八年级下学期期中测试题与答案
人教版八年级下册数学《期中检测试题》附答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第I 卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. ,字母x 取值必须满足( ) A. 0x ≥B. 0x ≤C. 1≥xD. 1x ≥-2. 下列二次根式中,最简二次根式是( )A.B.C.D.3. 下列计算中,正确的是( )A.B.C.D.﹣34. 方程240x x -=的解是( ) A. 4x =B. 2x =C. 124,0x x ==D. 0x =5. 用配方法将方程26110?x x +-=变形,正确的是( ) A. 2(3)20x -= B. 2(3)2x -= C. 2(3)2x += D. 2(3)20x +=6. 已知关于的一元二次方程2(1)210a x x --+=有实数根,则的取值范围是( ) A. 2a ≤B. 2a >C. 2a ≤且1a ≠D. 2a <-7. 已知一个直角三角形的两边长分别3和4,则第三边长是( ) A. 5B. 7C. 25D. 5或78. 已知方程22610x x +-=的两个实数根为12,x x ,则1211+x x 的值为( ) A. -3 B. 3 C. 6D. -69. 某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是( ) A. ()21001364x += B. ()()210010011001364x x ++++= C. ()210012364x +=D. ()()2100100112364x x ++++=10. 如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A. 2B. 3C. 4D. 511. 直线:(3)2l y m x n =--+(m ,n 为常数)的图象如图,化简︱3m -︱-244n n -+得( )A. 5m n --B. 1n m -+C. m n 1--D. 5m n +-12. △ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( ) ①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B ∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A. 2个B. 3个C. 4个D. 5个第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每题3分,共18分)13. 计算4812-结果是_____.14. 如图,在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯的长度至少是_______.15.271m +,则m = .16. 等腰三角形的顶角为120︒,底边上的高为2,则它的周长为_____.17. 若关于x 的一元二次方程()2215360m x x m m -+++-=的常数项为-2,则m 的值为 .18. 若关于x 方程()()220ax a b b a x +-+-=有两个相等的实数根,则a :b = .三、解答题(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤.)19. 计算:(11182432(2188222220. 解下列方程:(1)()2943-=-x x (2)231x x -=21. 已知:21,21a b ==,求:(1)a -b 的值;(2)ab 的值;(3)a bb a-的值. 22. 如图,在4x4的正方形网格中,每个小正方形的边长都为1.求:(1)△ABC 的周长;(2)∠ABC 度数. 23. 已知关于x 的方程22210x kx k ++-=.(1)试说明:无论k 取何值时,方程总有两个不相等实数很; (2)如果方程有一个根为-3,试求22122019k k ++的值.24. 一架梯子AB 长25米,如图斜靠在一面墙上,梯子底端B 离墙7米. (1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?25. 已知,,a b c 是△ABC 的三边长,关于的一元二次方程x 2+2b 有两个相等的实数根,关于的方程322cx b a +=的根为0x =.(1)试判断△ABC 的形状;(2)若,a b 是关于一元二次方程230x mx m +-=的两个实数根,求的值.26. 某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个. (1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元?答案与解析第I 卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. ,字母x 的取值必须满足( ) A. 0x ≥ B. 0x ≤C. 1≥xD. 1x ≥-[答案]D [解析] [分析]根据二次根式有意义的条件:被开方数是非负数即可求解. [详解]解:由题意得x+1≥0, 解得:1x ≥-, 故选:D .[点睛]本题考查二次根式有意义的条件,掌握知识点是解题关键. 2. 下列二次根式中,最简二次根式是( )[答案]A [解析] [分析]利用最简二次根式定义判断即可.[详解]解:A 、原式为最简二次根式,符合题意;B 2,不是最简二次根式;C =不是最简二次根式;D 不是最简二次根式;故选:A .[点睛]本题考查的是最简二次根式的概念,掌握被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式是解题的关键. 3. 下列计算中,正确的是( )A. B.=3 ﹣3[答案]C [解析] [分析]根据二次根式的性质和乘除法运算法则,对每个选项进行判断,即可得到答案.[详解]解:A 、,不能合并,故A 错误;B 、18=,故B 错误;C 3=,故C 正确;D 3==,故D 错误; 故选择:C.[点睛]本题考查了二次根式的性质,二次根式的乘除运算,以及同类二次根式的定义,解题的关键是熟练掌握二次根式的性质,以及熟记乘除法运算的运算法则. 4. 方程240x x -=的解是( ) A. 4x = B. 2x =C. 124,0x x ==D. 0x =[答案]C [解析] [分析]先提取公因式变形为(4)0x x -=即可求解.[详解]解:由题意可知240x x -=可变形为:(4)0x x -=, ∴124,0x x ==, 故选:C .[点睛]本题考查一元二次方程的解法,熟练掌握一元二次方程的解法,其解法包括:直接开平方法、配方法、公式法、因式分解法,本题采用因式分解法求解速度较快. 5. 用配方法将方程26110?x x +-=变形,正确的是( ) A. 2(3)20x -= B. 2(3)2x -= C 2(3)2x += D. 2(3)20x += [答案]D [解析] [分析]在本题中,把常数项-11移项后,应该在左右两边同时加上一次项系数6的一半的平方.[详解]把方程x 2 +6x -11=0的常数项移到等号的右边,得到x 2 +6x =11, 方程两边同时加上一次项系数一半的平方,得到x 2 +6x +9=11+9, 配方得(x +30)2 =20. 故选D .[点睛]本题考查了配方法解一元二次方程.6. 已知关于的一元二次方程2(1)210a x x --+=有实数根,则的取值范围是( ) A. 2a ≤ B. 2a >C. 2a ≤且1a ≠D. 2a <-[答案]C [解析] [分析]根据方程有两个实数根列出关于a 的不等式,求出a 的取值范围即可. [详解]解:∵关于x 的一元二次方程(a -1)x 2-2x +1=0有两个实数根,∴1044(1)0a a -≠⎧⎨=--⎩,解得a ≤2且a ≠1. 故选:C .[点睛]本题考查的是根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 的关系是解答此题的关键.7. 已知一个直角三角形的两边长分别3和4,则第三边长是( ) A. 5C. 25D. 5[答案]D [解析] [分析]根据勾股定理可以求得第三边长. [详解]5== ∴第三边长是5. 故选D .[点睛]本题考查勾股定理的应用,熟练掌握勾股定理及其变形是解题关键.8. 已知方程22610x x +-=的两个实数根为12,x x ,则1211+x x 的值为( ) A. -3 B. 3C. 6D. -6[答案]C [解析] [分析]根据一元二次方程根与系数关系得出123x x +=-,1212x x =-,将1211+x x 通分,代入数值即可求解. [详解]∵方程2610x x +-=的两个实数根为12,x x , ∴123x x +=-,1212x x =-,∴121212113612x x x x x x +-+===-, 故选:C .[点睛]本题考查了一元二次方程根与系数关系、分式的化简求值,熟练掌握根与系数关系是解答的关键. 9. 