A 'B '的中点, 连接PM ,则线段PM 的最大值是( )A .4B .2C .3D.【答案】C 【分析】连接PC ,分别求出PC ,CM 的长,然后根据PM MC PC ≤+即可得到答案. 【详解】解:如图所示,连接PC , ∵∵ACB =90°,BC =2,∵BAC =30°, ∵AB =2BC =4,由旋转的性质可知:=90A CB ACB ''=∠∠,4A B AB ''==, ∵P 、M 分别是A B ''、BC 的中点, ∵122PC A B ''==,112CM BC ==,∵3PM MC PC ≤+=,∵PM 的最大值为3,且此时P 、C 、M 三点共线, 故选C .【点睛】本题主要考查了旋转的性质,直角三角形斜边的中线,三角形三边的关系,解题的关键在于能够熟练掌握相关知识进行求解.5.(2021·福建省同安第一中学)下列长度的三条线段能组成三角形的是( ) A .3,4,8 B .5,6,11C .4,4,8D .8,8,8【答案】D 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析. 【详解】解:A 、3+4<8,不能构成三角形; B 、5+6=11,不能构成三角形; C 、4+4=8,不能构成三角形; D 、8+8>8,能构成三角形. 故选:D . 【点睛】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.6.(2021·福建九年级其他模拟)若某三角形的两边长分别为5和9,则该三角形第三边的长可能是( ) A .4 B .5C .14D .15【答案】B 【分析】根据三角形的三边关系即可得. 【详解】设该三角形第三边的长为a ,由三角形的三边关系得:9559a -<<+,即414a <<, 观察四个选项可知,只有选项B 符合, 故选:B .【点睛】本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解题关键. 本号资料皆来源于微信公众号:数学第六*感7.(2021·辽宁)如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,则S ∵ABC 的面积为( )A .52B .3C .72D .4【答案】C 【分析】利用割补法求∵ABC 面积等于大正方形面积-三个三角形面积即可. 【详解】解:在网格中添加字母如图, S ∵AEB =1112122AE BE ⋅=⨯⨯=, S ∵AFC =1123322AF FC ⋅=⨯⨯=, S ∵BGC =11313222BG GC ⋅=⨯⨯=,S 正方形=9EF FC ⋅=,∵S ∵ABC = S 正方形- S ∵AEB - S ∵AFC - S ∵BGC =9-1-3-3722=. 故选择C .【点睛】本题考查网格三角形面积,掌握用割补法求网格三角形面积的方法是解题关键. 8.(2021·福建宁德市·)下列长度的三条线段,能组成三角形的是( )A .2,3,4B .2,3,5C .2,2,4D .2,2,5【答案】A 【分析】根据三角形的三边关系进行分析判断. 【详解】解:根据三角形任意两边的和大于第三边,得 A 中,3+2>4,能够组成三角形; 符合题意 B 中,2+3=5,不能组成三角形;不符合题意 C 中,2+2=4,不能组成三角形;不符合题意 D 中,2+2<5,不能组成三角形.不符合题意 故选:A . 【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.9.(2021·陕西咸阳市·九年级一模)如图,CM 是ABC ∆的中线,BCM 的周长比ACM ∆的周长大3cm ,8cm BC =,则 AC 的长为( )A .3cmB .4cmC .5cmD .6cm【答案】C 【分析】根据三角形中线的特点进行解答即可. 【详解】解:∵CM 为∵ABC 的AB 边上的中线, ∵AM =BM ,∵∵BCM 的周长比∵ACM 的周长大3cm , ∵(BC +BM +CM )-(AC +AM +CM )=3cm , ∵BC -AC =3cm , ∵BC =8cm , ∵AC =5cm , 故选:C .【点睛】本题考查的是三角形的中线,熟知三角形一边的中点与此边所对顶点的连线叫做三角形的中线是此题的关键. 本号资*料皆来源于微信公众号:数学第六感10.(2021·福建省厦门第六中学九年级三模)如图,在ABC 中,BC 边上的高是( )A .CDB .AEC .AFD .AH【答案】C 【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,即可得出结论. 【详解】由图可知,过点A 作BC 的垂线段AF , 则ABC 中,BC 边上的高是AF , 故选:C . 【点睛】本题主要考查了三角形高的定义,熟练掌握定义是解题的关键. 二、填空题11.