2017届河北省衡水中学高三数学(理)一轮复习单元检测:21坐标系与参数方程.doc

合集下载

河北省衡水中学2017届高三高考押题2卷理数试题(解析版)

河北省衡水中学2017届高三高考押题2卷理数试题(解析版)

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅱ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】B【解析】由题意可得:,则集合=.本题选择B选项.2.设复数满足,则()A. B. C. D.【答案】C【解析】由题意可得: .3.若,,则的值为()A. B. C. D.【答案】A【解析】∵,∴∈(,),又因为,∴故sinα=sin[()-]=sin()cos-cos()sin== ,故选A.点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.4.已知直角坐标原点为椭圆:的中心,,为左、右焦点,在区间任取一个数,则事件“以为离心率的椭圆与圆:没有交点”的概率为()A. B. C. D.【答案】A【解析】满足题意时,椭圆上的点到圆心的距离:,整理可得,据此有:,题中事件的概率 .本题选择A选项.5.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过的正角.已知双曲线:,当其离心率时,对应双曲线的渐近线的夹角的取值范围为()A. B. C. D.【答案】D【解析】由题意可得:,设双曲线的渐近线与轴的夹角为,双曲线的渐近线为,则,结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为.本题选择D选项.6.某几何体的三视图如图所示,若该几何体的体积为,则它的表面积是()A. B.C. D.【答案】A【解析】由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:由题意:,据此可知:,,,它的表面积是.本题选择A选项.点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图相同,但圆锥的不同.7.函数在区间的图象大致为()A. B.C. D.【答案】A【解析】分析:判断的奇偶性,在上的单调性,计算的值,结合选项即可得出答案.详解:设,当时,,当时,,即函数在上为单调递增函数,排除B;由当时,,排除D;因为,所以函数为非奇非偶函数,排除C,故选A.点睛:本题主要考查了函数图象的识别,其中解答中涉及到函数的单调性、函数的奇偶性和函数值的应用,试题有一定综合性,属于中档试题,着重考查了分析问题和解答问题的能力.8.二项式的展开式中只有第项的二项式系数最大,且展开式中的第项的系数是第项的系数的倍,则的值为()A. B. C. D.【答案】B【解析】二项式的展开式中只有第6项的二项式系数最大,则,二项式展开式的通项公式为:,由题意有:,整理可得: .本题选择D选项.点睛:二项式系数与展开式项的系数的异同一是在T r+1=a n-r b r中,是该项的二项式系数,与该项的(字母)系数是两个不同的概念,前者只指,而后者是字母外的部分,前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.二是二项式系数的最值与增减性与指数n的奇偶性有关,当n为偶数,中间一项的二项式系数最大;当n为奇数时,中间两项的二项式系数相等,且同时取得最大值.9.执行如图的程序框图,若输入的,,,则输出的的值为()A. B. C. D.【答案】C【解析】依据流程图运行程序,首先初始化数值,x=0,y=1,n=1 ,进入循环体:x=n y=1,y==1,时满足条件y2≥x,执行n=n+1=2 ,进入第二次循环,x=n y=2,y==,时满足条件y2≥x,执行n=n+1=3 ,进入第三次循环,x=n y=2,y==,时不满足条件y2≥x,输出 .10.已知数列,,且,,则的值为()A. B. C. D.【答案】C【解析】由递推公式可得:当为奇数时,,数列是首项为1,公差为4的等差数列,当为偶数时,,数列是首项为2,公差为0的等差数列,本题选择C选项.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.11.已知函数的图象如图所示,令,则下列关于函数的说法中不正确的是()A. 函数图象的对称轴方程为B. 函数的最大值为C. 函数的图象上存在点,使得在点处的切线与直线:平行D. 方程的两个不同的解分别为,,则最小值为【答案】C【解析】由函数的最值可得,函数的周期,当时,,令可得,函数的解析式 .则:结合函数的解析式有,而,选项C错误,依据三角函数的性质考查其余选项正确.本题选择C选项.12.已知函数,若存在三个零点,则的取值范围是()A. B. C. D.【答案】D【解析】很明显,由题意可得:,则由可得,由题意得不等式:,即:,综上可得的取值范围是.本题选择D选项.点睛:函数零点的求解与判断(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分13.向量,,若向量,共线,且,则的值为__________.【答案】-8【解析】由题意可得:或,则:或 .14.在平面直角坐标系中,点是椭圆上的点,以为圆心的圆与轴相切于椭圆的焦点F,圆与轴相交于、两点.若为锐角三角形,则该椭圆离心率的取值范围是.【答案】【解析】试题分析:∵△PQM是锐角三角形,∴∴化为∴解得∴该椭圆离心率的取值范围是故答案为:15.设,满足约束条件,则的取值范围为__________.【答案】【解析】绘制不等式组表示的可行域如图所示,目标函数表示可行域内的点与坐标原点之间连线的斜率,目标函数在点处取得最大值,在点处取得最小值,则的取值范围为.点睛:本题是线性规划的综合应用,考查的是非线性目标函数的最值的求法.解决这类问题的关键是利用数形结合的思想方法,给目标函数赋于一定的几何意义.16.在平面五边形中,已知,,,,,,当五边形的面积时,则的取值范围为__________.【答案】【解析】【详解】由题意可设:,则:,则:当时,面积有最大值;当时,面积有最小值;结合二次函数的性质可得:的取值范围为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知数列的前n项和为(1)求数列的通项公式;(2)记,求的前项和【答案】(1) ;(2) .