2017-2018学年江西省萍乡市芦溪县九年级上期中数学试卷含答案解析

合集下载

江西省萍乡市九年级上学期数学期中考试试卷

江西省萍乡市九年级上学期数学期中考试试卷

江西省萍乡市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·泊头期中) 一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A . ﹣1B . ﹣2C . 1D . 02. (2分)用配方法解方程x2+10x+9=0,配方后可得()A . (x+5)2=16B . (x+5)2=1C . (x+10)2=91D . (x+10)2=1093. (2分)已知函数的图象如图所示,则一元二次方程根的存在情况是A . 没有实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 无法确定4. (2分) (2019八下·睢县期中) 如图,菱形纸片中,,为的中点,折叠菱形纸片,使点落在所在的直线上,得到经过点的折痕,则的度数是()A .B .C .D .5. (2分) (2020八下·福州期中) 如图,平行四边形ABCD中,对角线AC、BD相交于点O,则下列结论中错误的是()A . OA=OC,OB=ODB . 当AC⊥BD时,它是菱形C . 当AC=BD时,它是矩形D . 当AC垂直平分BD时,它是正方形6. (2分)在一个袋子中装有4个黑球和若干个白球,每个球除颜色外都相同,摇匀后从中随机摸出一个球记下颜色,再把它放回袋子中,不断重复上述过程.一共摸了40次,其中有10次摸到黑球,则估计袋子中白球的个数大约是()A . 12B . 16C . 20D . 307. (2分) (2018八下·深圳期中) 如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F 是CD上的动点,满足AE+CF=a,△BEF的周长最小值是()A .B .C .D .8. (2分)(2017·焦作模拟) 在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是()A .B .C .D .9. (2分) (2019九上·洛阳月考) 如图,要设计一幅宽为,长为的图案,其中有两横两竖的彩条,横竖彩条的宽度之比为 .若要使彩条所占面积是图案面积的,则竖彩条的宽为()A .B .C .D . 或10. (2分)Rt△ABC中,∠C=90°,AB=13,BC=5,则的值()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2018九上·许昌月考) 三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为________.12. (1分)如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(8,6),∠CAO 的平分线与y轴相交于点D,则点D的坐标为________.13. (1分)如图所示,有三个形状与大小完全相同的直角三角形甲、乙、丙,其中任意两个平移后可拼成平行四边形或等腰三角形,则从中任意取出两个,能拼成等腰三角形的概率为________.14. (1分)(2017·天津模拟) 一元二次方程x2﹣x﹣1=0根的判别式的值等于________15. (1分) (2020八下·武汉期中) 如图,矩形ABCD中,AB=12,点E是AD上的一点,AE=6,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G.若G是CD的中点,则BC的长是________.三、解答题 (共7题;共52分)16. (10分) (2019九上·朝阳期中) 用配方法解方程:x2-4x-1=017. (5分) (2019八下·城固期末) 如图,在中,,点M、N分别在BC所在的直线上,且BM=CN,求证:△AM N是等腰三角形.18. (2分) (2018九上·合浦期末) 有2个信封A、B,信封A装有四张卡片上分别写有1、2、3、4,信封B 装有三张卡片分别写有5、6、7,每张卡片除了数字没有任何区别.从这两个信封中随机抽取两张卡片.(1)请你用列表法或画树状图的方法描述所有可能的结果;(2)把卡片上的两个数相加,求“得到的和是3的倍数”的概率.19. (5分)某小区2013年屋顶绿化面积为2000平方米,计划2015年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是多少?20. (10分) (2017八下·汇川期中) 如图,四边形ABCD是菱形,AC=8,BD=6,DH⊥AB于H.求:(1)菱形ABCD的周长;(2)求DH的长.21. (10分) (2018九上·重庆开学考) 小王叔叔家是养猪专业户,他们养的藏香猪和土黑猪一直很受市民欢迎.小王今年10月份开店卖猪肉,已知藏香猪肉售价每斤元,土黑猪肉售价每斤元,每天固定从叔叔家进货两种猪肉共斤并且能全部售完.(1)若每天销售总额不低于元,则每天至少销售藏香猪肉多少斤?(2)小王发现10月份每天上午就能将猪肉全部售完,而且消费者对猪肉的评价很高.于是小王决定调整猪肉价格,并增加进货量,且能将猪肉全部销售完.他将藏香猪肉的价格上涨,土黑猪肉的价格下调,销量与(1)中每天获得最低销售总额时的销量相比,藏香猪肉销量下降了,土黑猪肉销量是原来的倍,结果每天的销售总额比(1)中每天获得的最低销售总额还多了元,求的值.22. (10分)(2018·蒙自模拟) 在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=3,求BC的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共52分)16-1、17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。

2017-2018年江西省萍乡市芦溪县九年级(上)期中数学试卷及参考答案

2017-2018年江西省萍乡市芦溪县九年级(上)期中数学试卷及参考答案
2017-2018 学年江西省萍乡市芦溪县九年级(上)期中数学试卷
一、选择题(本大题共 6 小题,每小题 3 分,共 18 分) 1. (3 分)下列方程是一元二次方程的是( A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 ) D.xy+1=0 )
2. (3 分)已知: = ,则下列式子一定成立的是( A.3x=4y B.x= y C.4x=3y D.xy=12
12. (3 分)如图,菱形 ABCD 中,P 为 AB 中点,∠A=60°,折叠菱形 ABCD,使 点 C 落在 DP 所在的直线上, 得到经过点 D 的折痕 DE, 则∠DEC 的大小为 °.
三、解答题(本大题共 5 小题,每小题 6 分,共 30 分) 13. (6 分)解方程 (1) (4x﹣1)2﹣x2=0 (2)x2﹣3x﹣2=0. 14. (6 分)已知:如图,在矩形 ABCD 中,E 是 BC 边一点,DE 平分∠ADC,EF ∥DC 角 AD 边于点 F,连结 BD. (1)求证:四边形 EFCD 是正方形; (2)若 BE=1,ED=2 ,求 BD 的长.
,那么 AP 的长从这四个班中随机抽取两个 班进行一场篮球比赛,则恰好抽到 1 班和 2 班的概率是 . .
10. (3 分)如图,直线 AD∥BE∥CF,BC= AC,DE=4,那么 EF 的值是
第1页(共24页)
11. (3 分)关于 x 的一元二次方程(a﹣5)x2﹣4x﹣1=0 有实数根,则实数 a 的 取值范围是 .
=k(a+b+c≠0) ,则 k=(
6. (3 分)如图,在▱ABCD 中,AB=6,AD=9,∠BAD 的平分线交 BC 于点 E,交 DC 的延长线于点 F,BG⊥AE,垂足为 G,BG= ,则△CEF 的周长为( )