(2021·内蒙古包头市·)在ABC 中,,A B ∠∠都是锐角,且满足2sin cos 0A B ⎫+=⎪⎪⎝⎭,则三角形的形状是__. 【答案】钝角三角形 【分析】根据题意非负数之和为零,只有一种情况,即零加零等于零;利用特殊角锐角三角函数值分别求出,A B ∠∠,再根据三角形内角和定理求得C ∠,判断三角形的形状即可. 【详解】2sin 0cos 0A B ⎫≥≥⎪⎪⎝⎭∴sin0A=cos0B=45,30A B∴∠=︒∠=︒1804530105C∴∠=︒-︒-︒=︒∴ABC是钝角三角形.故答案为:钝角三角形.【点睛】本题考查了特殊角的锐角三角函数值,三角形的分类,绝对值的非负性,实数平方的非负性,熟练特殊角的锐角三角函数值是解题的关键.12.(2021·浙江九年级专题练习)现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.【答案】2 5【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.【详解】五根木棒,任意取三根共有10种情况:3、5、83、5、103、5、133、8、103、8、133、10、135、10、135、8、105、8、138、10、13其中能组成三角形的有:∵3、8、10,由于8-3<10<8+3,所以能构成三角形;∵5、10、13,由于10-5<13<10+5,所以能构成三角形;∵5、8、10,由于8-5<10<8+5,所以能构成三角形;∵8、10、13,由于10-8<13<10+8,所以能构成三角形;所以有4种方案符合要求,故能构成三角形的概率是P=410=25,故答案为:2 5 .【点睛】此题考查三角形的三边关系,列举法求事件的概率,列举法求概率的关键是在列举所有情况时考虑要全面,不能重复也不能遗漏.13.(2021·扬州市梅岭中学)判断命题“若ABC的边a、b、c满足22a b ac bc-=-,则ABC 是等腰三角形”的真假,答:_________.(选填“真命题”或“假命题”或“无法判断”)【答案】真命题【分析】根据22a b ac bc-=-变形即可求得,,a b c的关系,再进行判断即可【详解】22a b ac bc-=-()()()a b a b c a b∴+-=-a b c+≠a b∴-=a b∴=∴ABC是等腰三角形故答案为:真命题【点睛】本题考查了命题,因式分解,三角形三边关系,等腰三角形的定义,因式分解后根据三角形三边关系判断是解题的关键.14.(2021·内蒙古包头市·)如图,在边长为4的正方形ABCD中,点E是BC的中点,点F 在CD上,且CF=3DF,AE,BF相交于点G ,则AGF的面积是________.【答案】5611.【分析】延长AG交DC延长线于M,过G作GH∵CD,交AB于N,先证明∵ABE∵∵MCE,由CF=3DF,可求DF =1,CF =3,再证∵ABG ∵∵MFG ,则利用相似比可计算出GN ,再利用两三角形面积差计算S ∵DEG 即可. 【详解】解:延长AG 交DC 延长线于M ,过G 作GH ∵CD ,交AB 于N ,如图, ∵点E 为BC 中点, ∵BE =CE ,在∵ABE 和∵MCE 中, ABE MCE BE CEAEB MEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵∵ABE ∵∵MCE (ASA ), ∵AB =MC =4,∵CF =3DF ,CF +DF =4,∵DF =1,CF =3,FM =FC +CM =3+4=7, ∵AB∥MF ,∵∵ABG =∵MFG ,∵AGB =∵MGF , ∵∵ABG ∵∵MFG , ∵47AB GN MF GH ==, ∵4GN GH +=, ∵1628,1111GN GH ==, S ∵AFG =S ∵AFB -S ∵AGB =1111165644422221111AB HN AB GN ⋅-⋅=⨯⨯-⨯⨯=, 故答案为5611.【点睛】本题考查了正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,掌握正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,熟练运用相似比计算线段的长是解题关键.15.(2021·四川省宜宾市第二中学校九年级三模)如图,在Rt∵ABC中,AB=AC,D、E 是斜边BC上两点,且∵DAE=45°,将∵ADC绕点A顺时针旋转90°后,得到∵AFB,连接EF,下列结论:∵∵AED∵∵AEF;∵AE ADBE CD=;∵∵ABC的面积等于四边形AFBD的面积;∵BE2+DC2=DE2;∵BE=EF﹣DC;其中正确的选项是_____________(填序号)【答案】∵∵∵【分析】∵根据旋转的性质知∵CAD=∵BAF,AD=AF,因为∵BAC=90°,∵DAE=45°,所以∵CAD+∵BAE=45°,可得∵EAF=45°=∵DAE,由此即可证明∵AEF∵∵AED;∵当∵ABE∵∵ACD时,该比例式成立;∵根据旋转的性质,∵ADC∵∵ABF,进而得出∵ABC的面积等于四边形AFBD的面积;∵据∵知BF=CD,EF=DE,∵FBE=90°,根据勾股定理判断.