某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是( ) A ()21001364x += B. ()()210010011001364x x ++++= C. ()210012364x += D. ()()2100100112364x x ++++=[答案]B [解析] [分析]设月平均增长的百分率是x ,则该超市二月份的营业额为100(1+x )万元,三月份的营业额为100(1+x )2万元,根据该超市第一季度的总营业额是364万元,即可得出关于x 的一元二次方程,此题得解.[详解]解:设月平均增长的百分率是x ,则该超市二月份的营业额为100(1+x )万元,三月份的营业额为100(1+x )2万元,依题意,得:100+100(1+x )+100(1+x )2=364. 故选B .[点睛]本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 10. 如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A. 2B. 3C. 4D. 5[答案]B [解析][分析]根据勾股定理和角平分线的性质,以及直角三角形全等的判定和性质解答即可. [详解]解:∵在Rt △ABC 中,∠ACB=90°,AC=6,BC=8, ∴22226810ABAC BC ,∵AE 为△ABC 的角平分线,∠ACB=90°,ED ⊥AB , ∴DE=CE ,在Rt △ADE 和Rt △ACE 中, ∵AE=AE ,DE=CE ,∴Rt △ADE ≌Rt △ACE (HL ), ∴AD=AC=6, ∴BD=10-6=4,设DE=x ,则CE=x ,BE=8-x , 在Rt △BDE 中, DE 2+BD 2=BE 2, 即x 2+42=(8-x )2, 解得x=3, 所以ED 的长是3, 故选:B .[点睛]本题考查了勾股定理、角平分线的性质以及直角三角形全等的判定和性质.解题的关键是能够根据勾股定理得出AB 和DE 的长,能够根据角平分线的性质得出DE=CE,能够证明两个直角三角形全等的判定. 11. 直线:(3)2l y m x n =--+(m ,n 为常数)的图象如图,化简︱3m -︱-244n n -+得( )A. 5m n --B. 1n m -+C. m n 1--D. 5m n +-[答案]A [解析][分析]根据一次函数的图像,可得30m -<,20n -+>,解得3m <,2n >,然后对代数式进行化简,即可得到答案.[详解]解:由图可知,直线从左到右是下降趋势,且直线与y 的正半轴有交点,∴30m -<,20n -+>,∴3m <,2n >,∴︱3m -=(3)m --=3(2)m n -+--=32m n -+-+=5m n --;故选择:A.[点睛]本题考查了一次函数的性质,以及绝对值的意义、二次根式的性质,解题的关键是利用一次函数的性质正确求出m 、n 的范围,从而正确进行化简.12. △ABC 的三边分别为,,a b c ,下列条件能推出△ABC 是直角三角形的有( )①222a c b -=;②2()()0a b a b c -++=;③ ∠A =∠B ∠C; ④∠A ∶∠B ∶∠C =1∶2∶3 ;⑤111,,345a b c ===;⑥10,a = 24,b = 26c = A. 2个B. 3个C. 4个D. 5个[答案]D[解析][分析]根据勾股定理的逆定理,三角形的内角和定理,分别对每个选项进行判断,即可得到答案.[详解]解:∵222a c b -=,得222a b c =+,符合勾股定理逆定理,则①正确;∵2()()0a b a b c -++=,得到222a c b +=,符合勾股定理逆定理,则②正确;∵∠A =∠B ∠C ,得∠B=∠A+∠C ,∵∠A+∠B+∠C=180°,∴∠B=90°,故③正确;∵∠A ∶∠B ∶∠C =1∶2∶3,∠A+∠B+∠C=180°, ∴318090123C ∠=︒⨯=︒++,故④正确; ∵222111()()()453+≠,则⑤不能构成直角三角形,故⑤错误;∵222102426+=,则⑥能构成直角三角形,故⑥正确;∴能构成直角三角形的有5个;故选择:D.[点睛]本题考查了勾股定理的逆定理,以及三角形的内角和定理,解题的关键是熟练掌握用勾股定理的逆定理和三角形内角和定理进行判断三角形是直角三角形. 第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每题3分,共18分)13. 计算4812-的结果是_____.[答案]23[解析][分析]先将二次根式化简,然后合并同类二次根式即可.[详解]解:原式432323=-=故答案为:23.[点睛]此题考查的是二次根式的减法,掌握合并同类二次根式法则是解决此题的关键.14. 如图,在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯的长度至少是_______.[答案]17米[解析][分析]在直角三角形ABC中,已知AB,BC,根据勾股定理即可求得AC的值,根据题意求地毯长度即求得AC+BC 即可.[详解]将水平地毯下移,竖直地毯右移即可发现:地毯长度为直角三角形ABC的两直角边之和,即AC+BC,在直角△ABC中,已知AB=13米,BC=5米,且AB为斜边,则根据勾股定理22-=12(米),故地AB BC毯长度为AC+BC=12+5=17(米).故答案为17米[点睛]本题考查勾股定理的应用,解题的关键是知道求地毯长度即求AC+BC.m+,则m=.15. 271[答案]2[解析][分析]27化为最简二次根式33再根据同类二次根式的定义得到m+1=3,然后解方程即可.[详解]27=33∴m+1=3,∴m=2,故答案为:2.[点睛]本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式,掌握知识点是解题关键.16. 等腰三角形的顶角为120︒,底边上的高为2,则它的周长为_____.+[答案]843[解析][分析]根据等腰三角形的性质可分别求得腰长和底边的长,从而不难求得三角形的周长.[详解]解:∵等腰三角形的顶角为120°,底边上的高为2,∴腰长=4,底边的一半∴周长=4+4+2×故答案为[点睛]本题考查勾股定理及等腰三角形的性质的综合运用.17. 若关于x 的一元二次方程()2215360m x x m m -+++-=的常数项为-2,则m 的值为 . [答案]-4[解析][分析]由常数项为,求出m 的值,再结合10m -≠,即可得到答案.[详解]解:根据题意,由常数项为,则∴2362m m +-=-,解得:4m =-或1m =,∵10m -≠,∴1m ≠,∴4m =-;故答案为:4-.[点睛]本题考查了解一元二次方程,一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法. 18. 若关于x 的方程()()220ax a b b a x +-+-=有两个相等的实数根,则a :b = . [答案]17-或1 [解析][分析] 根据题意,由根的判别式列出方程进行计算,即可求出答案.[详解]解:∵关于x 的方程()()220ax a b b a x +-+-=有两个相等的实数根,∴2()42()0b a a a b ∆=--•-=,∴22760a ab b -++=,方程两边同时除以2b ,则27()610a a b b-+•+=, 设a bm =,则27610m m -+•+=, 解得:17m =-或1m =, ∴17a b =-或1a b=; 故答案为:17-或1. [点睛]本题考查了解一元二次方程,根的判别式,解题的关键是熟练掌握运算法则进行解题.三、解答题(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤.) 19. 计算:(1(2[答案](1) (2)2[解析][分析](1)根据二次根式运算法则,先化成最简二次根式,然后再运算即可;(2)根据二次根式的运算法则,先乘除后加减运算即可求解.[详解]解:(1)原式=42⨯+==(2)原式21=+3=31=-2=[点睛]本题考查了二次根式的加减乘除混合运算,熟练掌握二次根式的运算法则及运算顺序是解决此类题的关键.20. 解下列方程:(1)()2943-=-x x (2)231x x -=[答案](1)1213x x ==, (2)116+=x ,216-=x [解析][分析] (1)先整理方程,然后因式分解即可得出答案;(2)将常数项移到方程的左边,然后利用公式法求解即可.详解](1)解:整理得:x 2-4x +3=0,分解因式得:(x -1)(x -3)=0,可得x -1=0或x -3=0,解得:x 1=1,x 2=3;(2)23=1x x -解:原方程可化为2310x x --=∵ a =3,b =-1,c =-1,∴△=()2(1)431--⨯⨯-=13>0, ∴方程有两个不相等的实数根x ==,∴116+=x ,216=x . [点睛]本题考查了解一元二次方程,掌握方程解法是解题关键.21. 已知:1,1a b ==,求:(1)a -b 的值;(2)ab 的值;(3)a b b a-的值. [答案](1)-2 (2)1 (3)-[解析][分析](1)直接把a 、b 的值代入计算,即可得到答案;(2)直接把a 、b 的值代入计算,即可得到答案;(3)先求出a+b 的值,然后把分式进行化简,再整体代入计算,即可得到答案.