2017届湘教版九年级上期中统考数学试题及答案
湘教版九年级上册数学期中考试试卷含答案解析

湘教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列命题中,是真命题的为()A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似2.一元二次方程221x x-=的常数项为()A.-1 B.1 C.0 D.±13.一次函数y=kx+b与反比例函数y=kx在同一直角坐标系中的大致图象如图所示,则下列判断正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<04.在平面直角坐标系中,反比例函数y=kx(k<0)图像的两支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5.一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac满足的条件是()A.=0 B.>0 C.<0 D.≥06.x2-5x-6=0的两根为()A.6和-1 B.-6和1 C.-2和-3 D.2和37.如图,平面直角坐标系中,OB在x轴上,∠ABO=90º,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90º,点O的对应点C恰好落在双曲线y= kx(x>0)上,则k=()A.2 B.3 C.4 D.6 8.解方程2(5x-1)2=3(5x-1)的最适当的方法是()A .直接开平方法.B .配方法C .公式法D .分解因式法 9.已知一元二次方程x 2+x ─ 1 = 0,下列判断正确的是( )A .该方程有两个相等的实数根B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定10.若1x ,2x 是方程24x =的两根,则12x x +的值是( )A .0B .2C .4D .8二、填空题11.已知△ABC 与△DEF 相似且对应的角平分线的比为2:3,则△ABC 与△DEF 的周长比为_____________.12.若点(-2,1)在反比例函数xk y =的图象上,则该函数的图象位于第 _______象限. 13.如图,在△ABC 中,DE ∥BC ,AD=2,AE=3,BD=4,则AC=______.14.根据反比例函数2y x=-的图象(请先在草稿纸上画图象)回答问题,当函数值为正时,x 取值范围是_______15.如上图,反比例函数k y x=的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为____.16.某种商品原价是121元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为____.17.如图,在ABC 中,D 、E 分别是AC 、AB 边上的点,AED C ∠=∠,6AB =,4AD =,5AC =,则AE =________.18.已知a ,b ,c ,d 是成比例的线段,其中3cm a =,2cm b =,6cm c =,则d =_______cm .19.在△ABC 中,15AB cm =,20BC cm =,30AC cm =,另一个与它相似的△A B C '''的最短边长为45 cm ,则△A B C '''的周长为________.三、解答题20.解方程:(x -5)( x -6)=x -521.若关于x 的一元二次方程x2+4x+2k=0有两个实数根,求k 的取值范围及k 的非负整数值.22.如图,BE 是△ABC 中∠ABC 的平分线.DE ∥BC ,若AE =3,AD =4,AC =5,求DE 的长.23.已知图中的曲线函数5m y x-= (m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数2y x =图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.24.已知:正比例函数y=k 1x 的图象与反比例函数x k y 2(x>0)的图象交于点M (a,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,求这两个函数的解析式.25.一块正方形的铁皮,在它的四角各截去边长为4㎝ 的小正方形,折成一个无盖的长方体盒子,它的容积是400㎝3 ,求原铁皮的边长.26.某城市居民最低生活保障在2012年是每月240元,经过连续两年的增加,到2014年将提高到每月345.6元,则该城市两年来最低生活保障的平均增长率是多少?27.如图,在直角梯形ABCD 中,AB ∥DC ,∠D=90o , AC ⊥BC ,AB=10cm,BC=6cm ,(1)求证:△ACD ∽△BAC ;(2)求DC 的长;28.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (﹣2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.参考答案1.D.【解析】试题分析:A、锐角三角形的三个内角都小于90°,但不一定都对应相等,故A选项错误;B、直角三角形的直角对应相等,但两组锐角不一定对应相等,故B选项错误;C、等腰三角形的顶角和底角不一定对应相等,故C选项错误;D、所有的等边三角形三个内角都对应相等(都是60°),所以它们都相似,故D选项正确;故选:D.考点:相似三角形的判定.2.A【解析】试题分析:因为一元二次方程2-=可化为2x x21--=,所以常数项为-1,故选A.x x210考点:一元二次方程的常数项3.B.【解析】试题分析:∵一次函数y=kx+b的图象经过一、三、四象限,∴k>0,b<0图象经过一、三象限,又∵比例函数y=kx∴k>0,b<0故选B.考点:反比例函数与一次函数的交点问题.4.B【解析】试题分析:∵反比例函数y=(k<0),∴图象的两支分别在第二、四象限.故选B.考点:反比例函数的性质.5.B【详解】试题分析:∵一元二次方程有两个不相等的实数根,∴△=b2-4ac>0.故选B.考点:根的判别式.6.A【分析】把方程左边的式子进行分解因式,利用因式分解法求解.【详解】x2-5x-6=0(x-6)(x+1)=0解得x=6或-1.故选A7.B.【解析】试题分析:∵点A 的坐标为(1,2).Rt △AOB 绕点A 逆时针旋转90°,∴OB+AD=3,AB-CD=1,故C (3,1),将C (3,1)代入y=k x中,得k=3×1=3. 故选B.考点:反比例函数综合题.8.D【详解】解:方程可化为[2(5x-1)-3](5x-1)=0,即(10x-5)(5x-1)=0,根据分析可知分解因式法最为合适.故选D .9.B【解析】根据题意得:△=2141(1)-⨯⨯-=5>0,故有两个不相等的实数根.10.A【分析】先把化成一元二次方程的一般形式,然后根据根与系数的关系求解即可.【详解】∵24x =,∴240x -=,∴12x x +=-0=01. 故选A.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅= . 11.2:3.【解析】试题分析:由于相似三角形的对应角平分线和周长的比都等于相似比,由此可求出两三角形的周长比.试题解析:∵△ABC与△DEF相似且对应角平分线的比为2:3,∴它们的相似比为2:3;故△ABC与△DEF的周长比为2:3.考点:相似三角形的性质.12.二、四【解析】试题分析:先根据函数的解析式确定k=xy=-2,再根据函数图象与系数的特点进行解答.试题解析:∵点(-2,1)在反比例函数y=kx的图象上,∴k=(-2)×1=-2<0,∴该函数的图象位于第二、四象限.考点:反比例函数图象上点的坐标特征.13.9.【解析】试题分析:根据平行线分线段成比例定理得出AD AEBD EC=,得出CE的长度即可得出AC的长.试题解析:∵DE∥BC,∴AD AE BD EC=,∵AD=2,AE=3,BD=4,∴234EC =,∴CE=6,∴AC=AE+EC=3+6=9.考点:平行线分线段成比例.14.x<0.【解析】试题分析:此题只需找到x轴上方的图象所对应的自变量的取值即可.试题解析:由函数图象易得在x轴上方的函数图象所对应的值为:x<0.考点:反比例函数的图象.15.(-1,-2)(答案不唯一).【详解】试题分析:根据“第一象限内的图象经过点A (1,2)”先求出函数解析式,给x 一个值负数,求出y 值即可得到坐标.试题解析:∵图象经过点A (1,2), ∴21k = 解得k=2,∴函数解析式为y=2x , 当x=-1时,y=21-=-2, ∴P 点坐标为(-1,-2)(答案不唯一).考点:反比例函数图象上点的坐标特征.16.121(1-x )2=100.【详解】试题分析:等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=100. 试题解析:第一次降价后的价格为121×(1-x ),那么第二次降价后的价格为121×(1-x )×(1-x ),∴可列方程为121(1-x )2=100.考点:由实际问题抽象出一元二次方程.17.103【分析】根据有两角相等的三角形相似先证明△AED ∽△ACB ,再利用相似三角形的对应边的比相等,即可求出AE 的长.【详解】在△AED和△ACB中,∵∠A=∠A,∠AED=∠C,∴△AED∽△ACB,∴AE ADAC AB=,∵AB=6,AD=4,AC=5,∴4 56 AE=,∴AE=103.故答案为103.【点睛】本题考查了相似三角形的判定与性质,利用有两角相等的三角形相似证明△AED∽△ACB 是解决本题的关键.18.4【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.19.195cm.【解析】因为△ABC∽△,所以.又因为在△ABC中,边最短,所以,所以,所以△的周长为20.x1=5,x2=7.【解析】试题分析:先移项得到(x-5)(x-6)-(x-5)=0,然后利用因式分解法解方程.试题解析:(x-5)(x-6)-(x-5)=0,(x-5)(x-6-1)=0,x-5=0或x-6-1=0,所以x1=5,x2=7.考点:解一元二次方程-因式分解法.21.k≤2.0,1,2.【详解】试题分析:根据关于x的一元二次方程x2+4x+2k=0有两个实数根,则根的判别式△=b2-4ac≥0,建立关于k的不等式,求出k的取值范围后,再确定k的非负整数值.试题解析:∵关于x的一元二次方程x2+4x+2k=0有两个实数根,∴△=42﹣4×1×2k=16﹣8k≥0,解得k≤2.∴k的非负整数值为0,1,2.考点: 一元二次方程的根的判别式.22.83.【详解】试题分析:先根据平行线的性质及角平分线的性质求出△BDE是等腰三角形,即BD=DE,再根据△ADE∽△ABC即可求出BD的长,进而求出DE的长.试题解析:∵BE是△ABC中∠ABC的平分线,DE∥BC,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD=DE ,∵DE ∥BC ,AE=3,AD=4,AC=5,∴△ADE ∽△ABC ,AD AE AB AC=, 即AD AE AD BD AC=+, 4345BD =+, 解得BD=83. ∴DE=BD=83. 考点:1.相似三角形的判定与性质;2.角平分线的定义;3.平行线的性质.23.(1)m >5;(2)y=8x. 【解析】试题分析:(1)曲线函数5m y x-=(m 为常数)图象的一支.在第一象限,则比例系数m-5一定大于0,即可求得m 的范围;(2)把A 的坐标代入正比例函数解析式,即可求得A 的坐标,再代入反比例函数解析式即可求得反比例函数解析式.