∵根据∵知道∵AEF∵∵AED,得CD=BF,DE=EF;由此即可确定该说法是否正确.【详解】解:∵根据旋转的性质知∵CAD=∵BAF,AD=AF.本号资料皆来源于微@信公众号:数学第*六感∵∵BAC=90°,∵DAE=45°,∵∵CAD+∵BAE=45°,∵∵EAF=45°,∵∵AED∵∵AEF;故本选项正确;∵∵AB=AC,∵∵ABE=∵ACD;∵当∵BAE=∵CAD时,∵ABE∵∵ACD,∵AE AD BE CD=;当∵BAE≠∵CAD时,∵ABE与∵ACD不相似,即AE AD BE CD≠;∵此比例式不一定成立,故本选项错误; ∵根据旋转的性质知∵ADC ∵∵AFB ,∵S ∵ABC =S ∵ABD +S ∵ABF =S 四边形AFBD ,即三角形ABC 的面积等于四边形AFBD 的面积,故本选项正确;∵∵∵FBE =45°+45°=90°, ∵BE 2+BF 2=EF 2.∵∵ADC 绕点A 顺时针旋转90°后,得到∵AFB , ∵∵AFB ∵∵ADC , ∵BF =CD . 又∵EF =DE ,∵BE 2+DC 2=DE 2,故本选项正确;∵根据∵知道∵AEF ∵∵AED ,得CD =BF ,DE =EF ,∵BE +DC =BE +BF >DE =EF ,即BE +DC >FE ,故本选项错误.综上所述:正确的说法是∵∵∵. 本@号资料皆来源于微信公众号:数学@第六#感 故答案为:∵∵∵.【点睛】本题考查了图形的旋转变换以及全等三角形的判定等知识,三角形三边的关系,相似三角形的性质与判定,解题时注意旋转前后对应的相等关系. 三、解答题16.(2021·浙江)如图,在84⨯的正方形网格中,按ABC 的形状要求,分别找出格点C ,且使5BC =,并且直接写出对应三角形的面积.【答案】见解析;10S =;252S =;12S =【分析】根据全等三角形的性质,勾股定理,角的分类去求解即可【详解】解:钝角三角形时,如图,∵BC∵BD,BC=5,∵∵ABC是钝角三角形,根据平行线间的距离处处相等,得BC边上高为BD=4,∵11=45=10 22S BC BD=⨯⨯⨯;直角三角形时,如图,取格点F使得BF=4,FC=3,根据勾股定理,得BC,∵AE=BF=4,EB=FC=3,∵AEB=∵BFC=90°,∵∵AEB∵∵BFC,∵∵EAB=∵FBC,∵∵EAB+∵EBA=90°,∵∵FBC+∵EBA=90°,∵∵ABC =90°,∵∵ABC是直角三角形,根据勾股定理,得AB,∵11=5522S BA BC=⨯⨯⨯252=;锐角三角形时,如图,取格点M使得BM=3,CM=4,根据勾股定理,得BC,根据直角三角形时的作图,知道∵ABN=90°,本号资料皆来源于微信公众号:#数学第六感∵∵ABC<∵ABN,∵∵ABC<90°∵AB=BC,∵∵ABC是等腰三角形,∵∵A=∵C<90°,∵∵ABC是锐角三角形,∵1462S=⨯⨯=12;【点睛】本题考查了网格上的作图,等腰三角形的性质,勾股定理,三角形全等的性质和判定,平行线间的距离处处相等,根据题意,运用所学构造符合题意的格点线段是解题的关键.17.(2021·四川省宜宾市第二中学校九年级一模)如图,分别过点C、B作ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.(1)求证:BF CE=;(2)若ACE的面积为4,CED的面积为3,求∵ABF的面积.本号资料#皆#来源于微信公众号:数学第*六感【答案】(1)见解析;(2)10【分析】(1)根据垂直,中线的性质,证明∵CDE∵∵BDF即可;(2)根据三角形全等,确定∵BDF和∵CDE的面积相等,根据中线的性质,得∵ABD和∵ACD 的面积相等,计算即可.【详解】(1)证明:∵AD 是BC 边上的中线, ∵BD =CD ,∵CE ∵AF ,BF ∵AF , ∵∵CED =∵F =90°, ∵∵CDE =∵BDF , ∵CED F CDE BDF DC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵CDE ∵∵BDF , ∵CE =BF ;(2)解:∵AD 是BC 边上的中线, ∵BD =CD ,∴ΔΔABD ACD S S =,Δ4ACE S =,3CEDS=∴ΔΔACD ACE CEDS S S =+43=+7=∴7ABDS=由(1)已证:∵CDE ∵∵BDF ,∴ΔΔ3BDF CDE S S == ∴ΔΔΔABF ABD BDF S S S =+73=+10=. 【点睛】本题考查了三角形中线的性质,三角形的全等的判定和性质,三角形的面积,熟练掌握三角形全等的判定方法,灵活运用三角形中线与三角形面积的关系是解题的关键.18.