【解析】试题分析:(1)首先利用S n与a n的关系:当n=1时,a1=S1,当n≥2时,a n=S n-S n-1;结合已知条件等式推出数列{a n}是等比数列,由此求得数列{a n}的通项公式;(2),利用裂项求和即可.试题解析:(1)当时,由及,得,即,解得.又由,① 可知,②②-①得,即.且时,适合上式,因此数列是以为首项,公比为的等比数列,故.(2)由(1)及,可知,所以,故.18.如图所示的几何体中,底面为菱形,,,与相交于点,四边形为直角梯形,,,,平面底面.(1)证明:平面平面;(2)求二面角的余弦值.【答案】(1)见解析;(2)余弦值为.【解析】【分析】(1)先由菱形的性质以及面面垂直的性质证明平面,从而,再利用勾股定理证明,从而可得平面,进而可得结果;(2)取中点,可证明平面,又在菱形中,,分别以,,的方向为,,轴正方向建立空间直角坐标,平面的法向量可取为,再利用向量垂直数量积为零列方程求出平面的法向量,利用空间向量夹角余弦公式可得结果.【详解】(1)因为底面为菱形,所以,又平面底面,平面平面,因此平面,从而.又,所以平面,由,,,可知,,,,从而,故,又,所以平面.又平面,所以平面平面.(2)取中点,由题可知,所以平面,又在菱形中,,分别以,,的方向为,,轴正方向建立空间直角坐标系(如图示),则,,,,.所以,,.由(1)可知平面,所以平面的法向量可取为,设平面的法向量为,则,即,即,令,得,所以.从而.由图可知,所求二面角的大小为锐角,故所求的二面角的余弦值为.法二:此题也可以连接,,即为所求的二面角的平面角.【点睛】本题主要考查面面垂直的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级名学生中随机抽取名学生进行测试,并将其成绩分为、、、、五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为的人数;(2)若等级、、、、分别对应分、分、分、分、分,学校要求平均分达分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从、两种级别中,用分层抽样的方法抽取个学生样本,再从中任意选取个学生样本分析,求这个样本为级的个数的分布列与数学期望.【答案】(1) 等级为的概率为,成绩为的人数约有;(2)见解析;(3)见解析. 【解析】试题分析:(1)由频率分布直方图估算该校高三年级学生获得成绩为的人数为448;(2)计算平均分可得该校高三年级目前学生的“考前心理稳定整体”已过关.(3)的可能值为0,1,2,3.由超几何分布的概率写出分布列,求得数学期望为 .试题解析:(1)从条形图中可知这100人中,有56名学生成绩等级为,所以可以估计该校学生获得成绩等级为的概率为,则该校高三年级学生获得成绩为的人数约有.(2)这100名学生成绩的平均分为,因为,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中级4个,级7个,从而任意选取3个,这3个为级的个数的可能值为0,1,2,3.则,,,.因此可得的分布列为:则.20.已知椭圆:的离心率为,且过点,动直线:交椭圆于不同的两点,,且(为坐标原点).(1)求椭圆的方程;(2)讨论是否为定值?若为定值,求出该定值,若不是请说明理由.【答案】(1);(2)2.【解析】试题分析:(1)由题意求得,,故所求的椭圆方程为.(2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得为定值.试题解析:(1)由题意可知,所以,即,①又点在椭圆上,所以有,②由①②联立,解得,,故所求的椭圆方程为.(2)设,由,可知.联立方程组消去化简整理得,由,得,所以,,③又由题知,即,整理为.将③代入上式,得.化简整理得,从而得到.21.设函数.(1)试讨论函数的单调性;(2)设,记,当时,若方程有两个不相等的实根,,证明.【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)求解函数的导函数,分类讨论可得:①若时,当时,函数单调递减,当时,函数单调递增;②若时,函数单调递增;③若时,当时,函数单调递减,当时,函数单调递增.(2)构造新函数,结合新函数的性质即可证得题中的不等式.试题解析:(1)由,可知.因为函数的定义域为,所以,①若时,当时,,函数单调递减,当时,,函数单调递增;②若时,当在内恒成立,函数单调递增;③若时,当时,,函数单调递减,当时,,函数单调递增.(2)证明:由题可知,所以.所以当时,;当时,;当时,.欲证,只需证,又,即单调递增,故只需证明. 设,是方程的两个不相等的实根,不妨设为,则两式相减并整理得,从而,故只需证明,即.因为,所以(*)式可化为,即.因为,所以,不妨令,所以得到,.记,,所以,当且仅当时,等号成立,因此在单调递增.又,因此,,故,得证,从而得证.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.在直角坐标系中,曲线:(为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线:.(1)试将曲线与化为直角坐标系中的普通方程,并指出两曲线有公共点时的取值范围;(2)当时,两曲线相交于,两点,求.【答案】(1)的取值范围为;(2).【解析】试题分析:(1)由题意计算可得曲线与化为直角坐标系中的普通方程为,;的取值范围是;(2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得.试题解析:(1)曲线:消去参数可得普通方程为.曲线:,两边同乘.可得普通方程为.把代入曲线的普通方程得:,而对有,即,所以故当两曲线有公共点时,的取值范围为. (2)当时,曲线:,两曲线交点,所在直线方程为.曲线的圆心到直线的距离为,所以.23.已知函数.(1)在下面给出的直角坐标系中作出函数的图象,并由图象找出满足不等式的解集;(2)若函数的最小值记为,设,且有,试证明:.【答案】(1)解集为;(2)见解析见解析.【解析】试题分析:(1)将函数写成分段函数的形式解不等式可得解集为.(2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件.试题解析:(1)因为所以作出图象如图所示,并从图可知满足不等式的解集为.(2)证明:由图可知函数的最小值为,即.所以,从而,从而.当且仅当时,等号成立,即,时,有最小值,所以得。