试题解析:(1)根据题意得:m-5>0,解得:m >5;(2)根据题意得:n=4,把(2,4)代入函数5m y x -=,得到:4=52m -; 解得:m-5=8.则反比例函数的解析式是y=8x. 考点:反比例函数与一次函数的交点问题. 视频24.正比例函数的解析式是x y 41=,反比例函数的解析式是xy 4= 【解析】解:∵MN ⊥x 轴,点M (a ,1)∴S △OMN=a 21=2 ∴a=4∴M(4,1) ∵正比例函数y=k 1x 的图象与反比例函数xk y 2=(x>0)的图象交于点M (4,1) ∴ 414121k k == 解得 44121==k k 25.18cm .【详解】试题分析:先设原正方形铁皮的边长为x ,然后根据题意列出方程4(x-8)2=400,再解方程即可求解.试题解析:设原正方形铁皮的边长为xcm则由题意可得4(x-8)2=400解得x 1=18,x 2=-2(不合题意,舍去).答:原正方形铁皮的边长为18cm .考点:一元二次方程的应用.26.20%.【详解】试题分析:设该城市两年来最低生活保障的平均年增长率是 x ,根据最低生活保障在2009年是240元,经过连续两年的增加,到2011年提高到345.6元,可列出方程求解. 试题解析:设该城市两年来最低生活保障的平均年增长率是 x ,240(1+x )2=345.6,1+x=±1.2,x=20%或x=-220%(舍去).答:该城市两年来最低生活保障的平均增长率是20%.考点:一元二次方程的应用.27.(1)证明见解析;(2)6.4cm .【解析】试题分析:(1)由CD ∥AB ,得∠DCA=∠CAB ,加上一组直角,即可证得所求的三角形相似.(2)在Rt △ABC 中,由勾股定理可求得AC 的长,根据(1)题所得相似三角形的比例线段,即可求出DC 的长.试题解析:(1)∵CD ∥AB ,∴∠BAC=∠DCA又∵AC ⊥BC ,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD ∽△BAC .(2)Rt △ABC 中,,∵△ACD ∽△BAC , ∴DC AC AC AB=, 即8810DC =, 解得:DC=6.4cm .考点:1.勾股定理;2.相似三角形的判定与性质.28.(1)8y x =;y=x+2;(2)2. 【分析】(1)先由A (﹣2,0),得OA=2,点B (2,n ),S △AOB =4,得12OA•n=4,n=4,则点B 的坐标是(2,4),把点B (2,4)代入反比例函数的解析式为()m y m 0x =≠,可得反比例函数的解析式为:8y x=;再把A (﹣2,0)、B (2,4)代入直线AB 的解析式为y=kx+b 可得直线AB 的解析式为y=x+2.(2)把x=0代入直线AB 的解析式y=x+2得y=2,即OC=2,可得S △OCB =12OC×2=12×2×2=2. 【详解】解:(1)由A (﹣2,0),得OA=2;∵点B (2,n )在第一象限内,S △AOB =4, ∴12OA•n=4.∴n=4.∴点B 的坐标是(2,4). 设该反比例函数的解析式为()m y m 0x =≠,将点B的坐标代入,得m42 =,∴m=8.∴反比例函数的解析式为:8yx =.设直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得2k b0{2k b4-+=+=,解得,k1{b2==.∴直线AB的解析式为y=x+2.(2)在y=x+2中,令x=0,得y=2,∴点C的坐标是(0,2).∴OC=2.∴S△OCB=12OC×2=12×2×2=2.。
湘教版九年级上期中数学试卷(附答案解析).docx

2017-2018学年湖南省怀化市洪江市九年级(上)期中数学试卷一、选择题(共10小题,每小题4分,满分40分)2. (4分)将关于x的方程x2 - 4x - 2=0进行配方,正确的是( )A. (x- 2) $二2B. (x+2) $二2C. (x+2) 2=6 D・(x-2) 2=63. (4分)若点A (a, b)在反比例函数丫二吕的图象上,则代数式ab - 4的值为()A. 0B. - 2C. 2D. - 64. (4分)若函数尸竝的图象在其象限内y的值随x值的增大而增大,则m的取值范阖是()A. m> - 2B. m< - 2C. m>2D. m<25. (4分)若关于x的一元二次方程kx2 - 2x - 1=0有两个不相等的实数根,则k的取值范围是()A. k> ・ 1B. k>・l 且kHOC. k<lD. k<l 且kHO6. (4分)已知3是关于x的方程X2 - 5x+c=0的一个根,呗IJ这个方程的另一个根是()A. - 2B. 2C. 5D. 67. (4分)下列判断中,正确的个数有()(1)全等三角形是相似三角形(2)顶角相等的两个等腰三角形相似(3)所有的等边三角形都相似(4)所有的矩形都相似.A. 1个B. 2个C・3个 D. 4个& (4分)如图,身高1.6m 的某学生想测量一棵大树的高度,她沿着树影BA 由 B 向A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 BC=3.2m, CA=0.8m,则树的高度为()丄 CBA. 4.8 mB. 6.4 mC ・ 8 mD ・ 10 m9. (4分)如图,在AABC 中,两条中线BE 、CD 相交于点0,则 S A DOE : S A COB =10. (4分)如图,0是坐标原点,菱形OABC 的顶点A 的坐标为(-3, 4),顶点C 在x 轴的负半轴上,函数y=^-(x<0)的图象经过顶点B,则k 的值为(二、填空题(共6小题,每小题4分,满分24分)□・(4分)把一元二次方程3x (x-2) =4化为一般形式是 ________ ・ 12. (4分)己知△ADEs/XABC,且相似比为已若DE=4cm,则BC 的长为•5-----------13. (4分)若•占手,则业二 _________ ・2 d 43L14. (4分)已知方程2X 2+4X - 3=0的两根分别为X ]和X?,则Xi 2+x 22的值等于 ______ •15. (4分)设a 2 - 3a+l=0, b 2 - 3b+l=0,且aHb,则代数式丄+占的值为C. 1: 3D. 1: 2C. - 32D. - 36)-27・a b16. (4分)平面直角坐标系中,己知点0 (0, 0)、A (0, 2)、B (1, 0),点P是反比例函数尸丄图象上的一个动点,过点P作PQ丄x轴,垂足为点Q若X 以点0、P、Q为顶点的三角形与AOAB相似,则点P的坐标是_________ ・三、解答题(共8小题,满分86分)17. (8 分)如图,已知△ ABCs/XADE, AE=6cm, EC=3cm, BC=6cm, ZBAC=ZC=47°.(1)求ZAED和ZADE的大小;(2)求DE的长.18. (8分)在同一坐标系内,画出y二2与y二2x的图象,并求出两函数图象的交点坐标.19. (10分)在2018年俄罗斯世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售岀240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x (x260)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元?20. (10分)已知关于x的一元二次方程x2 - 2x+a - 1=0有两个实数根分别为X】、X2・(1) 求实数a的取值范围;Xn Xi⑵若满足小X2满足肓+百2,求实数a的值.21. (12分)用适当的方法解下列一元二次方程(1) X2 - 2x=3 (配方法)(2) 2x2 - 6x - 1=0 (公式法)(3) (x - 2) (x-3) =6 (因式分解法)(4) y (3y-4) =4 (因式分解法)22. (12 分)如图,在RtAABC 中,ZACB=90°, AC=6, BC=8,点 D 为边CB ±的一个动点(点D不与点B重合),过D作DO丄AB,垂足为0,点B7在边AB 上,且与点B 关于直线DO对称,连接DB,, AD.(1) 求证:ADOB^AACB;(2) 若AD平分ZCAB,求线段BD的长;(3) 当AABO为等腰三角形时,求线段BD的长.23. (12分)如图,已知点A在反比函数y=- (k<0)的图象上,点B在直线y二x 的图彖上,点B的纵坐』标为-1, AB丄x轴,且S AO AB=4.(1) 求点A的坐标和k的值;(2) 若点P在反吐匕例函数y二上(k<0)的图象上,点Q在直线y=x - 3的图象上,P、Q两点关于y轴对称,设点P的坐标为(m, n),求卫+卫的值.24. (14分)AD是AABC的中线,将BC边所在直线绕点D顺吋针旋转a角,交边AB 于点M,交射线AC 于点N,设AM=xAB, AN=yAC (x, yHO).(1) 如图1,当AABC为等边三角形且a=30°时证明:△AMNs/XDMA;(2) 如图2,证明:丄+-=2;x y(3) 当G是AD上任意一点时(点G不与A重合),过点G的直线交边AB于M,,交身寸线AC 于点N',设AG二nAD, AM^x'AB, AN'二y'A」C (x‘,y'HO),猜想:-++=-是否成立?并说明理由.y n参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.【解答】解二2 5>0,X・・・该函数图象在第一、第三象限,故选:C.2.【解答】解:把方程x2 - 4x+2=0的常数项移到等号的右边,得到X2 - 4x=2, 方程两边同时加上一次项系数一半的平方,得到x2- 4x+4二2+4,配方得(x・2)2=6.故选:D.3.【解答】解:•・•点(a, b)反比例函数y二2上, X9/• b=—,即ab=2,a・;原式二2 - 4= - 2.故选:B.4.【解答】解:・・•函数a纟的图彖在其彖限内y的值随x值的增」大而增大,XAm+2<0,解得mV - 2.故选:B.【解答】解:•・•关于x的一元二次方程kx2 - 2x - 1=0有两个不相等的实数根,JkHo JkHo ••〔△>0' *〔△二4+4k>0'解得k> - 1 a kHO.故选:B.6.【解答】解:设方程的另一个根是m,V3是关于x的方程x2- 5x+c二0的一个根,•I 3+m=5,解得,m二2,・••这个方程的另一个根是2故选:B.7.【解答】解:(1)全等,三角形是相似三角形,正确,符合题意;(2) 顶角相等的两个等腰三角形相似,正确,符合题意;(3) 所有的等边三角形都相似,正确,符合题意;(4)所有的矩形不一定相似,故错误,不符合题意,正确的有3个,故选:C.8・【解答】解:由题意可得,普二牆, 即树高二'彳:4二8m,故选:C.9.【解答】解:VBE和CD是AABC的中线, ・・・DE二Z B C, DE〃BC,DF 1•晋斗ADOE^ACOB,DU Z.S ADQE DE 2- $丄、2_1w?=BC=(㊁)盲故选:A.10・【解答】解:VA ( -3, 4),OA 二寸3? + 4 ◎,•・•四边形OABC是菱形,AAO=CB=OC=AB=5,则点B的横坐标为-3-5=-8,故B的坐标为:(・8, 4),将点B的坐标代入y二*得,4二考,解得:k= - 32・故选:C.二、填空题(共6小题,每小题4分,满分24分)【解答】解:把一元二次方程3x (x-2) =4去括号,移项合并同类项,转化为一般形式是3x2 - 6x - 4=0.12.9【解答】解:VAADE^AABC,且相似比为已DE=4cm,5■ DE••丽誘,解得,BC=10, 故答案为:10cm.13.