(2021·吉林九年级其他模拟)图∵、图∵、图∵均是33⨯的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画ABC.要求:(1)在图∵中画一个钝角三角形,在图∵中画一个直角三角形,在图∵中画一个锐角三角形;(2)三个图中所画的三角形的面积均不相等;(3)点C在格点上.【答案】见详解(答案不唯一)【分析】因为点C在格点上,故可将直尺的一角与线段AB点A重合,直尺边长所在直线经过33正方形网格左上角第一个格点,继而以点A为旋转中心,逆时针旋转直尺,当直尺边长所在直线与正方形格点相交时,确定点C的可能位置,顺次连接A、B、C三点,按照题目要求排除不符合条件的C点,作图完毕后可根据三角形面积公式判断其面积是否相等.【详解】经计算可得下图中:图∵面积为12;图∵面积为1;图∵面积为32,面积不等符合题目要求(2),且符合题目要求(1)以及要求(3).故本题答案如下:【点睛】本题考查三角形的分类及其作图,难度较低,按照题目要求作图即可.19.(2021·江苏九年级月考)如图,在Rt ∵ABC 中,∵C =90°,点D 是AB 的中点,AC <BC . (1)试用无刻度的直尺和圆规.........,在BC 上作一点E ,使得直线ED 平分ABC 的周长;(不要求写作法,但要保留作图痕迹).(2)在(1)的条件下,若DE 分Rt ∵ABC 面积为1﹕2两部分,请探究AC 与BC 的数量关系.【答案】(1)作图见解析;(2)BC=3AC 【分析】(1)在BC 上用圆规截取BF=AC ,然后再作FC 的垂直平分线,其与BC 的交点即为E 点,最后连接DE 即可.(2)连接DC ,由点D 是AB 的中点,则S ∵ADC =S ∵BCD ;设S ∵ADC =S ∵BCD =x ,S ∵DEC =y ,则有(x+y ):(x -y )=2:1,解得x=3y ,即E 为BC 的三等分点,即可说明BC=3EC;有EC=EF=BF=AC,即BC=3AC . 【详解】解:(1)如图:DE 即为所求;(2)连接DC ∵点D 是AB 的中点 ∵S ∵ADC =S ∵BCD设S ∵ADC =S ∵BCD =x ,S ∵DEC =y , ∵S ∵BDC :S 四边形CADE =1:2∵(S ∵BDC -S ∵DCE ):( S ∵ADC +S ∵DCE )=1:2, ∵2(x -y )=x+y ,即x=3y∵点E 为BC 的三等分点, 即BC=3EC ∵EC=EF=BF=AC ∵BC=3AC .【点睛】本题考查了尺规作图、三角形中线的性质、三角形n 等分点的性质等知识点,其中根据题意完成(1)是解答本题的关键.20.(2021·广东)若a,b,c 为∵ABC 的三边长 (1)化简:-+2+-||a b c a b c b a c -+---(2)若a,b ()220b -=,且c 是整数,求c 的值. 【答案】(1)2a ;(2)1<c<5. 【分析】(1)由a ,b ,c 为三角形ABC 的三边,利用三角形的两边之和大于第三边列出关系式,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果. (2)根据非负数的性质列式求出a 、b ,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求解即可. 【详解】(1)∵a ,b ,c 为∵ABC 的三边, ∵a+b>c ,即−a−b+c<0,a+c>b ,即a−b+c>0,b−a−c<0,则|−a−b+c|+2|a−b+c|−|b−a−c|=a+b−c+2(a−b+c)+b−a−c=a+b−c+2a−2b+2c+b−a−c=2a ; (2)由题意得,a−3=0,b−2=0, 解得a=3,b=2, ∵3−2=1,3+2=5, ∵1<c<5. 【点睛】此题考查二次根式的性质,绝对值,三角形三边关系的应用,解题关键在于利用两边之和大于第三边.21.(2021·河南省淮滨县第一中学九年级一模)先阅读下面的内容,再解决问题, 例题:若2222690m mn n n ++-+=,求m 和n 的值. 解:∵2222690m mn n n ++-+=∵2222690m mn n n n +++-+=∵22()(3)0m n n ++-= ∵0,30,m n n +=-=∵3, 3.m n =-=问题(1)若∵ABC 的三边长a b c 、、都是正整数,且满足22661830a b a b c +--++-=,请问∵ABC 是什么形状?说明理由.(2)若224212120x y xy y +-++=,求y x 的值.(3)已知24,6130a b ab c c -=+-+=,则a b c ++= .