2017届河北衡水中学高三9月联考摸底(全国卷)数学(理)试卷及解析

2017届河北衡水中学高三9月联考摸底(全国卷)数学(理)试卷及解析
【答案】A
【解析】设双曲线方程为

如图所示, ,过点 作 轴,垂足为 ,则 ,在 中, ,即有 ,故点 的坐标为 ,代入双曲线方程得 ,即 为 ,即 ,则 ,故选A.
8.已知 满足约束条件 ,则 的最小值为( )
A.-6B.-3C.-4D.-2
【答案】C
【解析】由约束条件得到可行域如图: 变形为 ,当此直线经过图中 时,在 轴的截距最大, 最小,所以 的最小值为 ;故选C.
3.已知 是奇函数,且 ,当 时, ,则 ( )
A. B. C. D.
【答案】D
【解析】因为 是奇函数,且 ,所以 ,所以 ,又当 时, ,所以 ,所以 ,故选D.
4.直线 与圆 相交于 两点,若 ,则 的取值范围是 ( )
A. B. C. D.
【答案】D
【解析】当 时,圆心 到直线 的距离为 ,故当 时, ,求得 ,故选:D.
16.已知三棱锥 平面 ,其中 , , 四点均在球 的表面上,则球 的表面积为__________.
A. B. C. D.
【答案】C
【解析】∵该几何体的底面边长为2,侧棱长为 , ∴该几何体的高为 ,底面正六边形平行两边之间的距离为 , ∴该几何体的侧视图可能是C, 故选C.
7.已知 为双曲线 的左,右顶点,点 在 上, 为等腰三角形,且顶角为120°,则 的离心率为 ( )
A. B.2C. D.
11.如图是函数 的部分图象,则函数 的零点所在的区间是( )
A. B. C. D.
【答案】B
【解析】由函数 的部分图象得 ,即有 ,从而 ,而 在定义域内单调递增, ,由函数 的部分图象,结合抛物线的对称轴得到: ,解得 ,∴ ,∴函数 的零点所在 的区间是 ;故选B.

21 坐标系与参数方程(仿真押题)-2017年高考数学(理)命题猜想与仿真押题含解析

21 坐标系与参数方程(仿真押题)-2017年高考数学(理)命题猜想与仿真押题含解析

专题21 坐标系与参数方程(仿真押题)2017年高考数学(理)命题猜想与仿真押题1.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为ρsin(θ-错误!)=错误!,曲线C的参数方程为错误!(1)写出直线l的直角坐标方程;(2)求曲线C上的点到直线l的距离的最大值.解:(1)∵ρsin(θ-错误!)=错误!,∴ρ(错误!sinθ-错误!cosθ)=错误!,∴错误!y-错误!x=错误!,即x-错误!y+1=0。

故直线l的直角坐标方程是x-3y+1=0.(2)方法一:由已知可得,曲线C上的点的坐标为(2+2cos α,2sinα),∴曲线C上的点到直线l的距离d=错误!=错误!≤错误!,故最大距离是错误!.方法二:曲线C是以(2,0)为圆心,以2为半径的圆,圆心到直线l的距离为错误!,∴最大距离为错误!+2=错误!。

2.在直角坐标系xOy中,圆C的参数方程为错误!(α为参数).(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(-2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.解:(1)圆C的参数方程为错误!(α为参数),所以其普通方程为(x-3)2+(y+4)2=4,所以圆C的极坐标方程为ρ2-6ρcosθ+8ρsinθ+21=0。

(2)点M(x,y)到直线AB:x-y+2=0的距离d=错误!,故△ABM的面积S=错误!×|AB|×d=|2cosα-2sinα+9|=|2 错误!sin(错误!-α)+9|,所以△ABM面积的最大值为9+2 错误!.3.在平面直角坐标系xOy中,直线l的参数方程为错误!(t 为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ。

(1)将直线l的参数方程化为极坐标方程;(2)求直线l和曲线C交点的极坐标(ρ≥0,0≤θ〈2π).解:(1)将直线l:错误!(t为参数)消去参数t,化为普通方程错误! x-y-2 错误!=0,将错误!代入错误!x-y-2 错误!=0,得错误!ρcosθ-ρsinθ-2 3=0.4.已知曲线C的极坐标方程为ρ=2cosθ-4sinθ。