【解答】解:由题意,设x 二2k ,y=3k, z 二4k ,故答案为丄14・【解答】解:・・•方程2X 2+4X - 3=0的两根分别为X ]和X2,3•IX1+X2二-2, XiX 2= - y, /. X I 2+X 22=(Xx+x 2) 2 - 2XI X 2=J 7.故答案为:7.15.【解答】解:Va 2-3a+l=0, b 2 - 3b+l=0,且 aHb,・・・a 、b 为一元二次方程x 2- 3x+X0」的两个不等实根, •Ia+b 二3, ab=l,・丄亠丄a+b , •• a b_ 甜 d 故答案为:3.16.【解答】解:VA (0, 2)、B (1, 0),A OA=2, OB=1,・.・PQ 丄x 轴,・・・ZPQO 二 ZAOB 二 90°,当字姜,即 0Q 二2PQ 时,△OPQ S ^ABO,BO 0A设点 P (x, - yx),・1 1…2X_ £解得:x=±V2,原式二3k+4k 二 7 2k W当学昙,即PQ二2OQ 时,△OPQs^BAO,4 AO OB 7' J设点P (x, - 2x),解得:x二土¥,•:点P 的坐标是:_ V2)或(■V2).综上可得:点p的坐标是:(-V2, -字)或(-伍,¥)或(字,一伍)或故答案为:(V2, - 或(-伍,或(寻",-伍)或(~ V2).三、解答题(共8小题,满分86分)17・【解答】解:(1) VAABC^AADE,・•・ ZAED=ZC=47°,ZADE=180°・ ZBAC ・ ZAED=86°;(2)・ZAABC^AADE,・朋DE O., 6 DEAC = BC, 1解得,DE=4 (cm).18.【解答】解:如图所示:故y二色和y二2x的图象交点坐标为(2, 4), ( - 2, - 4). X19.【解答】解:(1)根据题意得:y二240 - 4 (x - 60) = - 4X+480;(2)根据题意得:x ( - 4X+480) =14000,整理得:X2 - 120x+3500=0,即(x - 50) (x ・ 70) =0,解得:x=50 (不合题意,舍去)或x=70,则当销售单价为70元吋,月销售额为14000元.20.【解答】解:(1)・・•关于x的一元二次方程x2・2x+a・U0有两个实数根, ・•・△二(-2) 2 - 4X1X (a - 1) =8 - 4a20,解得:aW2.・・・实数a的取值范围为aW2.(2)・・・xi、X2是一元二次方程x2 - 2x+a - 1=0的实数根,•I X1+X2二2, XiX2=a - 1.x2 x i ari (x< + x9) 2-2XI x9•Z —+—= - 1,即一? ------------- =2,X1 x2 lx?.4-2a+2解得:a=2,经检验,a=2是分式方程的解,且符合题意.・••实数a 的值为2・21.【解答】解:(1) x 2 - 2x=3,x 2 - 2x+l=3+l,(X ・ 1) 2二4,」X- 1=±2,Xj —3, X2= ~ 1;(2) 2x 2 - 6x ・ 1=0,b 2 - 4ac= ( - 6) 2 - 4X2X ( - 1) =44, —6 ± V44X 二 _ . . _ ,(3) (x - 2) (x - 3) =6,整理得:x 2 - 5x=0,x (x - 5) =0,x=0, x - 5=0,X]=0, X2=5;(4) y (3y-4) =4,整理得:3y 2 - 4y - 4=0,(3y+2) (y - 2) =0,3y+2=0, y - 2=0,2 0yi 二■石,y2=2. 2X222.【解答】(1)证明:VDO丄AB,ZDOB=ZDOA=90°,A ZDOB=ZACB=90°,又VZB=ZB,A ADOB^AACB;(2) 解:VZACB=90°,・•・AB=V AC 2 +B C 2= V 6 2 + 8 2=10»TAD 平分ZCAB, DC1AC, DO1AB,ADC=DO,在RtAACD 和RtAAOD 中,jAD二AD〔DC二DO,A RtAACD^RtAAOD (HL),/.AC=AO=6,设BD=x,贝lj DC=DO=8 - x, OB=AB - AO=4,在RtABOD中,根据勾股定理得:DO2+OB2=BD2,即(8 - x) 2+42=X2,解得:x=5,ABD的长为5;(3) 解:・・•点B,与点B关于直线DO对称,/. ZB J=ZOB Z D, BO二B'O, BD二B'D,VZB为锐角,・・・ZOBQ也为锐角,・・・ZAB0为钝角,・・・当厶AB Z D为等腰三角形时,AB Z=DB Z,V ADOB^AACB,.QB _BC 8 4BD^AB=I?='5,设BD=5x,则AB=DB=5x, BO=B z O=4x, VAB,+B/O+BO=AB,A5x+4x+4x=10,解得:X 二II ,23.【解答】解:(1)由题意B (2,・1),VyX2XAB=4,・・.AB 二4,・・・AB 〃y 轴,・・・A (2, - 5),VA (2, -5)在的图象上,Ak= - 10・(2)设 P (m,-则 Q (-m,-T 点 Q 在 y=x - 3 ±, in整理得:m 2+3m - 10=0,解得m 二-5或2,当 m 二-5, n 二2 时,—』二-宇,m n 10当 m=2, n 二・ 5 时,—+—=- “器,m n 10“ n . in 29故一+—二-T77-24.【解答】解,:(1)证明:如图1,在厶AMD 中,TAD 是AABC 的中线,AABC 为等边三角形,・•・BD= 50 13*・・・AD 丄BC, ZMAD=30°,又 I a=ZBDM=30°,A ZMDA=60°A ZAMD=90°,在ZXAMN 中,ZAMN=90°, ZMAN=60°,ZAMN=ZDMA=90°, ZMAN=ZMDA, /. AAMN^ADMA ;(2)证明:如图甲,过点C 作CF 〃AB 交MN 于点F,则厶CFN^AAMNA ZB=ZDCF,在ACFD 和ABIVID 中,VB^ZCDF<BD 二CD< ZBDM=ZCDF A ACFD^ABMD,.BM=CF, .AN-AC _BI _AB-AM■ AN 二 Al 二 AM1 1 9 (3) 猜想:斗 +斗二二成立.理由如下: x y n①如图乙,过D 作MN^M'N'交AB 于M,交AC 的延长线于N,yAC-AC 二AB-xAB一 NA ATVCF//BM,由(2)知丄丄二2x y・・・亠亠/x v n②如图丙,当过点D 作MiN/MN 交AB 的延长线于Mi ,交AC1于M ,则同理AT "A AG 二AN ,尸。
湘教版九年级上册数学期中考试试卷含答案详解

湘教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列函数中,y 是x 的反比例函数的是()A .xy 3=B .5y x=C .21y x =D .1y 2x=+2.下列各点中,在反比例函数8y x=图象上的是A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)3.若2a =3b ,则下列等式正确的是()A .23a b =B .32a b =C .32b a =D .32b a =4.一元二次方程2210x x -+=的根的情况是()A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.已知△ABC ∽△DEF ,若∠A =30°,∠B =80°,则∠F 的度数为()A .30°B .80°C .70°D .60°6.在同一直角坐标系中,反比例函数y =abx与一次函数y =ax+b 的图象可能是()A .B .C .D .7.如图,在△ABC 中,EF//BC ,13AE AB =,则AFAC =()A .12B .23C .13D .328.如图,正比例函数y =ax 的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<kx的解集为()A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >-29.如图,点P 是△ABC 边AB 上一点(AB>AC ),下列条件不一定能使△ACP ∽△ABC 的是()A .AC APAB AC=B .PC ACBC AB=C .∠ACP=∠B D .∠APC=∠ACB10.如图, ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为()A .3B .4C .5D .611.已知等腰三角形的三边长分别为4a b 、、,且a 、b 是关于x 的一元二次方程21220x x m -++=的两根,则m 的值是()A .34B .30C .30或34D .30或3612.如图,两个反比例函数1y=x 和2y=x-的图象分别是l 1和l 2.设点P 在l 1上,PC ⊥x 轴,垂足为C ,交l 2于点A ,PD ⊥y 轴,垂足为D ,交l 2于点B ,则三角形PAB 的面积为()A .3B .4C .92D .5二、填空题13.两个相似三角形的相似比为1:3,则它们周长的比为_____.14.若方程2340x x --=的两个根分别为1x 和2x ,则1211x x +=_________.15.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.16.如图,在方格纸中(小正方形的边长为1),反比例函数ky x=的图象与直线AB 的交点A 、B 在图中的格点上,点C 是反比例函数图象上的一点,且与点A 、B 组成以AB 为底的等腰△,则点C 的坐标为________.17.有一人患流感,经过两轮传染后,共有49人患了流感,如果不及时控制(三轮传染速度相同),第三轮被传染的人数为________.18.如图,△ABC 中,AB =AC ,∠A =90°,BC =6,直线MN ∥BC ,且分别交边AB ,AC 于点M ,N ,已知直线MN 将△ABC 分为面积相等的两部分.如果将线段AM 绕着点A 旋转,使点M 落在边BC 上的点D 处,那么BD =________.三、解答题19.解方程:(1)x 2-4x-1=0(配方法)(2)3x(x-1)=2-2x20.已知反比例函数k 1y x-=(k 为常数,k≠1).(1)若点A (1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围.21.已知关于x 的一元二次方程x 2+2x +a =0,(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)若方程有两个不相等的实数根,求a 的取值范围.22.如图,已知AB AD ⊥,BD DC ⊥,且2BD AB BC =⋅,求证:ABD DBC ∠=∠.23.一次函数y=x+b和反比例函数2yx(k≠0)交于点A(a,1)和点B.(1)求一次函数的解析式;(2)求△AOB的面积;24.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品捐款的数额.25.已知:如图,△ABC∽△ADE,∠A=45°,∠C=40°.求:∠ADE的度数.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.参考答案1.B【分析】根据反比例函数的定义判断即可.【详解】A、不符合反比例函数的定义,选项不符合题意;B、符合反比例函数的定义,选项符合题意;C、不符合反比例函数的定义,选项不符合题意;D、不符合反比例函数的定义,选项不符合题意.故选:B.