[详解]解:(1)a -b =1)-11=-2;(2) ab = 1)=221-=1;(3)∵a +b 1=a -b =-2,ab =1 ∴22a b a b b a ab--= =()()a b a b ab+-=(2)-=-;[点睛]本题考查了二次根式的混合运算,分式的混合运算,分式的化简求值,以及平方差公式,解题的关键是熟练掌握运算法则进行解题.22. 如图,在4x4的正方形网格中,每个小正方形的边长都为1.求:(1)△ABC 的周长;(2)∠ABC 度数.[答案](1)355;(2)90°[解析][分析](1)分别求出AB 、BC 和AC 的长即可求得周长;(2)根据勾股定理逆定理即可求得.[详解]解:(1)AB 2242=25+,BC 22251=+AC 2234=5+,∴△ABC 的周长=555=355;(2)∵AC 2=25,AB 2=20,BC 2=5,∴AC 2=AB 2+BC 2,∴∠ABC =90°.[点睛]本题考查了勾股定理和勾股定理逆定理,熟练掌握勾股定理是解题关键.23. 已知关于x 的方程22210x kx k ++-=.(1)试说明:无论k 取何值时,方程总有两个不相等的实数很;(2)如果方程有一个根为-3,试求22122019k k ++的值.[答案](1)证明见解析; (2)k=2,2051或k=4,2099[解析][分析](1)由△=(2k)2-4×1×(k2-1)=4>0可得答案;(2)将x=-3代入方程得k2-6k+8=0,求得k的值,代入原式计算可得.[详解]解:(1)∵△= (2k)2-4(k2-1)=4k2-4k2+4=4>0∴无论k取何值时,方程总有两个不相等的实数根.(2)把x=-3代入原方程得(-3)2-6k+k2-1=0k2-6k+8=0(k-2)(k-4)=0k=2或k=4当k=2时,2k2+12k+2019=2051当k=4时,2k2+12k+2019=2099[点睛]本题考查根的判别式,解一元二次方程.(1)中解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型;(2)中理解方程的解得定义,并能熟练解一元二次方程是解题关键.24. 一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?[答案](1)24米;(2)梯子底部在水平方向不是滑动了4米,而是8米.[解析][分析](1)应用勾股定理求出AC的高度,即可求解;(2)应用勾股定理求出B ′C 的距离即可解答.[详解](1)如图,在Rt △ABC 中AB 2=AC 2+BC 2,得AC =2222257AB BC -=-=24(米)答:这个梯子的顶端距地面有24米.(2)由A 'B '2=A 'C 2+CB '2,得B 'C =2222'''25(244)A B A C -=--=15(米),∴BB '=B 'C ﹣BC =15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.[点睛]本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.25. 已知,,a b c 是△ABC 的三边长,关于的一元二次方程x 2+2b 有两个相等的实数根,关于的方程322cx b a +=的根为0x =.(1)试判断△ABC 的形状;(2)若,a b 是关于的一元二次方程230x mx m +-=的两个实数根,求的值.[答案](1)等边三角形;(2)-12[解析][分析](1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a ,b 的方程,再结合方程3cx+2b=2a 的根为x=0,代入即可得到一关于a ,b 的方程,联立即可得到关于a ,b 的方程组,可求出a ,b 的关系式;(2)根据(1)求出的a=b ,得到方程x 2+mx-3m=0有两个相等的实数根,从而得到关于m 的方程,解方程即可求出m .[详解]解:(1)∵关于x 的一元二次方程x 2+b x+2c-a=0有两个相等的实数根,∴Δ= 2(2b -4×1×(2c-a)=0,∴a+b=2c.又∵关于x的方程3cx+2b=2a的根为x=0,∴a=b,∴a=b=c,即△ABC是等边三角形.(2)∵a,b是关于x的一元二次方程x2+mx-3m=0的两个实数根,又由(1)知a=b,∴方程x2+mx-3m=0有两个相等的实数根,∴Δ=m2+4×3m=0,解得m=0或m=-12.当m=0时,方程x2+mx-3m=0可化为x2=0,解得x1=x2=0.又由a,b,c是△ABC的三边长,得a>0,b>0,c>0,故m=0不符合题意:当m=-12时,方程x2+mx-3m=0可化为x2-12x+36=0,解得x1=x2=6,可知m=-12符合题意.故m的值为-12.[点睛]本题主要考查了一元二次方程的判别式与方程的解得定义,是一个比较简单的问题.26. 某商场计划购进一批书包,市场调查发现:当某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,每月销售量就减少10个.(1)当售价定为42元时,每月可售出多少个?(2)若书包的月销售量为300个,则每个书包的定价为多少元?(3)当商场每月获得10000元的销售利润时,为体现“薄利多销”的销售原则,你认为销售价格应定为多少元? [答案](1)580;(2)70;(3)50[解析][分析](1)由“这种书包的售价每上涨1元,其销售量就减少10个”进行解答;(2)根据“售价+月销量减少的个数÷10”进行解答;(3)设销售价格应定为x元,根据“这种书包的售价每上涨1元,其销售量就减少10个”列出方程并解答.[详解](1)当售价为42元时,每月可以售出的个数为600-10×(42-40)=580(个),答:每月可售出580个;(2)当书包的月销售量为300个时,每个书包的价格为:40+(600-300)÷10=70(元);答:每个书包的定价为70元;(3)设销售价格应定为元,则(x-30)[600-10(x-40)]=10000,解得x1=50,x2=80,当x=50时,销售量为500个;当x=80时,销售量为200个.答:为体现“薄利多销”的销售原则,销售价格应定为50元.[点睛]本题考查了一元二次方程的应用,解题的关键是分别表示出销量和单价,用销量乘以单价表示出利润即可.。
人教版八年级下册数学《期中检测试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。
人教版数学八年级下册《期中考试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。
人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。
人教版八年级下册数学《期中测试卷》含答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有1项是符合题目要求的.1. 在下列性质中,平行四边形不一定具有的是( )A. 对边相等B. 对角互补C. 对边平行D. 对角相等2. 平行四边形的一个内角是70°,则其他三个角是( ) A. 70°,130°,130°B. 110°,70°,120°C. 110°,70°,110°D. 70°,120°,120° 3. 下列计算正确的是( ) A. 3242=122⋅ B. (9)(4)946-⨯-=-⨯-= C. 2223(3)633-=-⨯= D. 221312(1312)(1312)5-=+-= 4. 如右图要测量池塘两侧的两点A 、B 之间的距离,可以取一个能直接到达A 、B 的点C ,连结CA 、CB ,分别在线段CA 、CB 上取中点D 、E ,连结DE ,测得DE=35m ,则可得A 、B 之间的距离为( )A. 30 mB. 70 mC. 105mD. 140m5. 下列线段不能组成直角三角形的是( )A. a =3,b =4,c =5B. a =1,b 2,c 3C. a =2,b =3,c =4D. a =7,b =24,c =256. 直角三角形两直角边的长度分别为6和8,则斜边上的高为( )A. 10B. 5C. 9.6D. 4.87. 顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是( )A. 矩形B. 菱形C. 正方形D. 不确定8. 如图,在△ABC 中, 5AB =,6BC =,BC 边上的中线4=AD ,那么AC 的长是( )A. B. C. 34 D. 2139. 如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD10. 如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A. 线段EF 的长逐渐增大B. 线段EF 的长逐渐减少C. 线段EF 的长不变D. 线段EF 的长不能确定二、填空题:本大题共10小题,共30分.11. 1x -,则x 的取值范围是_______.12. 在实数范围内因式分解:23x -=________.13. 