河北省衡水中学2017届高三上学期第21周周测数学(理) Word版含答案

河北省衡水中学2017届高三上学期第21周周测数学(理) Word版含答案

河北省衡水中学2017届高三上学期第21周周测数学(理)试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、含有三个实数的集合可表示为{,1,}b a a ,也可表示为2{,0,}a b a +,则20162016a b + 的值是 A .0 B .1 C .-2 D .1±2、设复数2()1a i z i +=+,其中a 为实数,若z 的实部为2,则z 的虚部为 A .12- B .12i - C .32- D .32i - 3、函数cos 42x x y =的图象大致是4、在ABC ∆中,080,100,45a b A ===,则此三角形的解的情况是A .一解B .两解C .一解或两解D .无解5、已知函数()f x 是R 上的单调函数且对任意实数x 都有21[()]213x f f x +=+,则2(log 3)f = A .1 B .45 C .12D .0 6、若某程序框图如图所示,则该程序运行后输出的值是A .2B .3C .4D .57、已知平面直角坐标系内的两个向量(1,2),(,3,2)a b m ==-,,且平面内的任一向量c 都可以唯一的表示成(,c a b λμλμ=+为实数)则m 的取值范围是A .(,2)-∞B .(2,)+∞C .(,)-∞+∞D .(,2)(2)-∞+∞8、已知棱长为1的正方体的俯视图是衣蛾面积为1的正方形,记该正方体的正视图与侧视图的面积分别为12,S S ,则A .1211S S -为定值 B.22122S S +为定值 C .1211S S +为定值 D .12221222S S S S ++为定值 9、已知平面区域3418020x y x y +-≤⎧⎪Ω≥⎨⎪≥⎩夹在两条斜率为34-的平行直线之间,且这两条平行直线间的最短距离为m ,若点(,)P x y ∈Ω,且mx y -的最小值为的,y p x m +最大值为q ,则pq 等于 A .2722 B .3 C .25D .0 10、如图,阴影部分是由四个全等的直角三角形组成的图形,在大正方形随机取一点,这一点落在小正方形内的概率为15 ,若直角三角形的两条直角边的长分别为,()a b a b >,则b a =A .13B .12C .33D .22 11、如图,正方体1111ABCD A B C D -的棱长为3P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形(含三角形)的周长为y ,设BP x =,则当[]1,5x ∈时,函数()y f x =的值域为A .[26,66]B .[26,18]C .[36,18]D .[36,66]12、已知函数()f x 与()f x '的图象如下图所示,则函数()()x f x g x e=的递减区间 A .(0,4) B .4(,1),(,4)3-∞ C .4(0,)3D .(0,1),(4,)+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13、数列{}n a 定义如下:12212(1)1,3,,1,2,3,21n n n n n a a a a a n n n +++===-=++, 若201642017m a >+ ,则正整数m 的最小值为 14、设,,[0,2)a b R c π∈∈,若对任意实数x 都有2sin(3)sin()3x a bx c π-=+,定义在区间[0,3]π上的函数sin 2y x =的图象与cos y x =的图象的焦点横坐标为,d 则满足条件的有序实数组(,,,)a b c d 得组数为15、先后抛掷投资(骰子的六个面分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“,x y 中有偶数且x y ≠”,则事件(|)P B A 等于16、过抛物线22(0)y px p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若,48AF FB BA BC =⋅=,则抛物线的方程为三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17、(本小题满分12分)已知递增的等比数列{}n a 的前n 项和为6,64n S a =,且45,a a 的等差中项为33a .(1)求数列{}n a 的通项公式;(2)设21n nn b a -=,求数列{}n b 的前n 项和n T .18、(本小题满分12分)某园林基地培养了一中新观赏植物,经过一点的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n )进行统计,按照[)[)[)[)[]50,60,60,70,70,80,80,90,90,100分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[)50,60[],90,100的数据).(1)求样本容量n 和频率分布直方图中,x y 的值;(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3珠高度在[)80,90 内的株数,求随机变量X 的分布列及数学期望.19、(本小题满分12分)如图,在三棱柱111ABC A B C -中,0111,90,BB B A AB BC B BC D ===∠=为AC 的中点,1AB B D ⊥.(1)求证:平面11ABB A ⊥平面ABC ;(2)求直线1B D 与平面11ACC A 所成角的正弦值.20、(本小题满分12分)已知两点1(3,0)F -和点2(3,0)F ,点(,)P x y 使平面直角坐标系xOy 内的一动点,且满足24OF OP OF OP +++=,设点P 的轨迹为C .(1)求轨迹C 的方程;(2)设曲线C 上的两点,M N 均在x 轴的上方,且12//FM F N 点使轴上的定点(0,2)R ,若以MN 为直径的圆恒过定点R ,求直线1F M 的方程.21、(本小题满分12分)已知函数()()21ln,8f x x xg x x x==-.(1)求()f x的单调区间和极值点;(2)是否存在实数m,使得函数()()3()4f xh x m g xx=++有三个不同的零点?若存在,求出m的取值范围;若不存在,请说明理由.22、(本小题满分10分)已知曲线C的参数方程为6cos(4sinxyθθθ=⎧⎨=⎩为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换1314x xy y⎧'=⎪⎪⎨⎪'=⎪⎩得到曲线C'.(1)求曲线C'的普通方程;(2)若点A在曲线C'上,点(1,3)D,当点A在曲线C'上运动时,求AD中点P的轨迹方程.23、(本小题满分10分)选修4-5 不等式选讲已知函数()5()f x x m x m R=+--∈.(1)当3m=时,求不等式()6f x>的解集;(2)若不等式()10f x≤对任意实数x恒成立,求m的取值范围.附加题24、已知函数()1ln()f x x axa=+-,其中a R∈且0a≠ .(1)讨论()f x的单调区间;(2)若直线y ax=的图象恒在函数()f x图像的上方,求a的取值范围;(3)若存在1210,0x xa-<<>,使得()()12f x f x==,求证:12x x+>。