【点睛】本题考查了反比例函数的定义,重点是掌握反比例函数解析式的一般式kyx=(0k≠).2.D 【分析】由于反比例函数y=kx中,k=xy,即将各选项横、纵坐标分别相乘,其积为8者即为正确答案.【详解】解:A、∵-1×8=-8≠8,∴该点不在函数图象上,故本选项错误;B、∵-2×4=-8≠8,∴该点不在函数图象上,故本选项错误;C、∵1×7=7≠8,∴该点不在函数图象上,故本选项错误;D、2×4=8,∴该点在函数图象上,故本选项正确.故选D.【点睛】考核知识点:反比例函数定义.3.B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】A、由23ab=得:3 2a b=,故本选项错误;B、由32ab=得:2 3a b=,故本选项正确;C、由32ba=得:3 2a b=,故本选项错误;D、由32b a=得:3 2a b=,故本选项错误;故选:B.【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.4.B【分析】求出其根的判别式,然后根据根的判别式的正负情况即可作出判断.【详解】∵1a =,2b =-,1c =,∴()2242411440b ac =-=--⨯⨯=-=△,∴方程有两个相等的实数根.故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(0a ≠)的根的判别式24b ac =-△:当 >0,方程有两个不相等的实数根;当 =0,方程有两个相等的实数根;当 <0,方程没有实数根.5.C 【分析】根据△ABC ∽△DEF ,从而推出对应角相等求解.【详解】∵△ABC ∽△DEF ,∴3080A D B E C F ∠=∠=∠=∠=∠=∠ ,,,∵180D E F ∠+∠+∠= ,∴70.F ∠=故选:C.【点睛】考查相似三角形的性质,掌握相似三角形的对应角相等是解题的关键.6.D 【分析】先根据一次函数图象经过的象限得出a 、b 的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a <0,b >0,∴ab <0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.C【分析】直接根据平行线分线段成比例定理即可求解.【详解】∵EF//BC,13 AEAB=,∴13 AF AEAC AB==,故选:C.【点睛】本题考查了平行线分线段成比例定理,正确的识别图形是解题的关键.8.B【分析】先根据反比例函数与正比例函数的性质求出B点横坐标,再由函数图象即可得出结论.【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,∴A ,B 两点坐标关于原点对称,∵点A 的横坐标为2,∴B 点的横坐标为-2,∵k ax x<,∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方,∴2x <-或02x <<,故选:B .【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.9.B 【分析】A .利用对应边成比例,且夹角相等来判断即可;B .对应边成比例,但夹角不相等,不能证 ACP 与 ABC 全等;C .利用两角对应相等,两三角形全等,进行判定即可;D .利用两角对应相等,两三角形全等,进行判定即可.【详解】解:A .∵AC APAB AC =,∠A=∠A .∴ ACP ∽ ABC .B .PC ACBC AB=对应边成比例,但夹角不相等,不能证 ACP 与 ABC 全等.C .∵∠ACP=∠B,∠A=∠A .∴ ACP ∽ ABC .D .∵∠APC=∠ACB,∠A=∠A .∴ ACP ∽ ABC .故选:B .【点睛】本题考查了相似三角形的判定:两组对应边成比例且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.注意:两边对应成比例必须夹角相等.10.D【分析】直接利用等腰直角三角形的性质结合勾股定理以及反比例函数图象上点的坐标特点得出答案.【详解】解:如图所示:过点A作AD⊥OB于点D,∵∠ABO=45°,∠ADB=90°,∴∠DAB=45°,∴设AD=x,则BD=x,∵顶点A在反比例函数y=3x(x>0)的图象上,∴DO•AD=3,则DO=3 x,故BO=x+3 x,OB2﹣OA2=(OD+BO)2﹣(OD2+AD2)=(x+3x)2﹣x2﹣29x=6.故答案为:D.【点睛】本题考查了反比例函数的性质以及勾股定理,正确应用勾股定理是解题的关键.11.A【分析】分三种情况讨论,①当a=4时,②当b=4时,③当a=b时;结合韦达定理即可求解;【详解】解:当4a =时,8b <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412b ∴+=,8b ∴=不符合;当4b =时,8a <,a b 、是关于x 的一元二次方程21220x x m -++=的两根,412a ∴+=,8a ∴=不符合;当a b =时,a b 、是关于x 的一元二次方程21220x x m -++=的两根,1222a b ∴==,6a b ∴==,236m ∴+=,34m ∴=;故选A .【点睛】本题考查一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.12.C【解析】设P 的坐标是1p p ⎛⎫ ⎪⎝⎭,,推出A 的坐标和B 的坐标,求出PA 、PB 的值,根据三角形的面积公式求出即可:∵点P 在1y=x 上,∴设P 的坐标是1p p ⎛⎫ ⎪⎝⎭,.∵PA ⊥x 轴,∴A 的横坐标是p .∵A 在2y=x -上,∴A 的坐标是2p p ⎛⎫- ⎪⎝⎭,.∵PB ⊥y 轴,∴B 的纵坐标是1p .∵B 在2y=x-上,∴12=p x -,解得:x=﹣2p .∴B 的坐标是(﹣2p ,1p).∴()123PA = PB p 2p =3p p p p⎛⎫=--=-- ⎪⎝⎭,.∵PA ⊥x 轴,PB ⊥y 轴,x 轴⊥y 轴,∴PA ⊥PB .∴△PAB 的面积是:1139PA PB 3p=22p 2⨯⨯=⨯⨯.故选C .13.1:3.【分析】由两个相似三角形的相似比为1:3,根据相似三角形周长的比等于相似比,即可求得答案.【详解】∵两个相似三角形的相似比为1:3,∴它们的周长比为:1:3.故答案为1:3.【点睛】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形周长的比等于相似比定理的应用是解此题的关键.14.34-【分析】利用分式加减法,计算原式,应用一元二次方程根与系数关系,求出12x x +和12x x ,代入求值即可.【详解】解:12121211x x x x x x ++=⋅由已知12x x +=3,12x x =-4代入,得1212121134x x x x x x =+⋅+=-故答案为:3 4-【点睛】本题考查一元二次方程根的分布与系数的关系和分数加减法,解答关键是根据相关法则进行计算即可.15.y=2 x【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】解:设A坐标为(x,y),∵B(2,﹣2),C(3,0),以OC,CB为边作平行四边形OABC,∴x+3=0+2,y+0=0﹣2,解得:x=﹣1,y=﹣2,即A(﹣1,﹣2),设过点A的反比例解析式为y=k x,把A(﹣1,﹣2)代入得:k=2,则过点A的反比例函数解析式为y=2 x,故答案为:y=2 x.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16.(2,2)或(-2,-2)【分析】先求得反比例函数的解析式为4yx=,设C点的坐标为(x,4x),根据AC=BC得出方程,求出x即可.【详解】由图象可知:点A的坐标为(-1,-4),代入kyx=得:4k xy==,所以这个反比例函数的解析式是4y x =,设C 点的坐标为(x ,4x),∵A (-1,-4),B (-4,-1),AC=BC ,即()()2222441441x x x x ⎛⎫⎛⎫--+--=--+-- ⎪ ⎪⎝⎭⎝⎭,解得:2x =±,当2x =时,422y ==,当2x =-时,422y ==--,所以点C 的坐标为(2,2)或(-2,-2).故答案为:(2,2)或(-2,-2).【点睛】本题考查了等腰三角形的性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.17.294.【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有49人患了流感,可求出x ,进而求出第三轮过后,又被感染的人数.【详解】解:设每轮传染中平均每人传染了x 人,1+x +x (x +1)=49x =6或x =−8(舍去).∴每轮传染中平均一个人传染了6个人,第三轮被传染的人数为:49×6=294(人).故答案为:294.【点睛】本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.18.3【分析】依据直线MN ∥BC ,可得△AMN ∽△ABC ,再根据直线MN 将△ABC 分为面积相等的两部分,即可得到S △AMN :S △ABC =1:2,进而得出12 ,22AM AB ==解得AM=3,过A 作AD ⊥BC 于D ,则132AD BC ==,故将线段AM 绕着点A 逆时针旋转45°,可以使点M 落在边BC 上的点D 处,此时132BD BC ==.【详解】∵△ABC 中,,906AB AC A BC ,,=∠==∴cos4532AB BC =⨯= ,∵直线MN ∥BC ,∴△AMN ∽△ABC ,∵直线MN 将△ABC 分为面积相等的两部分,∴S △AMN :S △ABC =1:2,∴12 ,22AM AB ==即2 ,232=解得AM =3,如图,过A 作AD ⊥BC 于D ,则132AD BC ==,∴将线段AM 绕着点A 逆时针旋转45 ,可以使点M 落在边BC 上的点D 处,此时,132BD BC ==.故答案为3.【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.19.(1)x 15x 25;(2)x 1=1,x 2=-23(1)根据配方法的运算步骤依次计算可得;(2)先移项,再提取公因式(x-1),得到两个一元一次方程,解出即可.【详解】(1)∵x 2-4x-1=0∴x 2-4x=1∴x 2-4x+4=1+4,即(x-2)2=5则x-2=∴x 1x 2(2)3x(x-1)=2-2x3x(x-1)+2(x-1)=0(x-1)(3x+2)=0∴x 1=1,x 2=-23【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(1)3k =;(2)1k >.【分析】(1)根据反比例函数图象上点的坐标特征得到k-1=1×2,然后解方程即可;(2)根据反比例函数的性质得k-1>0,然后解不等式即可.【详解】(1)根据题意得112k -=⨯,解得:3k =;(2)因为反比例函数k 1y x-=,在这个函数图象的每一分支上,y 随x 的增大而减小,所以10k ->,解得:1k >.本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy k =.也考查了反比例函数的性质.21.(1)a =−3,x 1=−3,;(2)a <1.【解析】试题分析:()1将1x =代入方程220x x a ++=得到a 的值,再根据根与系数的关系求出另一根;()2根的判别式0.∆>求出a 的取值范围即可.