2017-2018学年第一学期期中质量调研模拟检测·九年级数学试题[PDF版含答案解析]

2017-2018学年第一学期期中质量调研模拟检测·九年级数学试题[PDF版含答案解析]

20. 解:(1)如图 1,点 M 就是要找的圆
心. 正确即可 (2)证明:由 A(0,4),可得小正方形 的边长为 1,从而 B(4,4)、C(6,2)
(2) ∵m>-t, ∴取 m=0, 方程为 x2-2x=0,
解得 x1=0,x2=2. 19. 解:(1)由图可知,花圃的面积为 (100-2a)(60-2a)=4a2-320a+6000; (2) 由已知可列式: 100×60(100-2a) (60-2a) = ×100×60, 解得:a1=5,a2=75(舍去), 所以通道的宽为 5 米;
A.
m
B.
期中模考·九年级数学(解析卷) 第 1 页 共 15 页
t
m
C.
t
m
D. 1m
8. 如图(见第 1 页),在直角梯形 ABCD 中,AB∥CD,AB⊥BC,以 BC 为直径的⊙O 与 AD 相切,点 E 为 AD 的中点,下列结论正确 的个数是( ) .. (1)AB+CD=AD; (3)AB•CD=
期中模考·九年级数学(解析卷) 第 5 页 共 15 页
23. (12 分)已知:△ABC 内接于⊙O,D 是 上一点,OD⊥BC,垂足为 H. (1)如图 1,当圆心 O 在 AB 边上时,求证:AC=2OH; (2)如图 2,当圆心 O 在△ABC 外部时,连接 AD、CD,AD 与 BC 交于点 P,请你证 明:∠ACD=∠APB; (3)在(2)的条件下,如图 3,连接 BD,E 为⊙O 上一点,连接 DE 交 BC 于点 Q、 交 AB 于点 N,连接 OE,BF 为⊙O 的弦,BF⊥OE 于点 R 交 DE 于点 G,若 ∠ACD-∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC=t,求 BF 的长.