比较大小:31314. 在ABCD 中,如果∠A+∠C=140°,那么∠B=__度.15. 如图,菱形ABCD 的周长为20,点A 的坐标是(4,0),则点B 的坐标为_______.16. 在△ABC 中,∠C=90°,AC=1,BC=2,则AB 边上的中线CD=______. 17. 矩形两条对角线夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____. 18. 如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.19. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.20. 如图,△ABC 的周长为16,D , E ,F 分别为AB , BC ,AC 的中点,M ,N ,P 分别为DE , EF ,DF 的中点,则△MNP 的周长为____;如果△ABC ,△DEF ,△MNP 分别为第1个,第2个,第3个三角形,按照上述方法继续做三角形,那么第n 个三角形的周长是___.三、解答题:本大题共6小题,共40分.21. 计算:(1)12-38+218;(2)21351136⋅÷.22. 如图,□ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F .(1)求证:BF=DE;(2)如果∠ABC=75°, ∠DBC=30°,BC=2,求BD的长.23. 如图,在平行四边形ABCD中,E、F为对角线BD上的三等分点.求证:四边形AFCE是平行四边形.24. 如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB中点,试判断△ABC的形状,并说明理由.25. 如图,矩形ABCD中,AB=8,AD=10.(1)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.求DE的长;(2)点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长;(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,请直接写出线段CT长度的最大值与最小值.26. 对于正数,用符号表示的整数部分,例如:[0.1]0=,[2.5]2=,[3]3=.点(,)A a b 在第一象限内,以A 为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于轴的边长为,垂直于轴的边长为[]1b +,那么,把这个矩形覆盖的区域叫做点A 的矩形域.例如:点3(3,)2的矩形域是一个以3(3,)2为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.图1 图2根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点 的矩形域,该矩形域的面积是 ;(2)点77(2)()(0)22P Q a a >,,,的矩形域重叠部分面积为1,求的值; (3)已知点(,)(0)B m n m >在直线1y x =+上, 且点B 的矩形域的面积满足45S <<,那么的取值范围是 .(直接写出结果)四、附加题:(第1题4分,第2题6分,共10分)27. 如图,菱形ABCD 的周长为20,对角线AC 长为45,点E 、F 分别为AC 、BC 边上的动点.(1)直接写出菱形ABCD 的面积:_______;(2)直接写出BE+EF 最小值_______;并在图中作出此时的点E 和点F .∠+∠=︒28. 如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且BED F180求证:DE=DF.答案与解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有1项是符合题目要求的.1. 在下列性质中,平行四边形不一定具有的是()A. 对边相等B. 对角互补C. 对边平行D. 对角相等[答案]B[解析][分析]根据平行四边形的性质逐项排除即可.[详解]解:∵平行四边形的对边平行、对角相等、对边相等,∴选项B不正确;故答案为B.[点睛]本题考查平行四边形的性质,熟练掌握平行四边形的性质是解答本题的关键.2. 平行四边形的一个内角是70°,则其他三个角是()A. 70°,130°,130°B. 110°,70°,120°C. 110°,70°,110°D. 70°,120°,120°[答案]C[解析][分析]根据平行四边形的对角相等,邻角互补的性质确定出其他角即可.[详解]解:∵平行四边形的一个角为70°,∴邻角为110°,对角为70°,即其他三个角分别为:110°,70°,110°.故答案为C.[点睛]本题考查了平行四边形的角的性质,掌握并灵活运用平行四边形的性质是解答本题的关键.3. 下列计算正确的是( )A. 3242=122⋅B. (9)(4)946-⨯-=-⨯-=C. 2223(3)633-=-⨯=D. 221312(1312)(1312)5-=+-=[答案]D[解析][分析]根据二次根式的性质和运算法则进行排除即可.[详解]解:A. 3242=24,故A 选项错误;B. (9)(4)366 , 故B 选项错误;;; C. 22233633,故C 选项错误; D. 221312(1312)(1312)5-=+-= ,正确;故答案为D .[点睛]本题考查了二次根式的性质和运算法则,掌握二次根式的相关知识是解答本题的关键. 4. 如右图要测量池塘两侧的两点A 、B 之间的距离,可以取一个能直接到达A 、B 的点C ,连结CA 、CB ,分别在线段CA 、CB 上取中点D 、E ,连结DE ,测得DE=35m ,则可得A 、B 之间的距离为( )A. 30 mB. 70 mC. 105mD. 140m[答案]B[解析][分析] 先说明DE 是三角形的中位线,然后根据三角形的中位线定理即可解答.[详解]解:∵D 、E 分别是AC 、BC 的中点,∴DE 是△ABC 的中位线,∴AB=2DE=70m.故选B.[点睛]本题考查了三角形中位线定理的运用;确定三角形中位线并正确运用中位线定理是解答本题的关键.5. 下列线段不能组成直角三角形的是()A. a=3,b=4,c=5B. a=1,b,cC. a=2,b=3,c=4D. a=7,b=24,c=25[答案]C[解析][分析]根据勾股定理的逆定理对四个选项逐一分析即可解答.[详解]解:A、32+42=52,.能组成直角三角形;B、12+)2=)2,能组成直角三角形;C、22+32≠42:不能组成直角三角形;D、72+242=252,:能组成直角三角形.故答案为C.[点睛]本题考查的是勾股定理的逆定理的应用,掌握运用勾股定理逆定理判定三角形是否为直角三角形是解答本题的关键.6. 直角三角形两直角边的长度分别为6和8,则斜边上的高为()A. 10B. 5C. 9.6D. 4.8[答案]D[解析][分析]先根据勾股定理求出斜边的长,再运用面积法求出斜边上的高即可.[详解]解:设斜边长为c,斜边上的高为h.由勾股定理可得:c2=62+82,解得c=10,直角三角形面积S=12×6×8=12×10h,解得h=4.8.故答案为D .[点睛]本题考查了利用勾股定理的应用和利用面积法求直角三角形的高,掌握等面积法是解答本题的关键. 7. 顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是( )A. 矩形B. 菱形C. 正方形D. 不确定 [答案]A[解析][分析]根据四边形对角线互相垂直以及三角形中位线平行于第三边说明四个角都是直角即可求解.[详解]解:如图:E 、F 、G 、H 分别为各边中点∵EF ∥GH ∥DB ,EF=GH=12BD EH ∥FG ∥AC ,EH=FG=12AC , ∵DB ⊥AC.∴EF ⊥EH ,EF ⊥FG, HG ⊥EH∴四边形EFGH 是矩形故选答案为A .[点睛]本题考查的是三角形中位线定理的应用和矩形的判定,其中掌握三角形的中位线定理是解答本题的关键.8. 如图,在△ABC 中, 5AB =,6BC =,BC 边上的中线4=AD ,那么AC 的长是( )A.B. C. 34 D. 213[答案]A[解析] ∵6BC =,AD BC 是边上的中线,∴BD=3.222345+= ,222BD AD AB ∴+=∴△ABD 是直角三角形,∴AD ⊥BC ,∴AC =AB =5,故选A.9. 如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD[答案]C[解析][分析]根据矩形的判定定理逐项排除即可解答. [详解]解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形;由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD时,能判定口ABCD是矩形.故选答案为C.[点睛]本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.10. 