【答案】(1)∵ABC 是等边三角形,理由见解析;(2)14;(3)3 【分析】(1)先把a 2+b 2-6a -6b +18+|3-c |=0,配方得到(a -3)2+|3-c |=0,根据非负数的性质得到a =b =c =3,得出三角形的形状即可;(2)首先把x 2+4x 2-2xy +12y +12=0,配方得到(x -y )2+3(y +2)2=0,再根据非负数的性质得到x =-2,代入求得值即可;(3)首先根据a -b =8,ab +c 2-16c +80=0,应用因式分解的方法,判断出(a -4)2+(c -8)2=0,求出A 、B 、C 的值各是多少;然后把a 、b 、c 的值求和,求出a +b +c 的值是多少即可.【详解】解:(1)∵ABC 是等边三角形,理由如下:由题意得()()223330a b c -+-+-=∵3a b c ===∵∵ABC 是等边三角形.(2)由题意得()()22320x y y -++=∵2x y ==-. ∵14y x =. (3)∵24,6130a b ab c c -=+-+=,即a =b +4,(b +4)b +c 2 –6c +13=0,∵(b 2+4b +4 )+(c 2 –6c +9)=0,∵b +2=0,c –3=0,∵b = –2,c =3,a =2,∵a +b +c =3.【点睛】此题主要考查了因式分解的应用,要熟练掌握,解答此题的关键是要明确:用因式分解的方法将式子变形时,变形的可以是整个代数式,也可以是其中的一部分.此题还考查了三角形的三条边之间的关系,要熟练掌握,解答此题的关键是要明确:任意两边之和大于弟三边;任意两边之差小于第三边.22.(2021·江西九年级其他模拟)如图,在正方形网格中,ABC的顶点均在格点上,请仅用无刻度直尺完成以下作图.(保留作图痕迹)(1)在图1中,作ABC的高AM;(2)在图2中,作ABC的高AN.(提示:三角形的三条高所在的直线交于一点)【答案】(1)见解析;(2)见解析【分析】(1)格点ABC中AB=AC且垂直,以AB、AC为边作正方形,连接对角线AM即可得到BC的高AM;(2)在正方形网格中,m×n格的对角线与n×m格的对角线互相垂直,AB是1×4格的对角线,那么4×1格的对角线与之垂直,又需过点C,所以如图所示的CF∵AB交AB与点H,同理AC是4×3格的对角线,那么3×4格的对角线与之垂直,又需过点B,所以如图所示的BE∵AC交AC与点D,又三角形的三条高所在的直线交于一点,所以连接AG并延长交BC 与点N,即AN为所求.【详解】(1)如图1,∵格点ABC中AB=AC且垂直,∵以AB、AC为边作正方形,连接对角线AM即AM∵BC(2)如图2,∵AB是1×4格的对角线∵过点C 且是4×1格的对角线即为如图所示的CF ,∵CF ∵AB同理AC 是4×3格的对角线,∵过点B 且是3×4格的对角线即为如图所示的BE∵BE ∵AC∵三角形的三条高所在的直线交于一点∵连接AG 并延长交BC 与点N ,即AN 为所求.【点睛】本题主要考查了求作格点三角形的高线问题,主要方法有:构造特殊形状,如:正方形,菱形,利用对角线垂直的性质作高;正方形网格中,m ×n 格的对角线与n ×m 格的对角线互相垂直;三角形的三条高所在的直线交于一点,掌握以上的作图方法是解题的关键. 23.(2021·福建省福州咨询有限公司九年级其他模拟)如图,在ABC 中,按以下步骤作图:∵以点B 为圆心,任意长为半径作弧,分别交边AB ,BC 于点D ,E ;∵分别以点D ,E 为圆心,大于12DE 的相同长度为半径作弧,两弧交于点F ; ∵作射线BF 交AC 于点G .(1)根据上述步骤补全作图过程(要求:规作图,不写作法,保留作图痕迹); (2)如果8AB =,12BC =,那么ABG 的面积与CBG 的面积的比值是________.【答案】(1)见解析;(2)23【分析】 (1)根据尺规作图要求,按给定的步骤与作法画图即可;(2)根据角分线性质,两三角形的AB 与BC 边上的高相等,可得面积比为底的比即可.【详解】解:(1)根据步骤(1)得弧线交AB ,BC 于点D ,E ,根据步骤(2)得两弧交点F ,根据步骤(3)得射线BG ,根据作图的步骤与图形结合得BG 平分∵ABC ;如图所示,即为所求.(2)过点G 作GH ∵BC 于H ,GM ∵射线AB 于M ,∵BG 平分∵ABC ,∵GM =GH ,S ∵ABG =118422AB GM GM GM ⋅=⨯⨯=, S ∵BCG =1112622BC GH GH GH ⋅=⨯⨯=, S ∵ABG : S ∵BCG =4:64:62:3GM GH GH GH ==,故答案为:23. 【点睛】本题考查尺规作图,角平分线性质,三角形面积,掌握尺规作图步骤与要求,角平分线性质,三角形面积,利用角平分线性质得出两三角。
人教版七年级下数学第七章_三角形_知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
专题01 三角形(突破核心考点)【知识梳理+解题方法+专题过关】 (解析版)