2017-2018学年新人教版九年级上期中数学试卷含答案解析

2017-2018学年新人教版九年级上期中数学试卷含答案解析

九年级(上)期中数学试卷一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和12.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=06.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.48.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.914.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣216.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是,顶点坐标.三、解答题20.解方程:x2﹣2x=x﹣2.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.九年级(上)期中数学试卷参考答案与试题解析一、选择题:1-10每小题3分,11-16每小题3分1.方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3和4 B.3和﹣4 C.3和﹣1 D.3和1【考点】一元二次方程的一般形式.【分析】根据方程的一般形式和二次项系数以及一次项系数的定义即可直接得出答案.【解答】解:∵3x2﹣4x﹣1=0,∴方程3x2﹣4x﹣1=0的二次项系数是3,一次项系数是﹣4;故选B.2.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)【考点】二次函数的性质.【分析】根据顶点坐标公式,可得答案.【解答】解:y=x2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x2﹣2x+2的顶点坐标是(1,1).故选:A.3.将△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则直线AB与直线A1B1的夹角(锐角)为()A.130°B.50°C.40°D.60°【考点】旋转的性质.【分析】先根据题意画出图形,利用旋转的性质得出OA=OA1,OB=OB1,AB=A1B1,那么根据SSS证明长△OAB≌△OA1B1,得到∠OAB=∠OA1B1,由等角的补角相等得出∠OAM=∠OA1M.设A1M与OA交于点D,在△OA1D与△MAD中,根据三角形内角和定理即可求出∠M=∠A1OD=50°.【解答】解:如图,△ABC绕O点顺时针旋转50°得△A1B1C1(A、B分别对应A1、B1),则∠A1OA=50°,OA=OA1,OB=OB1,AB=A1B1.设直线AB与直线A1B1交于点M.由SSS易得△OAB≌△OA1B1,∴∠OAB=∠OA1B1,∴∠OAM=∠OA1M,设A1M与OA交于点D,在△OA1D与△MAD中,∵∠DAM=∠DA1O,∠ODA1=∠MDA,∴∠M=∠A1OD=50°.故选B.4.用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±【考点】解一元二次方程﹣配方法.【分析】把常数项4移到等号的右边,再在等式的两边同时加上一次项系数6的一半的平方,配成完全平方的形式,从而得出答案.【解答】解:∵x2+6x+4=0,∴x2+6x=﹣4,∴x2+6x+9=5,即(x+3)2=5.故选:C.5.下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=0【考点】根的判别式.【分析】分别求出各个选项中一元二次方程根的判别式,进而作出判断.【解答】解:A、x2﹣x﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C、2015x2+11x﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确;故选D.6.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(2,﹣3)D.(﹣3,﹣3)【考点】关于原点对称的点的坐标.【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3),故选:C.7.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.8.如图所示,△ABC绕点A旋转至△AEF,其旋转角是()A.∠BAE B.∠CAE C.∠EAF D.∠BAF【考点】旋转的性质.【分析】旋转后任意一对对应点与旋转中心的连线所成的角都是旋转角.【解答】解:∵点B与点E是一对对应点,点C与点F是一对对应点.∴旋转角为∠BAE或∠CAF.故选:A.9.下列说法正确的是()A.旋转改变图形的大小和形状B.旋转中,图形的每个点移动的距离相同C.经过旋转,图形的对应线段、对应角分别相等D.经过旋转,图形的对应点的连线平行且相等【考点】旋转的性质.【分析】根据旋转的性质对各选项进行判断.【解答】解:A、旋转不改变图形的大小和形状,所以A选项错误;B、旋转中,图形的每个点移动的距离不一定相同,所以B选项错误;C、经过旋转,图形的对应线段、对应角分别相等,所以C选项正确;D、经过旋转,图形的对应点的连线不一定平行或相等,所以D选项错误.故选C.10.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)【考点】坐标与图形变化﹣旋转.【分析】先根据旋转的性质得到点A的对应点为点D,点B的对应点为点E,再根据旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选C.11.如图,将矩形ABCD绕点A顺时针旋转得到矩形AB′C′D′的位置,旋转角为α(0<α<90°),若∠1=110°,则∠α=()A.10°B.20°C.25°D.30°【考点】旋转的性质.【分析】由∠B=∠D′=90°,可知:∠2+∠D′AB=180°,从而可求得∠D′AB=70°,∠α=∠DAD′=90°﹣∠D′AB.【解答】解:如图所示:∵∠B=∠D′=90°,∴∠2+∠D′AB=180°.∴∠D′AB=180°﹣∠2=180°﹣110°=70°.∵∠α=∠DAD′,∴∠α=90°﹣∠D′AB=90°﹣70°=20°.故选:B.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.13.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最小值为()A.﹣3 B.3 C.﹣6 D.9【考点】抛物线与x轴的交点.【分析】根据二次函数y=ax2+bx的图象可知,开口向下,a<0,二次函数有最大值y=3,知,一元二次方程ax2+bx+m=0有实数根,知b2﹣4am≥0,从而可以解答本题.【解答】解:∵由二次函数y=ax2+bx的图象可知,二次函数y=ax2+bx的最大值为:y=3,∴.∴.∵一元二次方程ax2+bx+m=0有实数根,∴b2﹣4am≥0.∵二次函数y=ax2+bx的图象开口向下,∴a<0.∴m≥.∴m≥﹣3.即m的最小值为﹣3.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.14.