如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B 向点C移动而点R不动时,那么下列结论成立的是().A. 线段EF的长逐渐增大B. 线段EF的长逐渐减少C. 线段EF的长不变D. 线段EF的长不能确定[答案]C[解析][分析]因为R不动,所以AR不变.根据三角形中位线定理可得EF= 12AR,因此线段EF的长不变.[详解]如图,连接AR,∵E、F分别是AP、RP的中点,∴EF为△APR的中位线,∴EF= 12AR,为定值.∴线段EF的长不改变.故选:C.[点睛]本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题:本大题共10小题,共30分.11. ,则x的取值范围是_______.x≥[答案]1[解析]先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:,∴x-1≥0,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.12. 在实数范围内因式分解:23x-=________.[答案][解析][分析]运用平方差在实数范围内因式分解即可.详解]解:23x-=.故答案为.[点睛]本题考查了平方差公式法的因式分解,掌握并灵活运用平方差公式是解答本题的特点.13. 比较大小:[答案]<[解析]试题解析:∵∴14. 在ABCD中,如果∠A+∠C=140°,那么∠B=__度.[答案]110.[解析]根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°.故答案110.15. 如图,菱形ABCD的周长为20,点A的坐标是(4,0),则点B的坐标为_______.[答案](0,3)[解析][分析]先根据菱形的性质确定菱形的长度,再设B点的坐标为(0,y),最后根据两点之间的距离公式即可求得B点的坐标.[详解]解:设B点的坐标为(0,y),根据菱形的性质,得AB=20÷4=5;22(0-4)(y-0)5(y>0),解得y=3所以B点坐标为(0,3).故答案为(0,3).[点睛]本题考查了菱形的性质和两点间的距离公式,掌握菱形的性质和两点间的距离公式是解答本题的关键.16. 在△ABC中,∠C=90°,AC=1,BC=2,则AB边上的中线CD=______.[答案 [解析][分析] 先运用勾股定理求出斜边AB ,然后再利用直角三角形斜边上的中线等于斜边的一半解答即可.详解]解:由勾股定理得,∵∠C=90°,CD 为AB 边上的中线,∴CD=12 ,. [点睛]本题考查的是勾股定理和直角三角形的性质,掌握直角三角形斜边上的中线是斜边的一半是解答本题的关键.17. 矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____. [答案]10[解析][分析]首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB 是等边三角形,即可解答本题.[详解]解:如图:∵四边形ABCD 是矩形,∴OA=12AC ,OB=12BD ,AC=BD ∴OA=OB ,∵∠A0B=60°,∴△AOB 是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.[点睛]本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键. 18. 如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.[答案]169[解析][分析]利用正方形的基本性质和勾股定理的定义进行解答即可.[详解]解:S 1=9,S 2=16,S 3=144,∴所对应各边为:3,4,12.∴中间未命名的正方形边长为5.∴最大的直角三角形的面积4S =52+122=169.故答案为169.[点睛]本题考查了勾股定理的定义和正方形的基本性质,分析图形得到正方形和勾股定理的联系是解答本题的关键.19. 已知直角三角形的两边长分别为12cm 和5cm ,,则第三边长为___________________.[答案]13cm 119cm[解析][分析]设直角三角形的第三条边为c,分c为斜边和12cm为斜边两类进行讨论,根据勾股定理计算即可.[详解]解:设直角三角形的第三条边为c,当c为斜边时,2251213c=+=;当12cm为斜边时,22125119c=-=.故答案为:13cm或119cm[点睛]本题考查了勾股定理和直角三角形分类讨论思想.由于条件没有指明直角边和斜边,故要分类讨论,同时要注意直角三角形斜边最长,5cm不可能为斜边,故分两类讨论.20. 如图,△ABC的周长为16,D, E,F分别为AB, BC,AC的中点,M,N,P分别为DE, EF,DF的中点,则△MNP的周长为____;如果△ABC,△DEF,△MNP分别为第1个,第2个,第3个三角形,按照上述方法继续做三角形,那么第n个三角形的周长是___.[答案](1). 4(2). 52n-[解析][分析]利用中位线定理求出EF、DE、DF与AB、AC、BC的长度关系,可得△EFG的周长是△ABC周长的一半,△MNP 的周长是△DEF的周长的一半,以此类推,即可求得第n个三角形的周长.[详解]解:如图,△ABC的周长为16,D、E、F分别为AB、BC、AC的中点,∴EF、DE、DF为三角形中位线,∴EF=12AB,DE=12AC,FD=12BC∴EF+DE+DF=12(BC+AC+AB),即△DEF的周长是△ABC周长的一半同理,△MNP的周长是△DEF的周长的一半,即△MNP的周长为16×(12)2=4.以此类推,第n个小三角形的周长是第一个三角形周长的16×(12)n-1=415222n n.故答案是:52n-.[点睛]本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键.三、解答题:本大题共6小题,共40分.21. 计算:(1;(2[答案](1)(2)[解析][分析](1)先运用二次根式的性质进行化简,然后再按二次根式加减运算法则进行计算即可;(2)先将被开房数化为假分数,然后再按二次根式乘除运算法则进行计算即可.详解]解:(1==(25736355637=[点睛]本题考查了二次根式加减、乘除混合运算,掌握相关运算法则是解答本题的关键.22. 如图,□ABCD中,AE⊥BD于点E,CF⊥BD于点F.(1)求证:BF=DE;(2)如果∠ABC=75°, ∠DBC=30°,BC=2,求BD的长.[答案](1)证明见解析;(23+1.[解析][分析](1)根据矩形的性质和已知条件证得△ADE≌△CBF,再利用全等三角形的性质即可证明;(2)先根据矩形的性质、勾股定理等知识求得AE的长,进而求得DE和BD的长.[详解](1)证明:∵□ABCD,∴AD∥BC,AD=BC.∴∠ADE=∠CBF.∵AE⊥BD于点E,CF⊥BD于点F,∴∠AED=∠CFB=90°.在△ADE和△CBF中,∠AED=∠BFC,∠ADE=∠CBF,|AD=BC∴△ADE≌△CBF(AAS)∴DE=BF(2)解:∵∠ABC=75°,∠DBC=30°,∴∠ABE=750-30°=45.∵AB∥CD,∴∠ABE=∠BDC=45°,∵AD=BC=2,∠ADE=∠CBF=30°,∴在Rt△ADE中,AE=1,413.在Rt△AEB中,∠ABE=∠BAE=45°故AE=BE=1.则3+1.[点睛]本题主要考查了平行四边形的性质、全等三角形的判定与性质、勾股定理等知识,弄清题意、证得△ADE ≌△CBF 是解答本题关键.23. 如图,在平行四边形ABCD 中,E 、F 为对角线BD 上的三等分点.求证:四边形AFCE 是平行四边形.[答案]证明见解析[解析][分析]根据题意与平行四边形的性质得∠ADB=∠DBC,DA=BC,DE=BF ,则△ADE ≌△CBF ,所以AE=CF,同理可证得AF=CE,故可得四边形AFCE 是平行四边形.[详解]证明:∵四边形ABCD 平行四边形,∴∠ADB=∠DBC,DA=BC,∵E,F 为BD 的三等分点,∴DE=BF,在△ADE 和△CBF 中,DA BC ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CBF(SAS),∴AE=CF,同理△CDE ≌△ABF,∴AF=CE,∴四边形AFCE 是平行四边形.[点睛]本题考查平行四边形的判定与性质和全等三角形的判定与性质,解此题的关键在于灵活运用平行四边形的性质来证明三角形全等,再利用全等三角形的性质证明已知四边形为平行四边形.24. 如图,四边形ABCD 中,AB ∥CD ,AC 平分∠BAD ,CE ∥AD 交AB 于E .(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.[答案](1)证明见解析;(2)△ABC是直角三角形,理由见解析.[解析][分析](1)先证明四边形AECD是平行四边形,然后证明AE=EC即可四边形AECD是菱形;(2)先说明BE=CE、∠ACE=∠CAE,再说明BE=CE、∠ACE=∠CAE,再根据三角形内角和得到∠B+∠BCA+∠BAC=180°,进一步得到∠BCE+∠ACE=90°即∠ACB=90°,即可说明△ABC是直角三角形.