专题01三角形(突破核心考点)【聚焦考点+题型导航】考点一三角形三边关系考点二三角形的稳定性考点三三角形中的高线、中线、角平分线考点四三角形的内角、外角考点五多边形的对角线、内角和【知识梳理+解题方法】一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.(3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.二、三角形的三边关系定理:三角形任意两边之和大于第三边.推论:三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.三、三角形的分类1.按角分类:ìïìííïîî直角三角形三角形锐角三角形斜三角形钝角三角形要点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:ìïìííïîî不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形要点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.四、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从不同的角度弄清这三条线段,列表如下:线段名称三角形的高三角形的中线三角形的角平分线文字语言从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.三角形中,连接一个顶点和它对边中点的线段.三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段.图形语言作图语言过点A 作AD ⊥BC 于点D .取BC 边的中点D ,连接AD .作∠BAC 的平分线AD ,交BC 于点D .标示图形符号语言1.AD是△ABC的高.2.AD是△ABC中BC边上的高.3.AD⊥BC于点D.4.∠ADC=90°,∠ADB=90°.(或∠ADC=∠ADB=90°)1.AD是△ABC的中线.2.AD是△ABC中BC边上的中线.3.BD=DC=12BC4.点D是BC边的中点.1.AD是△ABC的角平分线.2.AD平分∠BAC,交BC于点D.3.∠1=∠2=12∠BAC.推理语言因为AD是△ABC的高,所以AD⊥BC.(或∠ADB=∠ADC=90°)因为AD是△ABC的中线,所以BD=DC=12BC.因为AD平分∠BAC,所以∠1=∠2=12∠BAC.用途举例1.线段垂直.2.角度相等.1.线段相等.2.面积相等.角度相等.注意事项1.与边的垂线不同.2.不一定在三角形内.—与角的平分线不同.重要特征三角形的三条高(或它们的延长线)交于一点.一个三角形有三条中线,它们交于三角形内一点.一个三角形有三条角平分线,它们交于三角形内一点.五、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性。
人教版七年级下数学三角形知识点归纳、典型例题及考点分析

BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。
(完整版)三角形的性质及判定归纳

(完整版)三角形的性质及判定归纳1. 三角形的定义三角形是由三条线段连接而成的图形,其中每条线段称为三角形的边,相邻的两条边之间的交点称为三角形的顶点。
根据三角形的边的长度,可以将三角形分为等边三角形、等腰三角形和普通三角形。
2. 三角形的性质2.1. 三角形的内角和对于任意一个三角形,三个内角的和始终为180度。
根据角度的大小,可以将三角形分为钝角三角形、直角三角形和锐角三角形。
2.2. 等边三角形等边三角形是指三条边的长度相等的三角形。
等边三角形的三个内角的度数都为60度。
由于边长相等,所以等边三角形的三条高度、三条中线和三条角平分线也相等。
2.3. 等腰三角形等腰三角形是指两条边的长度相等的三角形。
等腰三角形的两个底角(非顶角)的度数相等。
等腰三角形的两条高度、两条中线和两条角平分线相等。
2.4. 直角三角形直角三角形是指其中一个内角为90度的三角形。
直角三角形的边的长度满足勾股定理:a^2 + b^2 = c^2,其中a、b为两条边的长度,c为斜边的长度。
2.5. 锐角三角形和钝角三角形除了等边三角形、等腰三角形和直角三角形之外,剩下的三角形都属于锐角三角形和钝角三角形。
锐角三角形指的是三个内角的度数都小于90度的三角形,钝角三角形指的是至少有一个内角大于90度的三角形。
3. 三角形的判定3.1. 等边三角形的判定当三个边的长度都相等时,该三角形为等边三角形。
3.2. 等腰三角形的判定当两个边的长度相等或两个底角(非顶角)的度数相等时,该三角形为等腰三角形。
3.3. 直角三角形的判定当三条边的长度满足勾股定理时,该三角形为直角三角形。