下列图形绕某点旋转180°后,不能与原来图形重合的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,能与原来图形重合,故错误;B、不是中心对称图形,不能与原来图形重合,故正确;C、是中心对称图形,能与原来图形重合,故错误;D、是中心对称图形,能与原来图形重合,故错误.故选B.15.若二次函数y=ax2+bx+a2﹣2(a、b为常数)的图象如图,则a的值为()A.1 B.C. D.﹣2【考点】二次函数图象上点的坐标特征.【分析】根据图象开口向下可知a<0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.【解答】解:由图可知,函数图象开口向下,∴a<0,又∵函数图象经过坐标原点(0,0),∴a2﹣2=0,解得a1=(舍去),a2=﹣.故选C.16.若b<0,则二次函数y=x2﹣bx﹣1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数图象与系数的关系.【分析】只需运用顶点坐标公式求出顶点坐标,然后根据b<0就可确定顶点所在的象限.【解答】解:二次函数y=x2﹣bx﹣1的图象的顶点为(﹣,),即(,),∵b<0,∴<0,<0,∴(,)在第三象限.故选C.二、填空题:每小题3分,共10分17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【考点】关于原点对称的点的坐标.【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).18.若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是﹣2.【考点】一元二次方程的一般形式.【分析】根据题意可得m2﹣4=0,且m﹣2≠0,再解即可.【解答】解:由题意得:m2﹣4=0,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.19.已知抛物线y=﹣x2+2x+2,该抛物线的对称轴是直线x=1,顶点坐标(1,3).【考点】二次函数的性质.【分析】把抛物线解析式化为顶点式可求得答案.【解答】解:∵y=﹣x2+2x+2=﹣(x﹣1)2+3,∴抛物线对称轴为x=1,顶点坐标为(1,3),故答案为:直线x=1;(1,3).三、解答题20.解方程:x2﹣2x=x﹣2.【考点】解一元二次方程﹣因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1.21.已知函数y=x2﹣mx+m﹣2.(1)求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)若函数y有最小值﹣,求函数表达式.【考点】抛物线与x轴的交点;二次函数的最值.【分析】(1)先计算判别式的值得到△=m2﹣4m+8,然后配方得△=(m﹣2)2+4,利用非负数的性质得△>0,于是根据抛物线与x轴的交点问题即可得到结论;(2)根据二次函数的最值问题得到=﹣,解方程得m1=1,m2=3,然后把m的值分别代入原解析式即可.【解答】(1)证明:y=x2﹣mx+m﹣2,△=(﹣m)2﹣4(m﹣2)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,∴不论m为何实数,此二次函数的图象与x轴都有两个不同交点;(2)=﹣,整理得m2﹣4m+3=0,解得m1=1,m2=3,当m=1时,函数解析式为y=x2﹣x﹣1;当m=3时,函数解析式为y=x2﹣3x+1.22.如图所示,正方形ABCD的边长等于2,它绕顶点B按顺时针方向旋转得到正方形A′BC′D′.在这个旋转过程中:①旋转中心是什么?②若旋转角为45°,边CD与A′D′交于F,求DF的长度.【考点】旋转的性质.【分析】①将正方形绕顶点B旋转,故旋转中心为B点;②由正方形的性质可知∠ABD=45°,由旋转角为45°可知∠ABA′=45°,从而可知点B、A′、D三点在一条直线上,先利用勾股定理求得BD的长,从而可求得A′D的长,在Rt△A′DF中利用勾股定理可求得DF的长度.【解答】解:①旋转中心为B点.②如图所示:∵旋转角为45°,∴∠ABA′=45°.∵四边形ABCD为正方形,∴∠ABD=45°,∠A′DF=45°.∴∠ABA′=∠ABD.∴点B、A′、D三点在一条直线上.在Rt△ABD中,BD===2.∵A′D=BD﹣BA′,∴A′D=2﹣2.在Rt△A′DF中,DF==4﹣2.23.已知二次函数y=﹣0.5x2+4x﹣3.5(1)用配方法把该函数化为y=a(x﹣h)2+k的形式,并指出函数图象的对称轴和顶点坐标;(2)求函数图象与x轴的交点坐标.【考点】二次函数的三种形式.【分析】(1)运用配方法把一般式化为顶点式,根据二次函数的性质求出对称轴和顶点坐标;(2)根据题意得到一元二次方程,解方程得到答案.【解答】解:(1)∵y=﹣0.5x2+4x﹣3.5,∴y=﹣0.5(x﹣4)2+4.5,对称轴是直线x=4,顶点坐标为(4,4.5);(2)﹣0.5x2+4x﹣3.5=0,解得,x1=7,x2=1,则函数图象与x轴的交点坐标是(7,0)、(1,0).24.某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?【考点】二次函数的应用.【分析】根据题意列出二次函数,将函数化简为顶点式,便可知当x=14时,所获得的利润最大.【解答】解:设销售单价定为x元(x≥10),每天所获利润为y元,则y=[100﹣10(x﹣10)]•(x﹣8)=﹣10x2+280x﹣1600=﹣10(x﹣14)2+360所以将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元25.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【考点】解一元二次方程﹣因式分解法;根与系数的关系.【分析】若方程有两个不相等的实数根,则应有△=b2﹣4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=﹣1,求得k的值后,解方程即可求得另一个根.【解答】证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.26.根据下列条件求m的取值范围.(1)函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x<0时,y随x 的增大而增大;(2)函数y=(2m﹣1)x2有最小值;(3)抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同.【考点】二次函数的性质.【分析】(1)由当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大,可知m+3<0,进一步求得m的取值范围即可;(2)二次函数有最小值,说明抛物线开口向上,即2m﹣1>0,进一步求得m 的取值范围即可;(3)两个抛物线的形状相同,说明二次项系数相同,即m+2=﹣,求得m的数值即可.【解答】解:(1)∵函数y=(m+3)x2,当x>0时,y随x的增大而减小,当x <0时,y随x的增大而增大,∴m+3<0,解得m<﹣3;(2)∵函数y=(2m﹣1)x2有最小值,∴2m﹣1>0,解得:m>;(3)∵抛物线y=(m+2)x2与抛物线y=﹣x2的形状相同,∴m+2=﹣,解得:m=﹣.2017年3月1日。