[详解](1)证明:∵AB//CD,∴AE//CD,又∵CE/∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD∴∠CAE=∠CAD,又∵AD∥CE,.∠ACE=∠CAD,∴∠ACE=∠CAE,∴AE=CE,∴四边形AECD是菱形;(2)解:△ABC是直角三角形,理由如下:∵E是AB中点,∴AE=BE.又∵AE=CE,∴BE=CE,∠ACE=∠CAE,∴∠B=∠BCE,∵∠B+∠BCA+∠BAC=180°,∴2∠BCE+2∠ACE=180°∴∠BCE+∠ACE=90°,即∠ACB=90°∴△ABC是直角三角形.[点睛]本题利用了平行四边形的判定和性质、菱形的判定和性质以及三角形中位线的性质等知识点,考查知识点较多,增加了试题难度,灵活应用所学知识成为解答本题的的关键.25. 如图,矩形ABCD中,AB=8,AD=10.(1)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处.求DE的长;(2)点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长;(3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,请直接写出线段CT长度的最大值与最小值.[答案](1)5;(2)6或4或73;(3)12.[解析][分析](1)根据折叠的特点和勾股定理即可求出ED的长;(2)需分AP=AF;PF=AF和AP=PF三种情况分别求出PB的长即可;(3)由题意可知当点N与C重合时,CT取最大值是8;当点M与A重合时,CT取最小值为4,进而求出线段CT长度的最大值与最小值之和.[详解]解:(1)∵四边形ABCD是矩形,AB=8,AD=10∴AF=AD=10,FE=DE(折叠对称性)∵在Rt△ABF中,BF=6,AF=10∴FC=4所以在Rt △ECF 中,42+(8-DE )2=EF 2,∴DE=5;(2)当AP=AF 时,AB ⊥PF ,∴PB=BF=6;当PF=AF 时,则PB+6=10,解得PB=4;若AP=PF ,在Rt △APB 中,AP 2=PB 2+AB 2,解得PB=73. 综合可得PB=6或4或73; (3)当点N 与C 重合时,CT 最大=MD=8;当点M 与A 重合时,AT=AD=10,AB=8,CT 最小=10-6=4,∴线段CT 长度的最大值与最小值之和为12.[点睛]本题考查了矩形的性质、勾股定理的运用以及图形折叠的问题,试题考查知识点较多,增加了试题难度,灵活运用所学知识和分类讨论成为解答本题的关键..26. 对于正数,用符号表示的整数部分,例如:[0.1]0=,[2.5]2=,[3]3=.点(,)A a b 在第一象限内,以A 为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于轴的边长为,垂直于轴的边长为[]1b +,那么,把这个矩形覆盖的区域叫做点A 的矩形域.例如:点3(3,)2的矩形域是一个以3(3,)2为对角线交点,长为3,宽为2的矩形所覆盖的区域,如图1所示,它的面积是6.图1 图2根据上面的定义,回答下列问题:(1)在图2所示的坐标系中画出点 的矩形域,该矩形域的面积是 ;(2)点77(2)()(0)22P Q a a >,,,的矩形域重叠部分面积为1,求的值;(3)已知点(,)(0)B m n m >在直线1y x =+上, 且点B 的矩形域的面积满足45S <<,那么的取值范围是 .(直接写出结果)[答案](1)8;(2)所以的值为56或112;(3)45<<33m [解析][分析](1)点(2,72)的矩形域的定义,求出矩形边长分别为2,4,画出图形即可解决问题; (2)分两种情形,重叠部分在(1)中矩形的左边或右边,分别构建方程即可解决问题;(3)利用特殊值法.推出平行于y 轴的矩形的边长为3,由此即可解决问题;[详解]解:(1)点72,2⎛⎫ ⎪⎝⎭的矩形域如图所示,该该矩形域的面积是8;故答案为:8;(2)如图所示,因为点772(0)22P Q a a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,,,的矩形域重叠部分面积为1,且平行于轴的边长均为4, 所以点772(0)22P Q a a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,,,的矩形域重叠部分也是一个矩形,且平行于轴的边长为4,平行于轴的边长为14. ①当02a <<时,1124a a +=+,解得56a =; ②当2a >时,1324a a -=-,解得112a =. 所以的值为56或112. (3)当m=1时,S=3,当m=2时,S=8,∵4<S <5,∴1<m <2,∴平行于y 轴的矩形的边长为3,∴平行于x 轴的矩形的边长m 的范围为45<<33m 故答案为45<<33m . [点睛]本题考查一次函数综合题、矩形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.四、附加题:(第1题4分,第2题6分,共10分)27. 如图,菱形ABCD 的周长为20,对角线AC 长为45,点E 、F 分别为AC 、BC 边上的动点.(1)直接写出菱形ABCD 的面积:_______;(2)直接写出BE+EF 的最小值_______;并在图中作出此时的点E 和点F .[答案](1)20;(2)4,E 、F 两点的位置见解析.[解析][分析](1)如图:连接BD 交AC 于O 点,再根据菱形的性质求出AB 和OA 的长,再利用勾股定理求得OB 的长,进而求得BD 的长,最后利用菱形的面积等于对角线积的一半解答即可;(2)作DF ⊥BC 于点F ,交AC 于点E ,连接BE ,此时BE+EF=DE+EF=DF 最小,根据菱形面积即可求出DF 的长.[详解](1)解:连接BD 交AC 于O 点,∵菱形ABCD 的周长为20,对角线AC=45∴AB=BC=5,OA=5∴22525=5∴5∴菱形的面积为:11254522AC BD =20.(2)作DF⊥BC于点F,交AC于点E,连接BE,此时BE+EF=DE+EF=DF最小,∵BC•DF=S菱形ABCD=20,∴DF=20÷5=4.∴BE+EF的最小值4,E、F的位置如图所示..[点睛]本题考查了菱形的性质、勾股定理以及垂线段最短的应用,解答本题的关键在于灵活应用所学的几何知识以及数形结合思想.∠+∠=︒28. 如图,菱形ABCD中,E为AB边上的一点,F为BC延长线上的一点,且BED F180求证:DE=DF.[答案]证明见解析[解析][分析]如图,过D作DG⊥AB,DH⊥BC,再证明△ADG≌△DCH,得到DG=DH;然后再证△EDG≌△DHF,最后利用全等三角形的性质即可证明.[详解]证明:过D作DG⊥AB,DH⊥BC,∴∠DGA=∠DGE=∠DHB=∠DHF=90°∵菱形ABCD∴AB=BC=BD=AD,∠A=∠DCB∴△ADG≌△CDH(AAS)∴DG=DH∠+∠=︒,BED DEA180∵BED F180∠∴DEA=F∴△EDG≌△DHF(AAS)∴DE=DF.[点睛]本题考查了菱形的性质、全等三角形的判定与性质,解答本题的关键在于做出辅助线、借助菱形的性质证明三角形的全等.。
人教版八年级下册数学《期中测试题》附答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(每题 3 分,共 30 分)1. 要使式子2x -有意义,则的取值范围是[ ]A. x 0>B. x 2≥-C. x 2≥D. x 2≤ 2. 平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为( ).A. 120︒B. 60︒C. 30D. 15︒3. 下列根式中,最简二次根式( )A. 9aB. 0.5C. 3aD. 22a b + 4. 满足下列条件的三角形中,不是直角三角形的是( )A. 三内角度数之比为1∶2∶3B. 三内角的度数之比为3∶4∶5C. 三边长之比为3∶4∶5D. 三边长的平方之比为1∶2∶35. 一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为( )A. 6013B. 13C. 6D. 256. 在下列条件中,不能确定四边形ABCD 为平行四边形的是( ).A. ∠A=∠C,∠B=∠DB. ∠A+∠B=180°,∠C+∠D=180°C. ∠A+∠B=180°,∠B+∠C=180°D. ∠A=∠B=∠C=90°7. 如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A. 2B. 6C 236223+-- D. 23225+-8. 如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A. 51-B. 51+C. 31-D. 31+9. 下列说法不能判断是正方形的是( )A. 对角线互相垂直且相等的平行四边形B. 对角线互相垂直的矩形C. 对角线相等的菱形D. 对角线互相垂直平分的四边形10. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB =3,AC =2,BD =4,则AE 的长为( )A. 32B. 32C. 217D. 2217二、填空题(每题 3 分,共 21 分)11. 若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为_____12. 已知 114x x y -+-=+,则 y x 的值为_____.13. 将一个矩形纸片沿BC 折叠成如图所示的图形,若27ABC ∠=︒,则ACD ∠的度数为________.14. 45a ,则最小的正整数a 的值是_________.15. 实数a ,b 在数轴上对应点的位置如图所示,化简2()a a b -的结果是_________________16. 如图,在矩形ABCD 中,2AB =,3BC =.若点是边CD 的中点,连接AE ,过点作BF AE ⊥交AE 于点,则BF 的长为______.17. 如图,在□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,S △BPG =1,则S □AEPH =______.三.解答题18. 计算:(1)(32)(23)-+ (2)1(83)642+⨯- 19. 如图,△ABC 中,∠ACB=Rt ∠,AB=8,BC=2,求斜边AB 上的高CD .20. 先化简,31254y x xy x xy x y y其中15x =,4y = 21. 如图,四边形 ABCD 是正方形,点 E 是 BC 边上任意一点, ∠AEF = 90°,且EF 交正方形外角的平分线 CF 于点 F .求证:AE=EF .22. 如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1 中,画一个三角形,使它的三边长都是有理数;(2)在图2 中,画一个直角三角形,使它们的直角边都是无理数;(3)在图3 中,画一个正方形,使它的面积是10.23. 已知a、b、c满足(a﹣3)24+-+|c﹣5|=0.b求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.24. 如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.25. 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF菱形;(3)若AC=4,AB=5,求菱形ADCF 面积.答案与解析一、单选题(每题 3 分,共 30 分)1.,则的取值范围是[ ]A. x 0>B. x 2≥-C. x 2≥D. x 2≤[答案]D[解析][分析][详解]根据二次根式被开方数必须是非负数的条件,,必须2x 0x 2-≥⇒≤. 故选D.2. 平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为( ).A. 120︒B. 60︒C. 30D. 15︒ [答案]B[解析][分析]根据平行四边形的性质:邻角互补,对角线相等即可解答[详解]在平行四边形ABCD 中,2180A B A A ∠+∠=∠+∠=︒∴60A ∠=︒,60C A ∠=∠=︒故选:B.[点睛]本题考查平行四边形的性质,解题关键是熟练掌握平行四边形的角的性质:邻角互补,对角线相等. 3. 下列根式中,最简二次根式是( )A. B. C. D. [答案]D[解析][分析]检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.[详解]解:A、被开方数含能开得尽方的因数或因式,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选D.[点睛]本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4. 满足下列条件的三角形中,不是直角三角形的是()A. 三内角的度数之比为1∶2∶3B. 三内角的度数之比为3∶4∶5C. 三边长之比为3∶4∶5D. 三边长平方之比为1∶2∶3[答案]B[解析]试题解析:A、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;B、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;C、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;D、因为1+2=3,所以是直角三角形.故选B.5. 一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为( )A. 6013B. 13C. 6D. 25[答案]A[解析]试题分析:∵直角三角形的两条直角边的长分别为5,12,=13,∵S△ABC=12×5×12=12×13h(h为斜边上的高),∴h=60 13.故选A.6. 在下列条件中,不能确定四边形ABCD为平行四边形的是( ).A. ∠A=∠C,∠B=∠DB. ∠A+∠B=180°,∠C+∠D=180°C. ∠A+∠B=180°,∠B+∠C=180°D. ∠A=∠B=∠C=90°[答案]B[解析]分析]根据平行四边形的多种判定方法,分别分析A、B、C、D选项是否可以证明四边形ABCD为平行四边形,即可解题.[详解]A.∠A=∠C,∠B=∠D,根据四边形的内角和为360°,可推出∠A+∠B=180°,所以AD∥BC,同理可得AB∥CD,所以四边形ABCD为平行四边形,故A选项正确;B.∠A+∠B=180°,∠C+∠D=180°即可证明AD∥BC,条件不足,不足以证明四边形ABCD为平行四边形,故B 选项错误.C.∠A+∠B=180°,∠B+∠C=180°即可证明AB∥CD,AD∥BC,根据平行四边形的定义可以证明四边形ABCD 为平行四边形,故C选项正确;D.∠A=∠B=∠C=90°,则∠D=90°,四个内角均为90°可以证明四边形ABCD为矩形,故D选项正确;故选B.7. 如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A. 2B. 6C. 236223D. 23225[答案]D[解析][分析]将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.[详解]将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯-=222233-+-=23225+-故选D[点睛]本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.8. 如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )5151 31 31[答案]B[解析][分析] 根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==,在Rt △ADC 中根据勾股定理可得DC=1,则51.[详解]解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴5BD AD ==在Rt△ADC中,由勾股定理得:22DC541AD AC=-=-=∴BC=BD+DC=51+故选B[点睛]本题考查勾股定理的应用以及等角对等边,关键抓住ADC2B∠=∠这个特殊条件.9. 下列说法不能判断是正方形的是()A. 对角线互相垂直且相等的平行四边形B. 对角线互相垂直的矩形C. 对角线相等的菱形D. 对角线互相垂直平分的四边形[答案]D[解析][分析]正方形是特殊的矩形和菱形,要判断是正方形,选项中必须要有1个矩形的特殊条件和1个菱形的特殊条件. [详解]A中,对角线相互垂直的平行四边形可判断为菱形,又有对角线相等,可得正方形;B中对角线相互垂直的矩形,可得正方形;C中对角线相等的菱形,可得正方形;D中,对角线相互垂直平分,仅可推导出菱形,不正确故选:D[点睛]本题考查证正方形的条件,常见思路为:(1)先证四边形是平行四边形;(2)再添加一个菱形特有的条件;(3)再添加一个矩形特有的条件10. 如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC于E,AB=3,AC=2,BD=4,则AE 的长为( )A.32B.32C.217D.217[答案]D[解析][分析]由勾股定理的逆定理可判定△BAC是直角三角形,继而根据求出平行四边形ABCD的面积即可求解.[详解]解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=12AC=1,BO=12BD=2,∵AB∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC==S△BAC=12×AB×AC=12×BC×AE,2AE,∴AE=7,故选:D.[点睛]本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.二、填空题(每题3 分,共21 分)11. 若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为_____[答案]6.