试题解析:()1将1x =代入方程220.x x a ++=得,1210a +⨯+=,解得: 3.a =-方程为2230.x x +-=设另一根为1,x 则113,x ⋅=-1 3.x =-()244a ∆=-,∵方程有两个不等的实根,0,∴∆>即440a >-,1.a ∴<22.见解析.【分析】由2BD AB BC =⋅可得AB BD =BD BC,可判定Rt △ABD ∽Rt △DBC ,然后由相似三角形对应角相等可得∠ABD=∠DBC.【详解】证明:∵2BD AB BC=⋅∴AB BD =BD BC∴Rt △ABD ∽Rt △DBC∴∠ABD=∠DBC【点睛】本题考查相似三角形的判定,熟练掌握直角三角形的斜边直角边对应成比例即可判定相似是解决本题的关键.23.(1)1y x =-;(2)32.【分析】(1)分别把A 的坐标代入反比例函数解析式求出a 的值,把A 的坐标代入一次函数解析式得出b 的值,即可求解;(2)先求得点B 的坐标,再求出一次函数与y 轴的交点D 的坐标,根据三角形的面积公式求出△AOD 和△BOD 的面积即可.【详解】(1)∵点A (a ,1)是反比例函数2y x=图象上的点,∴2y 1a ==,∴2a =,∴A (2,1),又∵点A 是一次函数y x b =+的图象上的点,∴12b =+,解得,b 1=-,故一次函数解析式为:1y x =-;(2)联立方程组:y x 12y x =-⎧⎪⎨=⎪⎩,解得:1212x 2x 1y 1y 2==-⎧⎧⎨⎨==-⎩⎩,,则()B 12--,,因为直线1y x =-与y 轴交点D 01)-(,,则1OD =,∴1131211222AOB AOD DOB S S S ∆∆∆=+=⨯⨯+⨯⨯=.【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数的解析式,函数的图象等知识点,熟练掌握待定系数法求函数解析式是解题的关键.24.(1)(180﹣3x )件;(2)①该商品的售价为30元/件;②李晨每天通过销售该工艺品捐款的数额为45元.【分析】(1)售价设为x 元,那么降低的价格就是40x -元,那么增加的销量是()340x -件,再加上原来的60件就得到表达式;(2)①根据利润=销量⨯(售价-成本)列方程求出售价;②根据①中算出的售价求出销量,从而算出捐款的数额.【详解】解:(1)∵该商品的售价为x 元/件(20≤x ≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x )=(180﹣3x )件;(2)①依题意,得:(x ﹣20)(180﹣3x )=900,整理,得:x 2﹣80x +1500=0,解得:x 1=30,x 2=50(不合题意,舍去),答:该商品的售价为30元/件;②0.5×(180﹣3×30)=45(元),答:李晨每天通过销售该工艺品捐款的数额为45元.【点睛】本题考查一元二次方程的应用题,解题的关键是根据题意找到等量关系,根据利润=销量⨯(售价-成本)列方程求解.25.∠ADE=95°【分析】由△ABC ∽△ADE ,∠C=40°,根据相似三角形的对应角相等,即可求得∠AED 的度数,又由三角形的内角和等于180°,即可求得∠ADE 的度数.【详解】∵△ABC ∽△ADE ,∠C=40°,∴∠AED=∠C=40°.在△ADE中,∵∠AED+∠ADE+∠A=180°,∠A=45°即40°+∠ADE+45°=180°,∴∠ADE=95°.【点睛】此题考查了相似三角形的性质与三角形内角定理.题目比较简单,注意相似三角形的对应角相等.26.(1)①BD=,BP=(2)4 5.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x.在Rt△BDC中,可得x2=(4﹣x)2+22,推出x的值,从而得出DN的长.由△BDN∽△BAM,可得DN BDAM AB=,由此求出AM.由△ADM∽△APE,可得AM ADAE AP=,由此求出AE的长,可得EC的长,由此即可解决问题.【详解】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB=∵AD=CD=2,∴BD=由翻折可知:BP=BA=②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD =AD =BC =2,∴四边形BCPD 是平行四边形.(2)如图2中,作DN ⊥AB 于N ,PE ⊥AC 于E ,延长BD 交PA 于M .设BD =AD =x ,则CD =4﹣x .在Rt △BDC 中,∵BD 2=CD 2+BC 2,∴x 2=(4﹣x )2+22,∴x =52.∵DB =DA ,DN ⊥AB ,∴BN =AN 在Rt △BDN 中,DN =2.由△BDN ∽△BAM ,可得DN BDAM AB =,∴522AM =,∴AM =2,∴AP =2AM =4.由△ADM∽△APE,可得AM AD AE AP=,∴5 224 AE=,∴AE=16 5,∴EC=AC﹣AE=4﹣165=45.易证四边形PECH是矩形,∴PH=EC=4 5.。
湘教版九年级数学上册期中试卷(加答案)

湘教版九年级数学上册期中试卷(加答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.﹣3的相反数是( )A .13-B .13C .3-D .3 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100993.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2D .25.菱形不具备的性质是( ) A .四条边都相等 B .对角线一定相等C .是轴对称图形D .是中心对称图形6.若2x y +=-,则222x y xy ++的值为( )A .2-B .2C .4-D .47.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°9.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣110.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC二、填空题(本大题共6小题,每小题3分,共18分)13816-=_____.2.因式分解:39a a-=_______.3.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.4.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为__________.5.如图,抛物线y=﹣x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为__________.6.如图.在44⨯的正方形方格图形中,小正方形的顶点称为格点.ABC ∆的顶点都在格点上,则BAC ∠的正弦值是__________.三、解答题(本大题共6小题,共72分)1.解下列方程(1)232x x=- (2)214111x x x +-=--2.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点. (1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.6.为满足市场需求,某服装超市在六月初购进一款短袖T恤衫,每件进价是80元,超市规定每件售价不得少于90元,根据调查发现:当售价定为90元时,每周可卖出600件,一件T恤衫售价每提高1元,每周要少卖出10件.(1)试求出每周的销售量y(件)与每件售价x元之间的函数表达式;(不需要写出自变量取值范围)(2)该服装超市每周想从这款T恤衫销售中获利850元,又想尽量给客户实惠,该如何给这款T恤衫定价?(3)超市管理部门要求这款T恤衫售价不得高于110元,则当每件T恤衫售价定为多少元,每周的销售利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、D5、B6、D7、D8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、a(a+3)(a-3)3、24、140°5、(,2)或(1,2).6、三、解答题(本大题共6小题,共72分)1、(1)x =6;(2)分式方程无解.2、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)543、(1)略;(24、(1)二次函数的表达式为:213222y x x =--;(2)4;(3)2或2911.5、(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.6、(1)101500y x =-+;(2)销售单价为95元;(3)当销售单价为110元时,该超市每月获得利润最大,最大利润是12000元.。
湘教版九年级(上)期中数学试卷(含解析)

九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。
)1.下列多边形一定相似的是()A.两个矩形B.两个五边形C.两个正方形D.两个等腰三角形2.若x是a,b的比例中项,则下列式子错误的是()A.x2=ab B.C.D.ab=3.已知,则下列等式中不成立的是()A.B.C.D.4.对抛物线:y=x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向下C.顶点坐标是(1,﹣2)D.与y轴的交点是(0,3)5.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个6.根据有关测定,当外界气温处于人体正常体温的黄金比值时,人体感到最舒适(人体正常体温约为37℃),这个气温大约为()A.23℃B.28℃C.30℃D.37℃7.在下列抛物线中,开口最小的是()A.y=﹣x2B.y=﹣x2C.y=x2D.y=x28.若方程ax2+bx+c=0(a>0)的两个根是﹣3和1,则对于二次函数y=ax2+bx+c,当y>0时,x的取值范围是()A.﹣3<x<1B.x<﹣3或x>1C.x>﹣3D.x<19.已知点A(x1,4),B(x2,8)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0B.x1<0<x2C.x2<x1<0D.x2<0<x110.已知抛物线y=x2+2x﹣k﹣2与x轴没有交点,则函数y=的图象大致是()A.B.C.D.11.把抛物线y=﹣2x2+4的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣2)2+7B.y=﹣2(x﹣2)2+1C.y=﹣2(x+2)2+7D.y=﹣2(x+2)2+112.抛物线y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①b2<4ac;②abc<0:③4a+b=0;④a+b+c>0⑤当y=2时,x只能等于0.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分,请将答案填在指定的空格内)13.已知函数y=(2﹣k)x2+kx+1是二次函数,则k满足.14.已知:x:y=2:5,那么(x+y):y=.15.反比例函数,当x>0时,y随x增大而减小,k的取值范围.16.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(a,0),则a2﹣a+2020=.17.