江西省萍乡市九年级上学期数学期中考试试卷

江西省萍乡市九年级上学期数学期中考试试卷

江西省萍乡市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)用配方法解方程x2+10x+9=0,配方后可得()A . (x+5)2=16B . (x+5)2=1C . (x+10)2=91D . (x+10)2=1092. (2分) (2019七下·龙岗期末) 一个不透明的袋子中只装有1个黄球和3个红球,它们除颜色外完全相同,从中随机摸出一个球,下列说法正确的是()A . 摸到黄球是不可能事件B . 摸到黄球的概率是C . 摸到红球是随机事件D . 摸到红球是必然事件3. (2分)(2019·萧山模拟) 如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在这些小正方形的格点上,AB,CD相交于点E,则sin∠AEC的值为()A .B .C .D .4. (2分) (2019九上·锦州期末) 如图,一个空心圆柱体,其左视图正确的是()A .B .C .D .5. (2分) (2017九上·章贡期末) 已知点A(x1 , y1),B(x2 , y2)是反比例函数y=﹣的图像上的两点,若x1<0<x2 ,则下列结论正确的是()A . y1<0<y2B . y2<0<y1C . y1<y2<0D . y2<y1<06. (2分)直线y=ax﹣6与抛物线y=x2﹣4x+3只有一个交点,则a的值为()A . a=2B . a=10C . a=2或a=﹣10D . a=2或a=107. (2分)如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A . y>1B . 0<y<lC . y>2D . 0<y<28. (2分)(2017·昌平模拟) 如图,点A是反比例函数y= (x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比函数图象上移动时,点B也在某一反比例函数图象y= 上移动,k的值为()A . 2B . ﹣2C . 4D . ﹣49. (2分)已知点C是线段AB的黄金分割点,且AC>BC,则下列等式中成立的是()A . AB2=AC·CBB . CB2=AC·ABC . AC2=CB·ABD . AC2=2AB·BC10. (2分)如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是()A . -1B .C . 1D .二、填空题 (共5题;共6分)11. (1分)(2018·宁夏) 反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而________.(填“增大”或“减小”)12. (1分)方程=3的根是________13. (1分) (2018九上·西峡期中) 已知,则=________.14. (1分)在平面直角坐标系中,已知点A(﹣4,2),B(﹣2,﹣2),以原点O为位似中心,把△ABO放大为原来的2倍,则点A的对应点A′的坐标是________ .15. (2分)(2017·重庆模拟) 如图,△ABC中,∠C=90°,AC=BC=2,取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1 ,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1 ,它的面积记作S2 ,照此规律作下去,则S1=________,S2017=________.三、解答题 (共8题;共102分)16. (20分) (2019九上·遵义月考) 解方程:(1)(2);17. (10分)如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).记s=|x﹣y|.(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标(2)李刚为甲、乙两人设计了一个游戏:当s<3时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?18. (17分) (2017七下·平谷期末) 阅读下面材料:通过整式运算一章的学习,我们发现要验证一个结论的正确性可以有两种方法:例如:要验证结论方法1:几何图形验证:如下图,我们可以将一个边长为(a+b)的正方形上裁去一个边长为(a-b)的小正方形则剩余图形的面积为4ab,验证该结论正确。