3.4. 锐角三角形和钝角三角形的判定当三个内角的度数都小于90度时,该三角形为锐角三角形;当至少有一个内角的度数大于90度时,该三角形为钝角三角形。
结论通过对三角形的性质及判定的归纳,我们可以更好地理解和解决三角形相关的问题,而且可以辅助我们进行三角形的分类和运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点1 :三角形的定义1、如图所示,图中三角形的个数共有()A.1个 B.2个 C.3 个 D.4个2、若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A.2对 B.3对 C.4对 D.5对AB CED(1题图)(2题图)(3题图)考点2:三角形的三边关系3、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得15=OA米,10=OB米,A、B间的距离不可能是()A.5米B.10米C. 15米D.20米4、一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是 ( )A.14 B.15 C.16 D.175、如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得的三角形的周长可能是()A.4 B.4.5 C.5 D.5.56、若△ABC的三边分别为a、b、c,且0))((>--+-mcbacba,则整数m应为。
7、已知a,b,c为ΔABC的三条边,化简()2a b c b a c--+--=错误!未指定书签。
8、已知一个三角形中两条边的长分别是a、b,且ba>,那么这个三角形的周长L的取值范围是()A、bLa33>>;B、aLba2)(2>>+;C、abLba+>>+262;D、baLba23+>>-10、在△ABC中,AC=5,中线AD=7,则AB边的取值范围是()A、1<AB<29B、4<AB<24C、5<AB<19D、9<AB<1911、若 ABC中,∠B为钝角,且AB=8,BC=6,则下列何者可能为AC之长度?()A.5 B. 8 C.11 D.14A BO考点3、三角形角的有关性质12、在ΔABC 中,如果∠A-∠B=90°,那么ΔABC 是( ) A.直角三角形 B.钝角三角形C.锐角三角形D.锐角三角形或钝角三角形13、在下列条件中:①∠A+∠B=∠C ,②∠A∶∠B∶∠C=1∶2∶3,③∠A=900-∠B ,④∠A=∠B=12 ∠C 中,能确定△ABC 是直角三角形的条件有( )A 、1个B 、2个C 、3个D 、4个 14、适合条件∠A =∠B =31∠C 的三角形一定是( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 任意三角形 15、在△ABC 中,若∠A =∠C =13∠B ,则∠A = ,∠B = ,这个是 . 16、已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为17、如图,△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD 等于( ) A. 100° B. 120° C. 130° D. 150°(17题图) (18题图) (19题图)18、如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E ∠的度数为( ) A.70° B.80° C .90° D .100°19、如图,在△ABC 中,90C ∠=。
,EF//AB,150∠=。
,则B ∠的度数为( ) A .50。
B. 60。
C.30。
D. 40。
20、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30︒,∠2=50︒,则∠3= .(21题图) (22题图)21、如图21,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的A BCD(20题图)32121FE D CB A边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,1Ð与2Ð的和总是保持不变,那么∠1与∠2的和是_______度.22、如图,△ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度. 23、若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为( ) A .32.5°B .57.5°C .65°或57.5°D .32.5°或57.5°24、如图,∠A=65°,∠B=75°,将纸片的一角折叠,点C•落在△ABC 内,若∠1=20°,则∠2的度数为( ). A .60°B .80°C .90°D .100°B'AECD21BFG B'AECD21B24题图 25题图 26题图 25、如图所示,将△ABC 沿着DE 折叠,点B 落在点B ′,已知∠1+∠2=100°,则∠B= 。