河北省衡水中学2017届高三第二次模拟考试数学(理)试题(含答案)

河北省衡水中学2017届高三第二次模拟考试数学(理)试题(含答案)

2016~2017学年度下学期高三年级二模考试数学(理)试卷(答案)I 卷一、选择题(本题共12个小题,每小题均只有一个正确选项,每小题5分,共60分.)A 卷:DBBABBAACB DB B 卷:BCCDA CBDDD AB二、填空题:本题共4个小题,每小题5分,共20分.13.10082016C 14.)3,3(15.416.3510三、解答题:本大题共6题,,共70分.解答应写出文字说明、证明过程或演算步骤。

17.解:(1)由sin 3cos cos C A B =-可得sin()3cos cos A B A B +=-,即sin cos cos sin 3cos cos A B A B A B +=-,因为tan tan 1A B =-,所以A,B 2π≠,两边同时除以cos cos A B ,得到tan tan 3A B +=-,因为tan()tan()tan ,A B C C π+=-=-tan tan tan()1tan tan A B A B A B ++==-所以tan C =,又0C π<<,所以3C π=。

根据正弦定理得sin sin sin 3a b c A B C ===,故,a A b B ==,sin sin sin sin 2220A B A B a b A B ++==+。

6分(2)由(1)及余弦定理可得222cos 32a b c abπ++=,因为c =,所以2210a b ab +-=,即2()210a b ab ab +--=,又由111a b+=,可得a b ab +=,故2()3100ab ab --=解得52()ab ab ==-或舍去,此时5a b ab +==,所以ABC ∆得周长为5+,ABC ∆的面积为15sin 234π⨯⨯=。

12分18.解:(1)由题意21x x <2221S S >。

2分(2)记选到的城市至多是一个“中国十佳宜居城市”为事件A,由已知既是“中国十佳宜居城市”又是“中国十佳最美丽城市”的城市有4个:深圳,惠州,信阳,烟台。

河北衡水中学2017届高三理科数学一轮复习第二十一周测试

河北衡水中学2017届高三理科数学一轮复习第二十一周测试
16.过抛物线 y 2 2 px p 0 的焦点 F 的直线 l 与抛物线在第一象限的交点为 A ,与抛物线的准线 的的交点为 B ,点 A 在抛物线的准线上的射影为 C ,若 AF FB ,BA BC 48 ,则抛物线的方程 为 .
4 3
4 3
三、解答题:解答应写出文字说明、证明过程或演算步骤.
y 的最大值为 q ,则 pq 等于 xm
D. 0
4 B. 5
B. 3
1 C. 2
) C. 4
D.0
27 22
B.3
C.
2 5
10.如图,阴影部分是由四个全等的直角三角形组成的图形, 在大正方形内随机取一点, 这一点落 在小正方形内的概率为
6.若某程序框图如图所示,则该程序运行后输出的值是( A. 2
2 n 1 n an1 an , n 1, 2, n2 n2
, 若
y f ( x) 的值域为(

an 4
2016 ,则正整数 m 的最小值为___________. 2017

14. 设 a, b R, c 0,2 , 若对任意实数 x 都有 2 sin 3x
的最短距离为 m ,若点 P x, y ,且 mx y 的最小值为的 p, ( A. )
2 1 5. 已知函数 f ( x) 是 R 上的单调函数, 且对任意实数 x 都有 f f x x 则 f (log 2 3) , 2 1 3
( A.1 )
D. 5
1 b , 若直角三角形的两条直角边的长分别为 a, b a b ,则 ( 5 a