江西省萍乡市九年级上学期数学期中试卷

江西省萍乡市九年级上学期数学期中试卷

江西省萍乡市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列图形中,为中心对称图形的是()A .B .C .D .2. (2分)关于方程式88(x-2)2=95的两根,下列判断何者正确?()A . 两根都大于2B . 一根小于-2,另一根大于2C . 两根都小于0D . 一根小于1,另一根大于33. (2分)在平面直角坐标系中,点M(1,﹣2)与点N关于原点对称,则点N的坐标为()A . (﹣2, 1)B . (1,﹣2)C . (2,-1)D . (-1,2)4. (2分) (2019九下·保山期中) 二次函数y=﹣(x﹣3)2+1的最大值为()A . ﹣1B . 1C . ﹣3D . 35. (2分) (2016九上·海南期中) 若x1 , x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A . 1B . 5C . ﹣5D . 66. (2分) (2018九上·硚口期中) 如图,AB,AC,BC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,若MN=1,则BC的值为()A . 1B . 2C . 3D . 47. (2分)如图,A、B、C三点在⊙O上,∠AOB=80º ,则∠ACB的大小()A . 40ºB . 60ºC . 80ºD . 100º8. (2分) (2015八下·龙岗期中) 如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数为()A . 25°B . 30°C . 50°D . 55°9. (2分) (2020九上·奉化期末) 在圆内接四边形ABCD中,与的比为3:2,则∠B的度数为()A . 36°B . 72°C . 108°D . 216°10. (2分)根据表可知方程x2﹣5x+3=0的近似解(精确到十分位)()x0.50.60.70.8…x2﹣5x+30.750.36﹣0.01﹣0.36…A . 0.5B . 0.6C . 0.7D . 0.811. (2分)在抛物线y=x2-4上的一个点是()A . (4,4)B . (1,-4)C . (2,0)D . (0,4)12. (2分)(2018·凉州) 如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是 .对于下列说法:① ;② ;③ ;④ (为实数);⑤当时,,其中正确的是()A . ①②④B . ①②⑤C . ②③④D . ③④⑤二、填空题 (共6题;共6分)13. (1分) (2016九上·红桥期中) 将二次函数y=﹣x2+2x+4的图象向下平移1个单位后,所得图象对应函数的最大值为________.14. (1分) (2017九下·建湖期中) 已知关于x的方程x2﹣mx+6=0的一个解是x=﹣2,则方程的另一个解是________.15. (1分)无论a取什么实数,点P(a-1,2-4a+1)都在二次函数y上,Q(m,n)是二次函数y上的点,则4-2n+1=________.16. (1分) (2019九上·尚志期末) 若抛物线y=﹣﹣kx+k+ 与x轴只有一个交点,则k的值________.17. (1分) (2019九上·新密期末) 在同一平面内,将一副直角三角板ABC和EDF如图放置(∠C=60°,∠F =45°),其中直角顶点D是BC的中点,点A在DE上,则∠CGF=________°.18. (1分)(2020·衡阳) 如图,在平面直角坐标系中,点的坐标,将线段绕点O 按顺时针方向旋转45°,再将其长度伸长为的2倍,得到线段;又将线段绕点O按顺时针方向旋转45°,长度伸长为的2倍,得到线段;如此下去,得到线段、,……,(n 为正整数),则点的坐标是________.三、解答题 (共7题;共57分)19. (10分) (2019九上·洛阳月考) 解方程(1) 2(x+1)2﹣8=0;(2) 5x(x﹣3)=6﹣2x.20. (1分)如图,将等腰Rt△GAE绕点A顺时针旋转60°得到△DAB,其中∠GAE=∠DAB=90°,GE与AD交于点M,过点D作DC∥AB交AE于点C.已知AF平分∠GAM,EH⊥AE交DC于点H,连接FH交DM于点N,若AC=2 ,则MN的值为________.21. (10分)(2019·慈溪模拟) 践行“低碳生活,绿色出行”理念,自行车成为人们喜爱的交通工具。

2017-2018学年度九年级上学期数学期中考试卷及答案

2017-2018学年度九年级上学期数学期中考试卷及答案

2017-2018学年第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3± D.92. 若P(x,-3)与点Q(4,y)关于原点对称,则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx,则配方正确的是()A、3)2(2=+x B、5)2(2-=+x C、3)2(2-=+x D、3)4(2=+x6. 如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题,每小题3分,满分24分)7. 2-x在实数范围内有意义,则x的取值范围是.8. 221x-=的二次项系数是,一次项系数是,常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点,则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0,则m= . 11. 对于任意不相等的两个数a,b ,定义一种运算*如下:ba b a b a -+=*,如523232*3=-+=,那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中,相等的两条弦所对的弧是等弧,其中真命题是_________。

13. 有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转22.5︒,第.2.次.旋转后得到图①,第.4.次.旋转后得到图②…,则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根,则三角形的周长是.三、解答题(共4小题,每小题6分,共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--17. 下面两个网格图均是4×4正方形网格,请分别在两个网格图中选取两个白色的单位正方形并涂黑,使整个网格图满足下列要求.图① 图② 图③ 图④18. 如图,大正方形的边长为515+,小正方形的边长为515-,求图中的阴影部分的面积.四、(本大题共2小题,每小题8分,共16分)19. 数学课上,小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。

【精】2017-2018学年萍乡市芦溪县九年级上期中数学试卷(有答案)

【精】2017-2018学年萍乡市芦溪县九年级上期中数学试卷(有答案)