26、如图所示,将△ABC 沿着DE 翻折,若 ∠1+∠2=80°,则∠B= _ 。
27、将一副直角三角板如图放置,使含300角的三角板的短直角边和含045角的三角板的一条直角边重合,则∠1的度数为 .(27题图) (28题图)28、(09·龙岩市)如图,将一副三角板按图中方式叠放,则角 等于( )A .30°B .45°C .60°D .75°29 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4, ∠BAC=63°,求∠DAC 的度数.4321DCBA考点4 三角形中的重要线段30、在△ABC 中,点D 、E 、F 分别是AB 、AC 、BC 的中点,若△ABC 的周长为12cm ,则△DEF的周长是 cm .31、在△ABC 中,AD 为BC 边的中线,若△ABD 与△ADC 的周长差为3,AB=8,则AC 的长为 () A .5 B.7 C .9 D .1 132、在△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=6,则DF 长是( ) A.2 B.3 C.52D.4(32题图) (33题图) (34题图) (36题图) 33、如图,在Rt ABC △中,90=∠B ,DE 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( )A .30 B .40 C .50 D .6034、如图ΔABC 中,∠A=58°,(1)若O 为外心,则∠BOC= (2)若O 为内心,则∠BOC= 35、一个三角形的内心在它的一条高线上,则这个三角形一定是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形36、如图,在△ABC 中,∠A =α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; ……;∠A 2008BC 与∠A 2008CD 的平分线相交于点A 2009,得∠A 2009 .则∠A 2009= .37、如图已知四边形中ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上从C 向D 移动而R 不动时,那么下列结论成立的是( )FEABCDRPA. 线段EF 的长逐渐增大B. 线段EF 的长逐渐减小C. 线段EF 的长不变D.线段EF 的长与点P 的位置无关FDEBCA ADC EBOFEDAB CAB CD E38、如图:△ABC 在中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC ,交AB 于点E ,交AC 于点F ,过点O 作OD ⊥AC 于点D ,下列四个结论: ①∠BOC=90°+12∠A ;②以点E 为圆心,BE 为半径的圆与以点F 为圆心,CF 为半径的圆外切;③设OD=m,AE+AF=n,则S △AEF =12mn ;④EF 不能成为△ABC 的中位线。
其中正确的结论是 .(把你认为正确的结论的序号都填上 )DB FEOCA(38题图) (39题图) (40题图)39、△ABC 中,AD 是高,AE 、BF 是角平分线相交于点O ,∠BAC=50°,∠C=70°, 求∠DAC ,∠BOA 的度数.40、如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.41、 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.42、如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.A DCBE ABCDEF考点5 三角形中的探究题43、将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n = (用含n 的代数式表示). 所剪次数 1 2 3 4 … n 正三角形个数471013…a n44、观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有 个,黑色的三角形有 个。
第3个第2个第1个45、观察下列图形,则第n 个图形中三角形的个数是( )A.2n+2B.4n+4C.4n-4D.4n第3个第2个第1个46、如图左,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图右所示,那么△ABC 的面积是( )A.10B.16C.18D.20OP DCB94xyAB。