理数周测 21
1/4
河北衡水中学 2017 届高三数学一轮复习

河北省衡水中学2017届高三上学期第二次调研考试理数试题

河北省衡水中学2017届高三上学期第二次调研考试理数试题

数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. z 是z 的共轭复数,若()2,2(z z zz i i +=-=为虚数单位),则z =( ) A .1i + B .1i -- C .1i -+ D .1i -2. 已知向量a 与b 的夹角为60,2,5a b ==,则2a b -在a 方向上的投影为( ) A .32 B .2 C .52D .3 3. 在我国古代著名的数学专著《九章算术》里有—段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,曰增十三里:驽马初日行九十七里,曰减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢?( )A . 12日B .16日C . 8日D .9日 4. 已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为( ) A . 4 B .16 C . 9 D .35. 动点(),P x y 满足1253y x y x y ≥⎧⎪+≤⎨⎪+≥⎩,点Q 为()1,1,O -为原点,OQ OP OQ λ=,则λ的最大值是( )A . 1-B .1C .2D .2 6. 如图为某几何体的三视图,則该几何体的表面积为( )A . 105+B . 102C .6226++D .626++ 7. 已知函数()()2sin sin 3f x x x ϕ=+是奇函数,其中0,2πϕ⎛⎫∈ ⎪⎝⎭,则函数()()cos 2g x x ϕ=-的图象( ) A .关于点,012π⎛⎫⎪⎝⎭对称 B .可由函数()f x 的图象向右平移3π个单位得到 C .可由函数()f x 的图象向左平移6π个单位得到D .可由函数()f x 的图象向左平移3π个单位得到8. ABC ∆中,若()sin 3cos sin cos C A A B =+,则( )A .3B π=B .2b a c =+C .ABC ∆是直角三角形D .222a b c =+或2B A C =+ 9. 已知数列{}n a 满足()111,2nn n a a a n N a *+==∈+,若()()11121,n n b n n N b a λλ*+⎛⎫=-+∈=- ⎪⎝⎭,且数列{}n b 是单调递增数列,則实数λ的取值范围是( ) A . 23λ>B .32λ>C .23λ<D .32λ< 10. 如图,正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=+,则λμ+= ( )A .43 B .53 C .158D .2 11. 已知函数()3212f x ax x =+,在1x =-处取得极大值,记()()1'g x f x =,程序框图如图所示,若输出的结果20142015S >,则判断框中可以填人的关于n 的判断条件是( )A . 2014n ≤?B .2015n ≤?C .2014n >?D .2015n >?12. 已知{}n a 满足()211112311,,44...44nn n n n n a a a n N S a a a a *-+⎛⎫=+=∈=++++ ⎪⎝⎭,则54nn n S a -=( )A .1n -B .nC .2nD .2n第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 数列{}n a 满足:11a =,且对任意的,m n N *∈都有:n m n m a a a nm +=++,则100a = .14. 在ABC ∆中,111,2,4,,,2224A AB AC AF AB CE CA BD BC π∠======,则DE DF 的值为 .15. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos2C =cos cos 2a B b A +=,则ABC ∆面积的最大值为 .16. 已知方程23ln 02x ax -+=有4个不同的实数根,則实数a 的取值范围是 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且()3cos 23cos a C b c A =.(1)求角A 的大小; (2)求25cos 2sin 22C B π⎛⎫--⎪⎝⎭的取值范围.18. (本小题满分12分)设数列{}n a 的前n 和为n S ,()211,22n n a S na n n n N*==-+∈.(1)求证:数列{}n a 为等差数列, 并分别写出n a 和n S 关于n 的表达式; (2)是否存在自然数n ,使得321...2112423n n S S S S n+++++=?若存在,求出n 的值; 若不存在, 请说明理由; (3)设()()()1232,...7n n n n c n N T c c c c n N n a **=∈=++++∈+,若不等式()32n mT m Z >∈,对n N *∈恒成立, 求m 的最大值.19. (本小题满分12分)如图, 以坐标原点O 为圆心的单位圆与x 轴正半轴交于点A ,点,B P 在单位圆上,且525,,55B AOB α⎛⎫-∠= ⎪ ⎪⎝⎭. (1)求4cos 3sin 5cos 3sin αααα-+的值;(2)若四边形OAQP 是平行四边形.①当P 在单位圆上运动时,求点Q 的轨迹方程; ②设()02POA θθπ∠=≤≤,点(),Q m n ,且()3f m n θ=+,求关于θ的函数()f θ的解析式, 并求其单调增区间.20. (本小题满分12分)已知函数()()1ln f x x a x a R x=-+∈. (1)若函数()f x 在[)1,+∞上单调递增,求实数a 的取值范围; (2)已知()()()()()211321,22g x x m x m h x f x g x x =+-+≤-=+,当1a =时, ()h x 有两个扱值点12,x x ,且12x x <,求()()12h x h x -的最小值.21. (本小题满分12分)在单调递增数列{}n a 中, 122,4a a ==,且21221,,n n n a a a -+成等差数列,22122,n n n a a a ++ 成等比数列,1,2,3,...n =.(1)①求证:数列{}2na 为等差数列;②求数列{}n a 通项公式;(2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:()4,33nn S n N n *>∈+. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,,A B 是圆O 上两点, 延长AB 至点C ,满足22AB BC ==,过C 作直线CD 与圆O 相切于点,D ADB ∠的平分线交AB 于点E .(1)证明:CD CE =; (2)求ADBD的值.23. (本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系中,曲线1C 的参数方程为cos (0,sin x a a b y b θϕϕϕ=⎧>>⎨=⎩为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 是圆心在极轴上且经过极点的圆,已知曲线1C 上的点(3M 对应的参数,34ππϕθ==与曲线2C 交于点2,4D π⎫⎪⎭. (1)求曲线1C ,2C 的普通方程; (2)()12,,,2A B πρθρθ⎛⎫+⎪⎝⎭是曲线1C 上的两点, 求221211ρρ+的值.24. (本小题满分10分)选修4-5:不等式选讲 已知()2122f x x x x =-++++. (1)求证:()5f x ≥;(2)若对任意实数()229,1521x f x a a -<++都成立, 求实数a 的取值范围.河北省衡水中学2017届高三上学期第二次调研考试数学(理)试题参考答案一、选择题(每小题5分,共60分)1-5.DADBD DCB 11-12.BB 二、填空题(每小题5分,共20分)13.5050 14.14- 15.2 16.20,2e ⎛⎫ ⎪⎝⎭三、解答题17.