2017-2018学年江西省萍乡市芦溪县九年级(上)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列方程是一元二次方程的是()A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 D.xy+1=02.(3分)已知: =,则下列式子一定成立的是()A.3x=4y B.x=y C.4x=3y D. xy=123.(3分)将方程x2+8x+9=0配方后,原方程可变形为()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=74.(3分)从一副54张的扑克牌中任意抽一张,以下事件中可能性最大的是()A.抽到方块8 B.抽到K牌C.抽到梅花D.抽到大王5.(3分)已知===k(a+b+c≠0),则k=()A.0 B.1 C.2 D.6.(3分)如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若a是方程x2﹣x﹣1=0的一个根,则代数式a2﹣a的值是.8.(3分)线段AB长10cm,点P在线段AB上,且满足=,那么AP的长为cm.9.(3分)某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是.10.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是.(3分)关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是.11.12.(3分)如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为°.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)解方程(1)(4x﹣1)2﹣x2=0(2)x2﹣3x﹣2=0.14.(6分)已知:如图,在矩形ABCD中,E是BC边一点,DE平分∠AD C,EF∥DC角AD边于点F,连结BD.(1)求证:四边形EFCD是正方形;(2)若BE=1,ED=2,求BD的长.15.(6分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?16.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.17.(6分)如图,在正方形ABCD中,对角线A、C与BD相交于点O,E为BC上一点,C E=5,F为DE的中点.若△CEF的周长为18,求OF的长.四、解答题(本大题共4小题,共32分)18.(8分)在一个不透明的口袋里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有1个,蓝球有1个,现从中任意摸出一个是红球的概率为.(1)求袋中黄球的个数.(2)第一次摸出一个球(放回),第二次再摸一个球,请用画树状图或列表法求两次摸到都是红球的概率.(3)若规定每次摸到红球得5分,每次摸到黄球得3分,每次摸到蓝球得1分,小芳摸6次球(每次摸1个球,摸后放回)合计得20分,请直接写出小芳有哪几种摸法?(不分球颜色的先后顺序)19.(8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.20.(8分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.21.(8分)如图,点E,F为菱形ABCD对角线BD的三等分点.(1)试判断四边形AECF的形状,并加以证明;(2)若菱形ABCD的周长为52,BD为24,试求四边形AECF的面积.五、解答题(本大题共1小题,共10分)22.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.六、解答题(本大题共1小题,共12分)23.(12分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.2017-2018学年江西省萍乡市芦溪县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列方程是一元二次方程的是()A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 D.xy+1=0【解答】解:A、本方程未知数x的最高次数是1;故本选项错误;B、本方程符合一元二次方程的定义;故本选项正确;C、x2﹣2x﹣3是代数式,不是等式;故本选项错误;D、本方程中含有两个未知数x和y;故本选项错误;故选:B.2.(3分)已知: =,则下列式子一定成立的是()A.3x=4y B.x=y C.4x=3y D.xy=12【解答】解:∵=,∴4x=3y.故选:C.3.(3分)将方程x2+8x+9=0配方后,原方程可变形为()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=7【解答】解:x2+8x=﹣9,x2+8x+16=7,(x+4)2=7.故选:A.4.(3分)从一副54张的扑克牌中任意抽一张,以下事件中可能性最大的是()A.抽到方块8 B.抽到K牌C.抽到梅花D.抽到大王【解答】解:A、抽到方块8的可能性是;B、抽到K牌的可能行是=;C、抽到梅花的可能行是;D、抽到大王的可能性是;则可能性最大的是抽到梅花;故选:C.5.(3分)已知===k(a+b+c≠0),则k=()A.0 B.1 C.2 D.【解答】解;由===k,得k===,故选:D.6.(3分)如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5【解答】解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,∴△ADF是等腰三角形,同理△ABE是等腰三角形,AD=DF=9;∵AB=BE=6,∴CF=3;∴在△ABG 中,BG ⊥AE ,AB=6,BG=,可得:AG=2,又BG ⊥AE ,∴AE=2AG=4,∴△ABE 的周长等于16,又∵▱ABCD∴△CEF ∽△BEA ,相似比为1:2,∴△CEF 的周长为8.故选:A .二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若a 是方程x 2﹣x ﹣1=0的一个根,则代数式a 2﹣a 的值是 1 .【解答】解:把x=a 代入x 2﹣x ﹣1=0得a 2﹣a ﹣1=0,所以a 2﹣a=1.故答案为1.8.(3分)线段AB 长10cm ,点P 在线段AB 上,且满足=,那么AP 的长为 5﹣5 cm . 【解答】解:设AP=x ,则BP=10﹣x ,∵=,∴=,∴x 1=5﹣5,x 2=﹣5﹣5(不合题意,舍去),∴AP 的长为(5﹣5)cm .故答案为:5﹣5.9.(3分)某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是 .【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率==.故答案为:.10.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是 2 .【解答】解:∵BC=AC,∴=,∵AD∥BE∥CF,∴=,∵DE=4,∴=2,∴EF=2.故答案为:2.11.(3分)关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是a ≥1且a≠5 .【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=16+4(a﹣5)≥0,解之得a≥1.∵a﹣5≠0∴a≠5∴实数a的取值范围是a≥1且a≠5故答案为a≥1且a≠5.12.(3分)如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为75 °.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠AD C=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)解方程(1)(4x﹣1)2﹣x2=0(2)x2﹣3x﹣2=0.【解答】解:(1)(4x﹣1)2﹣x2=0,(4x﹣1+x)(4x﹣1﹣x)=0,(5x﹣1)(3x﹣1)=0,解得x1=,x2=﹣;(2)x2﹣3x﹣2=0,b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=17,x=,x 1=,x 2=.14.(6分)已知:如图,在矩形ABCD 中,E 是BC 边一点,DE 平分∠ADC ,EF ∥DC 角AD 边于点F ,连结BD .(1)求证:四边形EFCD 是正方形;(2)若BE=1,E D=2,求BD 的长.【解答】(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∠ADC=∠C=90°,∵EF ∥DC ,∴四边形FECD 为平行四边形,∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵AD ∥BC ,∴∠ADE=∠DEC ,∴∠CDE=∠DEC ,∴CD=CE ,∴四边形FECD 是菱形,又∵∠C=90°,∴平行四边形FECD 是正方形;(2)∵四边形FECD 是正方形,∴∠CDE=45°,∵,∴CE=CD=ED•sin45°=2×=2, ∴BC=BE+EC=1+2=3,∴BD 2=BC 2+CD 2=32+22=13,∴BD=.15.(6分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,的x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株或者5株.16.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.17.(6分)如图,在正方形ABCD中,对角线A、C与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,求OF的长.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.四、解答题(本大题共4小题,共32分)18.(8分)在一个不透明的口袋里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有1个,蓝球有1个,现从中任意摸出一个是红球的概率为.(1)求袋中黄球的个数.(2)第一次摸出一个球(放回),第二次再摸一个球,请用画树状图或列表法求两次摸到都是红球的概率.(3)若规定每次摸到红球得5分,每次摸到黄球得3分,每次摸到蓝球得1分,小芳摸6次球(每次摸1个球,摸后放回)合计得20分,请直接写出小芳有哪几种摸法?(不分球颜色的先后顺序)【解答】解:(1)设袋中黄球的个数为x,根据题意得=,解得x=1,即袋中有1个黄球;(2)画树状图为:,共有9种等可能的结果数,其中两次摸到都是红球的占1种,所有两次摸到都是红球的概率=;(3)设摸到红球、黄球、蓝球的次数分别为x、y、z,根据题意得,由①变形得z=6﹣x﹣y③,把③代入②得5x+3y+6﹣x﹣y=20,整理得2x+y=7,当x=0,y=7(舍去);当x=1时,y=5,z=0;当x=2,y=3,此时z=1;当x=3,y=1,此时z=2,所以小芳的摸法有:1次摸到红球、5次摸到黄球;2次摸到红球、3次摸到黄球,1次摸到蓝球;3次摸到红球、1次摸到黄球,2次摸到蓝球.19.(8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,又∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=3.20.(8分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.【解答】解:(1)设AB=x,则BC=38﹣2x;根据题意列方程的,x(38﹣2x)=180,解得x1=10,x2=9;当x=10,38﹣2x=18(米),当x=9,38﹣2x=20(米),而墙长19m,不合题意舍去,答:若围成的面积为180m2,自行车车棚的长和宽分别为10米,18米;(2)根据题意列方程的,x(38﹣2x)=200,整理得出:x2﹣19x+100=0;△=b2﹣4ac=361﹣400=﹣39<0,故此方程没有实数根,答:因此如果墙长19m,满足条件的花园面积不能达到200m2.21.(8分)如图,点E,F为菱形ABCD对角线BD的三等分点.(1)试判断四边形AECF的形状,并加以证明;(2)若菱形ABCD的周长为52,BD为24,试求四边形AECF的面积.【解答】解:(1)四边形ABCD为菱形.理由如下:如图,连接AC交BD于点O,∵四边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF,又∵点E、F为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形;(2)∵四边形ABCD为菱形,且周长为52,∵BD=24,∴EF=8,OB=BD=12,由勾股定理得,AO==5,∴AC=2AO=2×5=10,∴S=EF•AC=×8×10=40.四边形AECF五、解答题(本大题共1小题,共10分)22.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【解答】:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∴EF==10,∴OC=EF=5;(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.六、解答题(本大题共1小题,共12分)23.(12分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF ;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【解答】解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年江西省萍乡市芦溪县九年级(上)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列方程是一元二次方程的是()A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 D.xy+1=02.(3分)已知:=,则下列式子一定成立的是()A.3x=4y B.x=y C.4x=3y D.xy=123.(3分)将方程x2+8x+9=0配方后,原方程可变形为()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=74.(3分)从一副54张的扑克牌中任意抽一张,以下事件中可能性最大的是()A.抽到方块8 B.抽到K牌C.抽到梅花D.抽到大王5.(3分)已知===k(a+b+c≠0),则k=()A.0 B.1 C.2 D.6.(3分)如图,在?ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若a是方程x2﹣x﹣1=0的一个根,则代数式a2﹣a的值是.8.(3分)线段AB长10cm,点P在线段AB上,且满足=,那么AP的长为cm.9.(3分)某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是.10.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是.11.(3分)关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是.12.(3分)如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为°.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)解方程(1)(4x﹣1)2﹣x2=0(2)x2﹣3x﹣2=0.14.(6分)已知:如图,在矩形ABCD中,E是BC边一点,DE平分∠AD C,EF ∥DC角AD边于点F,连结BD.(1)求证:四边形EFCD是正方形;(2)若BE=1,ED=2,求BD的长.来源学。