一名男生参加抛实心球测试,已知球的高度y(m)与水平距离x(m)之间的关系是,则这名男生抛实心球的成绩是m.18.过反比例函数y=(k≠0)图象上一点A,分别作x轴和y轴的垂线段,垂足分别为B、C,如果△ABC的面积是6,则k的值为.三、解答题(本大题共8小题,共66分,解答题应写出文字说明、证明过程或演算步骤)19.(6分)已知a:b:c=3:2:1,且2a﹣3b+c=10,求a+2b﹣3c的值.20.(6分)如图,在△ABC中,DE∥BC,AB=15,AE:EC=3:2,求DB的长.21.(6分)已知抛物线的对称轴是直线x=1,函数的最小值是﹣1,且图象经过点(3,1),求此抛物线的函数关系式.22.(8分)已知y与x+1成反比例,且当x=1时,y=2,求当x=0时,y的值.23.(8分)已知:在△ABC中,CD为∠C的平分线.求证:.24.(10分)已知反比例函数y1=与一次函数y2=k2x的图象如图所示.(1)求点B的坐标;(2)请直接写出y1>y2时,x的取值范围.25.(10分)某水果商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元.市场调查显示,若每箱以50元的价格销售,平均每天可销售90箱,价格每提高1元,则平均每天少销售3箱.(1)求平均每天销售利润w(元)与销售价x(元箱)之间的函数关系式,并直接写出自变量x的取值范围.(2)当每箱的售价为多少元时,可以获得最大利润?最大是多少元?26.(12分)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交F点A(4,0).(1)求抛物线的解析式;(2)若点P为抛物线上任意一点,是否存在点P使得△AOP的面积为4?若存在,求出点P的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。
湘教版九年级数学上册期中测试题(含答案)

湘教版九年级数学上册期中测试题(含答案)(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共36分)一、选择题(每小题3分,共36分)1.若关于x 的方程(a +1)x 2+x +4=0是一元二次方程,则a 满足的条件是( B ) A .a ≠0 B .a ≠-1 C .a >-1 D .a <-12.若点A (a ,b )在反比例函数y =2x的图象上,则代数式ab -4的值为( B )A .0B .-2C .2D .-6 3.方程(x +1)(x -2)=x +1的根是( D ) A .x 1=x 2=2 B .x 1=x 2=3C .x 1=-1,x 2=2D .x 1=-1,x 2=34.已知△ABC ∽△A ′B ′C ′,AD ,A ′D ′分别是对应边BC ,B ′C ′上的高,且BC =10 cm ,B ′C ′=6 cm ,AD =7 cm ,则A ′D ′等于( C )A.163 cm B .12 cm C.215 cm D .以上都不正确 5.如图,以点O 为位似中心,将△ABC 放大得到△DEF .若AD =OA ,则△ABC 与△DEF 的面积之比为( B )A .1∶2B .1∶4C .1∶5D .1∶6第5题图 第7题图 第10题图6.一次函数y =-2x +1和反比例函数y =3x的大致图象是( D )7.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD ∶BD =5∶3,CF =6,则DE 的长为( C )A .6B .8C .10D .128.(淄博中考)若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是( B )A .k >-1B .k >-1且k ≠0C .k <-1D .k <-1或k =09.已知正方形ABCD ,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出△ABP 与以E ,C ,P 为顶点的三角形相似的是( C )A .∠APB =∠EPC B .∠APE =90° C .P 是BC 的中点D .BP ∶BC =2∶310.如图,△ABC 的三顶点分别为A (1,2),B (4,2),C (4,4).若反比例函数y =kx在第一象限内的图象与△ABC 有交点,则k 的取值范围是( C )A .1≤k ≤4B .2≤k ≤8C .2≤k ≤16D .8≤k ≤1611.张大伯计划建一个面积为72平方米的长方形养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙(墙长15米),另外的部分用26米的竹篱笆围成,如图所示.如果设垂直于墙的一边长为x 米,那么x 满足的方程是( D )A .x (13-x )=72B .x (26-x )=72 C.x (26-x )2=72 D .x (26-2x )=72第11题图 第12题图 第14题图12.反比例函数y =a x (a >0,a 为常数)和y =2x在第一象限内的图象如图所示,点M 在y=a x 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD ⊥y 轴于点D ,交y =2x的图象于点B ,当点M 在y =ax的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( D )A .0B .1C .2D .3第Ⅱ卷(非选择题 共84分)二、填空题(每小题3分,共18分) 13.一元二次方程(x -1)(x +3)=4化为一般形式是__x 2+2x -7=0__,系数和是__-4__.14.如图,已知AB ∥CD ,AD 与BC 相交于点O .若BO OC =23,AD =10,则AO =__4__.15.若点A (m ,-2)在反比例函数y =4x的图象上,则当函数值y ≥-2时,自变量x 的取值范围是 x ≤-2或x>0 .16.如图,直线y =x -2与y 轴交于点C ,与x 轴交于点B ,与反比例函数y =kx的图象在第一象限交于点A ,连接OA .若S △AOB ∶S △BOC =1∶2,则k 的值为 3 .17.设α,β是方程(x +1)(x -4)=-5的两实数根,则 β3α+α3β= 47 .18.在△ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当AE = 125或53 时,以A ,D ,E 为顶点的三角形与△ABC 相似.三、解答题(共66分) 19.(6分)解方程: (1)x 2-5x +6=0; 解:x 1=2,x 2=3;(2)4(x +3)2=25(x -2)2.解:x 1=47,x 2=163.20.(6分)太阳能进入了千家万户,一个容量为180升的太阳能热水器,能连续工作的时间是y 分钟,每分钟的排水量为x 升.(1)写出y 与x 的函数关系式;(2)若热水器连续工作最长时间是1小时,求自变量的取值范围; (3)若每分钟排热水4升,则热水器连续工作时间是多少?解:(1)y =180x;(2)1小时=60分钟,当y =60时,x =3. 又∵180>0,∴自变量x 的取值范围为x ≥3;(3)y =1804=45.即热水器连续工作时间为45分钟.21.(8分)已知正比例函数y =kx 与反比例函数y =3x的图象都过点A (m ,1).求:(1)正比例函数的表达式;(2)正比例函数与反比例函数的另一个交点的坐标.解:(1)把x =m ,y =1代入y =3x ,得3m=1,解得m =3.∴A(3,1).把x =3,y =1代入y =kx ,得3k =1,解得k =13.∴y =13x.(2)联立方程组⎩⎨⎧y =13x ,y =3x,解得⎩⎨⎧x 1=3,y 1=1,⎩⎪⎨⎪⎧x 2=-3,y 2=-1.故另一交点的坐标为(-3,-1).22.(8分)已知关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2. (1)求实数k 的取值范围;(2)若x 1,x 2满足x 21+x 22=16+x 1x 2,求实数k 的值.解:(1)∵关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2, ∴Δ=(2k -1)2-4(k 2-1)=-4k +5≥0.解得k ≤54,∴实数k 的取值范围为k ≤54;(2)∵关于x 的方程x 2+(2k -1)x +k 2-1=0有两个实数根x 1,x 2, ∴x 1+x 2=1-2k ,x 1·x 2=k 2-1.∵x 21+x 22=(x 1+x 2)2-2x 1x 2=16+x 1·x 2, ∴(1-2k)2-2×(k 2-1)=16+(k 2-1).解得k =-2或k =6(不符合题意,舍去), ∴实数k 的值为-2.23.(8分)如图所示,一农户要建一个矩形猪舍,猪舍的一边利用长12 m 的住房墙,另外三边用25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门.所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m 2?解:设矩形猪舍垂直于住房墙的一边长为x m ,则矩形猪舍的另一边长为(26-2x)m.根据题意,得x(26-2x)=80.化简,得x 2-13x +40=0.解这个方程,得x 1=5,x 2=8.当x =5时,26-2x =16>12(舍去);当x =8时,26-2x =10<12.答:所建矩形猪舍的长为10 m ,宽为8 m.24.(10分)如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝⎛⎭⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的表达式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.解:(1)设直线AD 的表达式为y =kx +b ,将A ⎝⎛⎭⎫43,53,D(0,1)代入得⎩⎪⎨⎪⎧43k +b =53,b =1,解得⎩⎪⎨⎪⎧k =12,b =1.故直线AD 的表达式为y =12x +1;(2)如图,∵直线AD 与x 轴的交点为(-2,0),∴OB =2, ∵点D 的坐标为(0,1),∴OD =1, ∵y =-x +3与x 轴交于点C(3,0), ∴OC =3,∴BC =5, ∵△BOD 与△BEC 相似, ∴BD BC =BO BE =OD CE 或OB BC =OD CE′, ∴55=2BE =1CE 或25=1CE′, ∴BE =25,CE =5,或CE′=52.∵BC ·EF =BE·CE ,∴EF =2,CF =CE 2-EF 2=1,∴E(2,2)或⎝⎛⎭⎫3,52.25.(10分)如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ; (2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB.又∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴ADAC=ACAB,∴AC2=AB·AD;(2)证明:∵E为AB的中点,∴CE=12AB=AE,∴∠EAC=∠ECA.∵AC平分∠DAB,∴∠CAD=∠CAB.∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴∠DAF=∠ECF,∠ADF=∠CEF,△AFD∽△CFE,∴AD CE=AFCF,∵CE=12AB,∴CE=12× 6=3,又∵AD=4,∴AFCF=43,∴AFAC=47,∴ACAF=74.26.(10分)如图所示,在△ABC中,∠C=90°,AC=6 cm,BC=8 cm,点P从点A 出发沿边AC向点C以1 cm/s的速度移动,点Q从C点出发沿CB边向点B以2 cm/s的速度移动.(1)如果P,Q同时出发,几秒钟后,可使△PCQ的面积为8 cm2?(2)若点P从点A出发沿边AC-CB向点B以1 cm/s的速度移动,点Q从C点出发沿CB-BA边向点A以2 cm/s的速度移动.当点P在CB边上,点Q在BA边上时,是否存在某一时刻,使得△PBQ的面积为14.4 cm2?解:(1)设x s后,可使△PCQ的面积为8 cm2.由题意得,AP=x cm,PC=(6-x)cm,CQ=2x cm,则12·(6-x)·2x=8.整理,得x2-6x+8=0,解得x1=2,x2=4.答:P,Q同时出发,2 s或4 s后可使△PCQ的面积为8 cm2.(2)过点Q作QD⊥BC于D.∵∠C=90°,AC=6 cm,BC=8 cm,∴AB=10 cm.∵点P从点A出发沿边AC-CB向点B以1 cm/s的速度移动,点Q从C点出发沿CB-BA边向点A以2 cm/s的速度移动.∴BP=(6+8)-t=(14-t)cm,BQ=(2t-8)cm.∵QD⊥BC,∠C=90°,∴QD∥AC,∴BQBA=QDAC,∴2t-810=QD6,∴QD=6t-245.∴S△BPQ=12× BP·QD=12×(14-t)×6t-245=14.4.解得t1=8,t2=10(不符题意舍去).答:当t=8秒时,△PBQ的面积是14.4 cm2.。