解:解:(1)由正弦定理可得,cos 2sin cos cos A C B A C A =,从而可得()2sin cos 2sin cos A C B A B B A +==,又B 为三角形的内角, 所以sin 0B ≠,于是cos A =,又A 为三角形的内角, 因此6A π=. (2)255cos 2sin sin cos 1sin cos 1226C B B C B B ππ⎛⎫⎛⎫--=+-=+-- ⎪ ⎪⎝⎭⎝⎭553sin coscos sin sin 1sin cos 1166226B B B B B B πππ⎛⎫=++-=--=-- ⎪⎝⎭,由6A π=可知,520,,,6663B B ππππ⎛⎫⎛⎫∈∴-∈- ⎪⎪⎝⎭⎝⎭,从而1sin ,162B π⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,因此116B π⎛⎤⎛⎫--∈ ⎥ ⎪ ⎝⎭⎝⎦,故25cos 2sin 22C B π⎛⎫-- ⎪⎝⎭的取值范围为1⎛⎤ ⎥ ⎝⎦. 18. 解:(1)由()222n n S na n n n N*=-+∈,得()()()()211121212n n S n a n n n --=---+-≥,相减得()()()()()111144114142n n n n n n n a na n a n n a n a n a a n ---=---+⇒---=-⇒-=≥.()()2321121...2135 (21222232)n nn n n n n S S S S n n n +-⎡⎤⎣⎦∴+++++=++++-+=+=+,由 221124n n +=,得10n =,即存在满足条件的自然数10n =.(3)()()12321111111111,...1...7212122231n n n n c T c c c c n a n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫===-=++++=-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()1112121nn n ⎛⎫=-= ⎪++⎝⎭,()()()()11110,2121221n n n n n n T T T T n n n n +++-=-=>∴<++++,即n T 单调递增, 故()1min 14n T T ==要使32n m T >恒成立, 只需1324m <成立, 即()8m m Z <∈. 故符合条件m 的最大值为7 .19. 解:(1)由三角函数定义得tan 2α=-,所以4cos 3sin 43tan 10105cos 3sin 53tan 1αααααα--===-++-.(2)四边形OAQP 是平行四边形, 所以PA 与OQ 互相平分.①设PA 中点为H ,()()11,,,P x y Q x y ,则22111111,,22x y x y H +⎛⎫+= ⎪⎝⎭,又111,,22x x x y H y y =-⎧⎛⎫∴⎨ ⎪=⎝⎭⎩,代入上式得点Q 的轨迹方程()2211x y -+=.②依题意得11cos sin x y θθ=⎧⎨=⎩,又由①知111cos 1,sin x m m y nn θθ=-=+⎧⎧∴⎨⎨==⎩⎩,()cos 312sin 16f πθθθθ⎛⎫∴=+=++ ⎪⎝⎭, 22,,0262302k k k Z ππππθππθθπ⎧-≤+≤+∈⎪∴≤≤⎨⎪≤≤⎩或()42,3f πθπθ≤≤∴的增区间为0,3π⎡⎤⎢⎥⎣⎦和4,23ππ⎡⎤⎢⎥⎣⎦. 20. 解:(1)由已知可得()'0f x ≥在[]1,+∞上恒成立,()222211'1,10a x ax f x x ax x x x ++=++=∴++≥ 恒成立,21x a x--∴≥, 记()2112x x x x x ϕ--⎛⎫==-+≤- ⎪⎝⎭,当且仅当1x =时等号成立,2a ∴≥-.(2)()21ln 2h x a x x mx =++,当1a =时,由()()22111ln ,'2x mx h x x x mx h x x m x x ++=++=++=,由已知210x mx ++=有两互异实根12,x x ,由根与系数的关系得1212,,1x x m x x +=-=,()()221211122211ln ln 22h x h x x x mx x x mx ⎛⎫⎛⎫∴-=++-++ ⎪ ⎪⎝⎭⎝⎭()()221212121ln ln 2x x m x x x x =-+-+-()()()()222211212121212211ln ln ln 22x x x x x x x x x x x x =--+-+-=--+1212121ln 2x x x x x x ⎛⎫=--+ ⎪⎝⎭. 令()()2222112121229,0,1,22x t t x x x x x x m x =∴∈+=++-≥,2222121212122155151,,,0,2222x x x x x x t t x x x x t +⎛⎫∴+≥∴=+≥+≥∴∈ ⎪⎝⎭,()()()()()2122111ln ,'222t h x h x t t t t tϕϕ-⎛⎫∴-=--=∴=-⎪⎝⎭,()t ϕ∴单调递减,()min 13ln 224t ϕϕ⎛⎫∴==-⎪⎝⎭. 21. 解:(1)①因为数列{}n a 单调递增数列,()120,0n a a n N*=>∴>∈, 由题意 21221,,n n n aa a -+成等差数列,22122,n n n a a a ++ 成等比数列1,2,3,...n =得. 222121212222,2n n n n n n a a a a a a -+++=+=,于是22n a =化简得=所以数列为等差数列.②又233214226,9a a a a a a =-===,所以数列2=,公差为4221,1n d a a a n =-=∴=+,从而()221n a n =+.结合221222n n n a a a --=可得()211n a n n -=+,因此,当n 为偶数时()2124n a n =+,当n 为奇数时()()134nn n a ++=. (2)求数列{}n a 通项公式为:()()()()()()2121327111111,11,242448nn n n n n n a n n +++++-⎡⎤⎡⎤=+-++-=++⎣⎦⎣⎦, 因为()()()22711111234844nn a n n n n n n +-=++≤++<++,所以()()14112323n a n n n n ⎛⎫>=- ⎪++++⎝⎭,则有123111111111111...4...34451223n n S a a a a n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++>-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 22. 解:(1)由题可知,,,,CDB DAB EDA EDB CED DAE EDA EDC EDB BDC ∠=∠∠=∠∠=∠+∠∠=∠+∠, 故CED EDC ∠=∠,故CD CE =.(2)因为CD 与CA 分别为圆O 的切线和割线, 所以2,3CD CB CA ==,得3CD =,又因为直线CD 与圆O 相切于点D ,则CDB DAC ∠=∠,则CDB CAD ∆=∆,则3BD CD AD AC ==故3ADBD=. 23. 解:(1)将(3m 及时对应的参数,,34ππϕθ==, 代入cos sin x a y b ϕϕ=⎧⎨=⎩得2cos43,23sin 3a a b b ππ⎧=⎪=⎧⎪∴⎨=⎩=,所以1C 的方程为221164x y +=,设圆2C 的半径R ,则圆2C 的方程为2cos R ρθ=(或()222x R y R -+=),将点2,4D π⎫⎪⎭代入得:1,R ∴=∴ 圆2C 的方程为:2cos ρθ=( 或()2211x y -+=).(2)设曲线1C 的方程为2222cos sin 1164ρθρθ+=,将()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭代入得222211cos sin 1164ρθρθ+=,222222cos sin 221164ππρθρθ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+=,所以2222221211cos sin sin cos 11516416416416θθθθρρ⎛⎫⎛⎫+=+++=+= ⎪ ⎪⎝⎭⎝⎭. 24. 解:(1)()()43,25,21,27,1243,2x x x f x f x x x x x --≤-⎧⎪-<≤-⎪=∴⎨+-<≤⎪⎪+>⎩的最小值为()5,5f x ∴≥.(2)由(1)知:()152f x - 的最大值等于5,()222299111511a a a a +=++-≥=++,“=”成立,()22911a a ⇔+=+, 即a =当a =,2291a a ++ 取得最小值5,当a ≠,22951a a +>+, 又因为对任意实数()229,1521x f x a a -<++都成立, 所以a ≠a ∴的取值范围a ≠。