科。

网15.(6分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?16.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.17.(6分)如图,在正方形ABCD中,对角线A、C与BD相交于点O,E为BC 上一点,CE=5,F为DE的中点.若△CEF的周长为18,求OF的长.四、解答题(本大题共4小题,共32分)来源:Z。

xx。

]18.(8分)在一个不透明的口袋里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有1个,蓝球有1个,现从中任意摸出一个是红球的概率为.(1)求袋中黄球的个数.来源学|科|网Z|X|X|K](2)第一次摸出一个球(放回),第二次再摸一个球,请用画树状图或列表法求两次摸到都是红球的概率.(3)若规定每次摸到红球得5分,每次摸到黄球得3分,每次摸到蓝球得1分,小芳摸6次球(每次摸1个球,摸后放回)合计得20分,请直接写出小芳有哪几种摸法?(不分球颜色的先后顺序)19.(8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.20.(8分)如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m 的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.21.(8分)如图,点E,F为菱形ABCD对角线BD的三等分点.(1)试判断四边形AECF的形状,并加以证明;(2)若菱形ABCD的周长为52,BD为24,试求四边形AECF的面积.五、解答题(本大题共1小题,共10分)22.(10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=8,CF=6,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.六、解答题(本大题共1小题,共12分)23.(12分)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.2017-2018学年江西省萍乡市芦溪县九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)下列方程是一元二次方程的是()A.x﹣2=0 B.x2﹣4x﹣1=0 C.x2﹣2x﹣3 D.xy+1=0【解答】解:A、本方程未知数x的最高次数是1;故本选项错误;B、本方程符合一元二次方程的定义;故本选项正确;C、x2﹣2x﹣3是代数式,不是等式;故本选项错误;D、本方程中含有两个未知数x和y;故本选项错误;故选:B.2.(3分)已知:=,则下列式子一定成立的是()A.3x=4y B.x=y C.4x=3y D.xy=12【解答】解:∵=,∴4x=3y.故选:C.3.(3分)将方程x2+8x+9=0配方后,原方程可变形为()A.(x+4)2=7 B.(x+4)2=25 C.(x+4)2=﹣9 D.(x+8)2=7【解答】解:x2+8x=﹣9,x2+8x+16=7,(x+4)2=7.故选:A.4.(3分)从一副54张的扑克牌中任意抽一张,以下事件中可能性最大的是()A.抽到方块8 B.抽到K牌C.抽到梅花D.抽到大王【解答】解:A、抽到方块8的可能性是;B、抽到K牌的可能行是=;C、抽到梅花的可能行是;D、抽到大王的可能性是;则可能性最大的是抽到梅花;故选:C.5.(3分)已知===k(a+b+c≠0),则k=()A.0 B.1 C.2 D.【解答】解;由===k,得k===,故选:D.6.(3分)如图,在?ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为()A.8 B.9.5 C.10 D.11.5【解答】解:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴AD=FD,∴△ADF是等腰三角形,同理△ABE是等腰三角形,AD=DF=9;∵AB=BE=6,∴CF=3;∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,又BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵?ABCD∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若a是方程x2﹣x﹣1=0的一个根,则代数式a2﹣a的值是1.【解答】解:把x=a代入x2﹣x﹣1=0得a2﹣a﹣1=0,所以a2﹣a=1.故答案为1.8.(3分)线段AB长10cm,点P在线段AB上,且满足=,那么AP的长为5﹣5cm.【解答】解:设AP=x,则BP=10﹣x,∵=,∴=,∴x1=5﹣5,x2=﹣5﹣5(不合题意,舍去),∴AP的长为(5﹣5)cm.故答案为:5﹣5.9.(3分)某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是.【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率==.故答案为:.10.(3分)如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是2.【解答】解:∵BC=AC,∴=,∵AD∥BE∥CF,∴=,∵DE=4,∴=2,∴EF=2.故答案为:2.11.(3分)关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是a≥1且a≠5.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=16+4(a﹣5)≥0,解之得a≥1.∵a﹣5≠0∴a≠5∴实数a的取值范围是a≥1且a≠5故答案为a≥1且a≠5.12.(3分)如图,菱形ABCD中,P为AB中点,∠A=60°,折叠菱形ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC的大小为75°.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故答案为:75.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)解方程(1)(4x﹣1)2﹣x2=0(2)x2﹣3x﹣2=0.【解答】解:(1)(4x﹣1)2﹣x2=0,(4x﹣1+x)(4x﹣1﹣x)=0,(5x﹣1)(3x﹣1)=0,解得x1=,x2=﹣;(2)x2﹣3x﹣2=0,b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=17,x=,x1=,x2=.14.(6分)已知:如图,在矩形ABCD中,E是BC边一点,DE平分∠ADC,EF ∥DC角AD边于点F,连结BD.(1)求证:四边形EFCD是正方形;(2)若BE=1,E D=2,求BD的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠ADC=∠C=90°,∵EF∥DC,∴四边形FECD为平行四边形,∵DE平分∠ADC,∴∠ADE=∠CDE,∵AD∥BC,∴∠ADE=∠DEC,∴∠CDE=∠DEC,∴CD=CE,∴四边形FECD是菱形,又∵∠C=90°,∴平行四边形FECD是正方形;(2)∵四边形FECD是正方形,∴∠CDE=45°,∵,∴CE=CD=ED?sin45°=2×=2,∴BC=BE+EC=1+2=3,∴BD2=BC2+CD2=32+22=13,∴BD=.15.(6分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?【解答】解:设每盆花苗增加x株,则每盆花苗有(x+3)株,平均单株盈利为:(3﹣0.5x)元,由题意得:(x+3)(3﹣0.5x)=10.化简,整理,的x2﹣3x+2=0.解这个方程,得x1=1,x2=2,则3+1=4,2+3=5,答:每盆应植4株或者5株.16.(6分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.(1)在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图2中画出线段AB的垂直平分线.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.17.(6分)如图,在正方形ABCD中,对角线A、C与BD相交于点O,E为BC 上一点,CE=5,F为DE的中点.若△CEF的周长为18,求OF的长.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.四、解答题(本大题共4小题,共32分)18.(8分)在一个不透明的口袋里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有1个,蓝球有1个,现从中任意摸出一个是红球的概率为.(1)求袋中黄球的个数.(2)第一次摸出一个球(放回),第二次再摸一个球,请用画树状图或列表法求两次摸到都是红球的概率.(3)若规定每次摸到红球得5分,每次摸到黄球得3分,每次摸到蓝球得1分,小芳摸6次球(每次摸1个球,摸后放回)合计得20分,请直接写出小芳有哪几种摸法?(不分球颜色的先后顺序)【解答】解:(1)设袋中黄球的个数为x,根据题意得=,解得x=1,即袋中有1个黄球;(2)画树状图为:,共有9种等可能的结果数,其中两次摸到都是红球的占1种,所有两次摸到都是红球的概率=;(3)设摸到红球、黄球、蓝球的次数分别为x、y、z,根据题意得,由①变形得z=6﹣x﹣y③,把③代入②得5x+3y+6﹣x﹣y=20,整理得2x+y=7,当x=0,y=7(舍去);当x=1时,y=5,z=0;当x=2,y=3,此时z=1;当x=3,y=1,此时z=2,所以小芳的摸法有:1次摸到红球、5次摸到黄球;2次摸到红球、3次摸到黄球,1次摸到蓝球;3次摸到红球、1次摸到黄球,2次摸到蓝球.19.(8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【解答】证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,。

相关文档
最新文档