湘教版九年级数学上册期中考试及答案【完整版】

湘教版九年级数学上册期中考试及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52是一个很奇妙的数,大量应用于艺术、建筑和统计决策等1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A.12 B.9 C.13 D.12或97.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是()A.15B.16C.17D.188.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,点A,B在双曲线y=3x(x>0)上,点C在双曲线y=1x(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A2B.2C.4 D.2二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是____________.2.分解因式:x 3﹣4xy 2=_______.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC ,则∠B ′CD=__________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,在矩形ABCD 中,8AD =,对角线AC 与BD 相交于点O ,AE BD ⊥,垂足为点E ,且AE 平分BAC ∠,则AB 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.计算:()011342604sin π-----+().3.如图所示抛物线2y ax bx c =++过点()1,0A -,点()0,3C ,且OB OC =(1)求抛物线的解析式及其对称轴;(2)点,D E 在直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值;(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、B5、A6、A7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、42、x (x+2y )(x ﹣2y )3、-124、30°5、6、.三、解答题(本大题共6小题,共72分)1、x =52、33、(1)2y x 2x 3=-++,对称轴为直线1x =;(2)四边形ACDE 的周长最小1;(3)12(4,5),(8,45)P P --4、(1)略;(2)45°;(3)略.5、(1)200、81°;(2)补图见解析;(3)136、(1)y=﹣5x 2+800x ﹣27500(50≤x ≤100);(2)当x=80时,y 最大值=4500;(3)70≤x ≤90.。
湘教版九年级数学上册期中考试试卷含解析

湘教版九年级数学上册期中试卷含解析一、选择题(共10小题;共30分)1. 对于反比例函数y=2x,下列说法正确的是( )A. 图象经过点(2,−1)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大2. 点P(1,3)在反比例函数y=kx(k≠0)的图象上,则k的值是 ( )A. 13B. 3 C. −13D. −33. 某闭合电路中,电源的电压为定值时,电流I(A)与电阻R(Ω)成反比例.如图所示是该电路中电流I与电阻R之间的函数关系的图象,则用电阻R表示电流I的函数表达式为( )A. I=2R B. I=3RC. I=5RD. I=6R4. 若关于x的方程ax2−3x+2=0是一元二次方程,则( )A. a>0B. a≠0C. a=1D. a≥05. 一元二次方程2x2−3x+1=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根6. 若x1,x2是一元二次方程x2−3x+2=0的两根,则x1+x2的值是( )A. −2B. 2C. 3D. 17. 若x=−2是关于x的一元二次方程x2+32ax−a2=0的一个根,则a的值为( )A. −1或4B. −1或−4C. 1或−4D. 1或48. 如图,D,E为△ABC的边AB,AC上的点,DE∥BC,若AD:DB=1:3,AE=2,则AC的长是( )A. 10B. 8C. 6D. 49. 如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14 m到点B时,人影长度 ( )A. 变长3.5 mB. 变长2.5 mC. 变短3.5 mD. 变短2.5 m10. 如图,在平行四边形ABCD中,E为CD上一点,连AE、BD,且AE、BD交于点F,若DE:EC=2:3,则S△DEF:S△ABF等于 ( )A. 425B. 23C. 25D. 49二、填空题(共6小题;共24分)的图象经过点(1,−6),则k的值为.11. 若反比例函数y=kx12. 已知关于x的一元二次方程x2+2x+2k−4=0有两个不相等的实数根,则k的取值范围是.13. 在平面直角坐标系中,点A(2,3),B(5,−2),以原点O为位似中心,位似比为1:2,把△ABO缩小,则点B的对应点Bʹ的坐标是.的值是( ).14. 若a,b是一元二次方程x2+2x−1=0的两个根,则a+b2ab(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO15. 如图,点A在函数y=4x的周长为.16. 已知函数y=−3的图象上有三个点A(−3,y1),B(−1,y2),C(2,y3),则y1,y2,y3的大小关x系是.三、解答题(共8小题;共66分)17. (8分)解方程.(1)(3y−1)2−6=0.(2)x2−5x−36=0.(3)x2+2x−5=018. (7分)一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10 m3时,ρ=1.43 kg/m3.Ⅰ求ρ与V的函数表达式;Ⅱ求当V=4m3时氧气的密度.(x>0)的图象交于A(m,1),B(1,n)两19. (7分)如图,函数y1=−x+4的图象与函数y2=kx点.Ⅰ求k,m,n的值;Ⅱ利用图象写出当x≥1时,y1和y2的大小关系.20. (8分)如图为了估算河的宽度,我们可以在河对岸选定一个目标点为A,再在河的这一边选点B和C,使AB⊥BC,然而再选点E,使EC⊥BC,确定BC与AE的交点为D,测得BD= 120 m,DC=60 m,EC=50 m,你能求出两岸之间AB的大致距离吗?21. (8分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数直线y=mx 的图象都经过点A(2,−2).Ⅰ分别求这两个函数的表达式;Ⅱ将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.22. (8分)如图,在边长为1个单位长度的小正方形网格中:Ⅰ画出△ABC先向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1;Ⅱ以B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2;Ⅲ求△CC1C2的面积.23. (10分)某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入−平均每日各项支出)Ⅰ公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);Ⅱ当每日租出多少辆时,租赁公司日收益最大?最大是多少元?Ⅲ当每日租出多少辆时,租赁公司的日收益不盈也不亏?24. (10分)如图,在等边△ABC中,D,E,F分别为边AB,BC,CA上的点,且满足∠DEF=60∘.Ⅰ求证:BE⋅CE=BD⋅CF;的值.Ⅱ若DE⊥BC且DE=EF,求BEEC答案第一部分1. C2. B3. B4. B5. A6. C7. C8. B9. C 10. A第二部分11. −612. k <5213. (52,−1) 或 (−52,1)14. 115. 2√6+416. y 3<y 1<y 2第三部分17. 方程两边同时加 6,变为(3y −1)2=6. 两边同时开方,得3y −1=±√6.∴ y 1=1+√63,y 2=1−√63.(2)方程边形为(x −9)(x +4)=0.∴x 1=9,x 2=−4.(3)x 2+2x =5. x 2+2x +1=5+1.(x+1)2=6.x+1=±√6.x=±√6−1.∴x1=√6−1,x2=−√6−1.18. (1)设ρ=mV,当V=10 m3时,ρ=1.43 kg/m3,∴m=ρV=14.3,∴ρ=14.3V.(2)当V=4 m3时,ρ=14.34=3.575 kg/m3.19. (1)把A(m,1)代入y=−x+4得:1=−m+4,即m=3,∴A(3,1),把A(3,1)代入y=kx得:k=3 .把B(1,n)代入一次函数解析式得:n=−1+4=3 .(2)∵A(3,1),B(1,3),∴根据图象得:当1<x<3时,y1>y2;当x>3时,y1<y2;当x=1或x=3时,y1=y2.20. ∵∠ADB=∠EDC,∠ABC=∠ECD=90∘,∴△ABD∽△ECD.∴ABEC =BDCD,AB=BD×ECCD.解得=120×5060=100(米).答:两岸间的大致距离为100米.21. (1)∵正比例函数y=kx的图象与反比例函数直线y=mx的图象都经过点A(2,−2),∴{2k =−2,m 2=−2. 解得:{k =−1,m =−4.∴y =−x ,y =−4x . (2) ∵ 直线 BC 由直线 OA 向上平移 3 个单位所得∴B (0,3),k bc =k oa =−1.∴ 设直线 BC 的表达式为 y =−x +3.由 {y =−4x ,y =−x +3,解得 {x 1=4,y 1=−1,{x 2=−1,y 2=4.