高考数学复习必备 精品推荐 -衡水中学2017届高三高考押题理数试题(原卷版)

高考数学复习必备 精品推荐 -衡水中学2017届高三高考押题理数试题(原卷版)

2017年普通高等学校招生全国统一考试模拟试题理科数学(Ⅰ)第Ⅰ卷一、选择题:本题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则=()A. B. C. D.2. 已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.3. 下列函数中,既是偶函数,又在内单调递增的为()A. B. C. D.4. 已知双曲线:与双曲线:,给出下列说法,其中错误的是()A. 它们的焦距相等B. 它们的焦点在同一个圆上C. 它们的渐近线方程相同D. 它们的离心率相等5. 在等比数列中,“,是方程的两根”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 执行如图的程序框图,则输出的值为()A. 1009B. -1009C. -1007D. 10087. 已知一几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B. C. D.9. 《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点在半圆上,点在直径上,且,设,,则该图形可以完成的无字证明为()A. B.C. D. 学。

科。

网...10. 为迎接中国共产党的十九大的到来,某校举办了“祖国,你好”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,那么选派的4名学生不同的朗诵顺序的种数为()A. 720B. 768C. 810D. 81611. 焦点为的抛物线:的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A. 或B.C. 或D.12. 定义在上的函数满足,且当时,,对,,使得,则实数的取值范围为()A. B.C. D.第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须作答.第22题和第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13. 已知,,若向量与共线,则在方向上的投影为_________.14. 已知实数,满足不等式组且的最大值为,则=__________.15. 在中,角,,的对边分别为,,,,且,的面积为,则的值为__________.16. 已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,,点在线段上,且,过点作圆的截面,则所得截面圆面积的取值范围是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 已知的展开式中的系数恰好是数列的前项和.(1)求数列的通项公式;(2)数列满足,记数列的前项和为,求证:.18. 如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心.(1)求证:平面平面;(2)若,求二面角的余弦值.19. 2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?20. 已知椭圆:的长轴长为6,且椭圆与圆:的公共弦长为.(1)求椭圆的方程.学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档