∵ 点 C 在第四象限,∴ 点 C 的坐标为 (4,−1).解法一:如图1,过 A 作 AD ⊥y 轴于 D ,过 C 作 CE ⊥y 轴于 E .∴S △ABC=S △BEC +S 梯形ADEC −S △ADB =12×4×4+12(2+4)×1−12×2×5=8+3−5=6.22. (1) △A 1B 1C 1 如图所示.(2)△A2B2C2如图所示.(3)如图所示,连接CC1,C1C2 .×3×6=9 .△CC1C2的面积等于1223. (1)1400−50x(2)根据题意得出:y=x(−50x+1400)−4800=−50x2+1400x−4800=−50(x−14)2+5000.当x=14时,在范围内,y有最大值5000.∴当日租出14辆时,租赁公司日收益最大,最大值为5000元.(3)要使租赁公司日收益不盈也不亏,即:y=0.即:50(x−14)2+5000=0,解得x1=24,x2=4,∵x=24不合题意,舍去.∴当日租出4辆时,租赁公司日收益不盈也不亏.24. (1)∵等边△ABC,∴∠B=∠C=60∘.∵∠DEF=60∘,∴∠DEF=∠B.∵∠DEC是△DBE的外角,∴∠DEC=∠B+∠BDE.即∠DEF+∠FEC=∠B+∠BDE.∵∠DEF=∠B,∴∠BDE=∠CEF.∵∠B=∠C,∴△BDE∽△CEF.∴BDCE =BECF.∴BE⋅CE=BD⋅CF.(2)∵△BDE∽△CEF,∴BDCE =DEEF.∵DE=EF,即DEEF=1,∴BD=CE.∵DE⊥BC即∠DEB=90∘,∠B=60∘,∴BEEC =BEBD=cosB=cos60∘=12.即BEEC =12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
○ 订 ○ 线 ○ 内 ○ 不 ○ 能 ○ 答 ○ 题学校 班 姓 考2016-2017学年度第一学期半期考试九年级数学学科试卷满分:150分一、选择题(共13小题,每小题4分,满分52分)1、下列四个图形中,既是轴对称图形又是中心对称图形的是( ).2、下列方程是一元二次方程的是( ) A .134x x+= B .()32122+=-x x x C .022=-x D .12=+y x 3、二次函数23(2)5y x =--+的图象的顶点坐标是( ) A .(-2,5) B .(2,-5)C .(2,5)D .(2,5)4、如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,則它的对称轴为( ) A .4x = B . 3x = C . 2x = D . 1x =5、如图所示,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于点E ,F ,若AB=3,BC=4,那么阴影部分的面积为( )A .4B .12C .6D .36、某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元, 如果平均每月增长率为x ,则由题意列方程应为( )A.2100(1)331x += B.1001002331x +⨯=C . 1001003331x +⨯=D .21001(1)(1)331x x ⎡⎤++++=⎣⎦7、把抛物线向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ) A . B .C .D .8、A.○ 订 ○ 线 ○ 内 ○ 不 ○ 能 ○ 答 ○ 题学校 班 姓 考(13题图)9、如图,是一个简单的数值运算程序. 则输入x 的值为( )(A.3或-3B.4或-2C.1或3D.2710、有一根长60cm 的铁丝,用它围成一个矩形,写出矩形面积S (2cm )与它的一边长()x cm 之间的函数关系式为( )A.60S x =B.(60)S x x =-C.(30)S x x =-D. 30S x =11、如图,两个全等的长方形ABCD 与CDEF ,旋转长方形ABCD 能和长方形CDEF 重合,则可以作为旋转中心的点有( ) A .1个 B .2个C .3个D .无数个12、已知点123(2,),(1,),(3,)A y B y C y --三点都在抛物线223y x =-的图象上,则123,,y y y 的大小关系是( )A.3y <2y <1yB. 1y <2y <3yC. 2y <1y <3yD. 3y <1y <2y 13、已知二次函数的图象如图所示,其对称轴为直线,给出下列结果:(1);(2)>0;(3);(4);(5).则正确的结论是( )A .(1)(2)(3)(4)B .(2)(4)(5)C .(2)(3)(4)D .(1)(4)(5)二、填空题(共6小题,每小题4分,满分24分)14、已知方程x 2-x -1=0有一根为m ,则m 2-m +2014的值为 .15、如图,将△ABC 绕着点C 顺时针旋转后得到△'''C B A .若∠A =40°. ∠'B =110°,则∠''B CA 的度数是 .16、若点(,2)P m -与点(3,)Q n 关于原点对称,则2015()m n += .17、如果函数232(3)1k k y k xkx -+=-++是二次函数,那么K 18、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x 名学生,根据题意,列出方程为 .19、在二次函数2y x bx c =++中,函数值y 与自变量x 的部分对应值如下表,则该抛物线的顶点坐标为 ,m = .三、解答题(共计74分)20.解方程:(12分)(1)(2)2x x x -=- (2)(2)1y y -=○ 订 ○ 线 ○ 内 ○ 不 ○ 能 ○ 答 ○ 题学校 班 姓 考21、(8分)如右图,方格纸中的每个都是边长为1的正方形,将△OAB 绕点O 按顺时针方向旋转90°得到△OA ′B ′.(1)在给定的方格纸中画出△OA ′B ′; (2)求出OA ,AA ′的长为.22、(8分)阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca.请根据该材料解题:已知x 1,x 2是方程x 2+6x +3=0的两实数根,求1211x x +和221212x x x x +的值. 23、(12分)如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中)是球飞出的水平距离,结果球离球洞的水平24、(10分)如图所示,在△中,90OAB ∠=︒, 6OA AB ==,将OAB ∆ 绕点O 沿逆时针方向旋转 90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ; (2)连接1AA ,求证:四边形11OAA B 是平行四边形.(24题图)23题图○ 订 ○ 线 ○ 内 ○ 不 ○ 能 ○ 答 ○ 题学校 班 姓 考25、(12分)一家用电器开发公司研制出一种新型的电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件.为了增加销售量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售量y (万件)与销售单价x (元)之间的函数关系式(不必写出x 的取值范围);(2)求出月销售利润z (万元)(利润=售价-成本价)与销售单价x (元)之间的函数关系式(不必写出x 的取值范围).(3)若某月利润为350万元时,则该月销售量为多少万件,此时销售单价为多少元?26、(12分)如图,在平面直角坐标系中,直线5+=kx y 与x 轴 交于点A ,与y 轴交于点B ,与抛物线bx ax y +=2交于点C 、D . 已知点C 的坐标为(1,7),点D 的横坐标为5. (1)求直线与抛物线的解析式;(2)将此抛物线沿对称轴向下平移几个单位, 抛物线与直线AB 只有一个交点.学校 班 姓 考○ 订 ○ 线 ○ 内 ○ 不 ○ 能 ○ 答 ○ 题学校 班 姓 考○ 订 ○ 线 ○ 内 ○ 不 ○ 能 ○ 答 ○ 题学校 班 姓 考;○ 订 ○ 线 ○ 内 ○ 不 ○ 能 ○ 答 ○ 题学校 班 姓 考○ 订 ○ 线 ○ 内 ○ 不 ○ 能 ○ 答 ○ 题学校 班 姓 考九 年级 数学 学科答案一、选择题:1、B2、C3、D4、C5、D6、D7、D8、B9、B 10、C 11、A 12、C 13、D二、填空题:14、2015 15、30︒ 16、-1 17、 0 18、 (1)2070x x -= 19、(1,-2),-1三、解答题:20、(1)解:x(x-2)=x-2 (2)解:即x(x-2)-(x-2)=0(2分)(x-2)(x-1)=0(2分)122,1x x ==(2分)(方法不限,酌情给分)21、(1)△OA ′B ′的位置如图.(4分)(∴抛物线开口向下,顶点为,对称轴为,得(())52'2OA AA ======分分()()))22212(2)12101,2,14(2)41(1)8011112y y y y a b c b ac x x x -=--===-=-∆=-=--⨯⨯-=>∴==∴=+= 2分分分分()12121212○ 订 ○ 线 ○ 内 ○ 不 ○ 能 ○ 答 ○ 题学校 班 姓 考解得x 1=0,x 2=8.(1分)∴球飞行的最大水平距离是8m .(1分)(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m .∴抛物线的对称轴为x =5,顶点为(1分)设此时对应的抛物线解析式为(1分)又∵点(0,0)在此抛物线上,(1分),即(1分)24、(1)因为,∠OAB=90°,OA=AB,所以,△OAB 为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即16OA OA ==,(2分) 对应角∠11AOB =∠AOB=45°,旋转角∠1AOA =90°, 所以,∠AOB1的度数是90°+45°=135°.(2分) (2)∵∠1AOA =∠11OA B =90°, ∴OA ∥11A B ,(2分) 又OA=AB=11A B ,∴四边形11OAA B 是平行四边形.(2分) 25、(1)由题意得:y=20+2(40-x ) =-2x+100.(4分)∴y 与x 的函数关系式为y=-2x+100; (2)z=(x-18)y (2分) =(x-18)(-2x+100) =-2x 2+136x-1800,(2分)(24题图)装○订○线○内○不○能○答○题学校班姓考∴z 与x 的函数关系式为z=-2x 2+136x-1800; (3)当2350,21361800350z x x =-+-=时(1分) 解得:1225,43.x x ==(1分) 因为1840x ≤≤ 所以25x =(1分) 些时210022510050(y x =-+=-⨯+=万件)(1分) 即此时该月销售量为50万件,销售单价为25元。
26、(1)∵直线y=kx+5过C(1,7) ∴7=k+5 ∴k=2 ∴直线的解析式为:y=2x+5 (2分) 把x=5代入y=2x+5 Y=15 ∴D(5,15) (1分) 又y=ax 2+bx 的图象过C(1,7),D(5,15) 7=a+b ∴ 15=25a+5b 解得:a= -1,b=8 (2分) ∴抛物线的解析式为:y= -x 2+8x (1分) (2)设抛物线y= -x 2+8x 向下平移c 个单位与直线y=2x+5只有一个交点,则 y= -x 2+8x-c 方程组 只有一个解 (2分) y=2x+5 解得:c =4 (3分) 抛物线y= -x 2+8x 向下平移4个单位与直线y=2x+5只有一个交点.(1分)。