[解析][分析]根据直角三角形斜边中线的性质即可得.[详解]已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为6.故答案为:6.12. 已知 114x x y -+-=+,则 y x 的值为_____.[答案]-4[解析][分析] 根据二次根式的被开方数为非负数列不等式组解得x 值,将x 代入原式解得y 值,即可求解.[详解]要使114x x y -+-=+有意义,则:1010x x -≥⎧⎨-≥⎩,解得:x=1,代入原式中, 得:y=﹣4,∴y x =(-4)1=-4,故答案为:-4.[点睛]本题考查二次根式有意义的条件、解一元一次不等式组、幂的乘方,熟练掌握二次根式的被开方数为非负数是解答的关键.13. 将一个矩形纸片沿BC 折叠成如图所示的图形,若27ABC ∠=︒,则ACD ∠的度数为________.[答案]126°[解析][分析]直接利用翻折变换的性质以及平行线的性质分析得出答案.[详解]解:如图,由题意可得:∠ABC=∠BCE=∠BCA=27°,则∠ACD=180°-27°-27°=126°.故答案为:126°.[点睛]本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.14. 若45a 是整数,则最小的正整数a 的值是_________.[答案]5.[解析][分析]由于45a=5×3×3×a ,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a 为5. [详解]解: 45a=5×3×3×a , 若为整数,则必能被开方,所以满足条件的最小正整数a 为5.故答案为:5.[点睛]本题考查二次根式的化简.15. 实数a ,b 在数轴上对应点的位置如图所示,化简2()a a b +-的结果是_________________[答案]2a b -+[解析][分析]先根据数轴的定义得出0,0a a b <-<,再根据绝对值运算、算术平方根进行化简,然后计算整式的加减即可得.[详解]由数轴的定义得:0,0a a b <-<,则2()a a b +-,()a b a =-+-,a b a =-+-,2a b =-+,故答案为:2a b -+.[点睛]本题考查了数轴的定义、绝对值运算、算术平方根、整式的加减,根据数轴的定义判断出0,0a a b <-<是解题关键.16. 如图,在矩形ABCD 中,2AB =,3BC =.若点是边CD 的中点,连接AE ,过点作BF AE ⊥交AE 于点,则BF 的长为______.[答案]3105[解析][分析]根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. [详解]解:如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22223110AD DE +=+= ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 310[点睛]本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.17. 如图,在□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,GH ∥AB ,且CG =2BG ,S △BPG =1,则S □AEPH =______.[答案]4[解析][分析]由条件可证明四边形HPFD、BEPG为平行四边形,可证明S四边形AEPH=S四边形PFCG.,再利用面积的和差可得出四边形AEPH和四边形PFCG的面积相等,由已知条件即可得出答案.[详解]解:∵EF∥BC,GH∥AB,∴四边形HPFD、BEPG、AEPH、CFPG平行四边形,∴S△PEB=S△BGP,同理可得S△PHD=S△DFP,S△ABD=S△CDB,∴S△ABD-S△PEB-S△PHD=S△CDB-S△BGP-S△DFP,即S四边形AEPH=S四边形PFCG.∵CG=2BG,S△BPG=1,∴S四边形AEPH=S四边形PFCG=4×1=4;故答案为:4.[点睛]本题主要考查平行四边形的判定和性质,掌握平行四边形的判定和性质是解题的关键,即①两组对边分别平行⇔四边形为平行四边形,②两组对边分别相等⇔四边形为平行四边形,③一组对边平行且相等⇔四边形为平行四边形,④两组对角分别相等⇔四边形为平行四边形,⑤对角线互相平分⇔四边形为平行四边形.三.解答题18. 计算:(1)32)(23)(2)1 (83)62[答案](1)1(2)432 [解析][分析](1)根据平方差公式即可求解;(2)根据二次根式的混合运算法则即可求解.[详解](1)(32)(23)-+ =3-2 =1 (2)1(83)642+⨯- =48188+- =433222+- =432+.[点睛]此题主要考查二次根式的运算,解题的关键是熟知其运算法则.19. 如图,△ABC 中,∠ACB=Rt ∠,AB=8,BC=2,求斜边AB 上的高CD .[答案]6[解析][分析] 先根据勾股定理求出AC ,再根据等面积法即可求得结果.[详解]解:由题意得226AC AB BC =-=1122ABC S AB CD AC BC =⋅=⋅, 1186222CD =解得6[点睛]本题考查的是二次根式的应用,勾股定理的应用,解答本题的关键是掌握好利用等面积法求直角三角形的斜边上的高.20. 先化简,再求值:31254y x xy x y xy x y y+--,其中15x =,4y = [答案]255 [解析][分析]先利用二次根式的性质化简,合并后再把已知条件代入求值.[详解]原式=54xy xy xy xy xy +--=当15x =,y= 4时 原式=255[点睛]本题主要考查了二次根式的化简求值,注意先化简代数式,再进一步代入求得数值.21. 如图,四边形 ABCD 是正方形,点 E 是 BC 边上任意一点, ∠AEF = 90°,且EF 交正方形外角的平分线 CF 于点 F .求证:AE=EF .[答案]见解析[解析][分析]截取BE =BM ,连接EM ,求出AM =EC ,得出∠BME =45°,求出∠AME =∠ECF =135°,求出∠MAE =∠FEC ,根据ASA 推出△AME 和△ECF 全等即可.[详解]证明:在AB 上截取BM =BE ,连接ME ,∵∠B =90°,∴∠BME =∠BEM =45°,∴∠AME =135°∵CF 是正方形ABCD 的外角的角平分线,∴∠ECF=90°+∠DCF=90°+1902⨯︒=135°=∠ECF , ∵∠AEF = 90°∴∠AEB+CEF ∠=90°又∠AEB+MAE ∠=90°,∴MAE CEF ∠=∠∵AB =BC ,BM =BE ,∴AM =EC ,在△AME 和△ECF 中MAE CEF AM ECAME ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AME ≌△ECF (ASA ),∴AE =EF .[点睛]本题考查了正方形的性质,全等三角形的性质和判定,角平分线的定义,关键是推出△AME ≌△ECF . 22. 如图,正方形网格中的每个小正方形边长都是 1,每个小格的顶点叫做格点, 以格点为顶点分别按下列要求画三角形.(1)在图 1 中,画一个三角形,使它的三边长都是有理数;(2)在图 2 中,画一个直角三角形,使它们的直角边都是无理数;(3)在图 3 中,画一个正方形,使它的面积是 10.[答案](1)见解析(2)见解析(3)见解析[解析][分析](1)根据题意可画出三边长分别为3,4,5的三角形即可;(2)根据题意及勾股定理即可画出边长为5、5、10的直角三角形;(3)根据题意及正方形面积的特点即可画出边长为10的正方形.[详解](1)如图1,三角形所求;(2)如图2,三角形为所求;(3)如图3,正方形为所求.[点睛]此题主要考查网格与图形,解题的关键是熟知勾股定理的运用.23. 已知a、b、c满足(a﹣3)24b-|c﹣5|=0.求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.[答案](1)a=3,b=4,c=5;(2)能构成三角形,且它的周长=12.[解析][分析](1)根据平方、算术平方根及绝对值的非负性即可得到答案;(2)根据勾股定理的逆定理即可证明三角形是直角三角形,再计算周长即可.[详解](1)∵2---=,a b c(3)450又∵(a ﹣3)2≥0,40-≥b ,|c ﹣5|≥0,∴a ﹣3=0,b ﹣4=0,c ﹣5=0,∴a =3,b =4,c =5;(2)∵32+42=52,∴此△是直角三角形,∴能构成三角形,且它的周长l =3+4+5=12.[点睛]此题考查平方、算术平方根及绝对值的非负性,勾股定理的逆定理.24. 如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB =2∠OAD.(1)求证:四边形ABCD 是矩形;(2)若∠AOB ∶∠ODC =4∶3,求∠ADO 的度数.[答案](1)证明见解析;(2)∠ADO==36°. [解析][分析](1)先判断四边形ABCD 是平行四边形,继而根据已知条件推导出AC=BD ,然后根据对角线相等的平行四边形是矩形即可;(2)设∠AOB=4x ,∠ODC=3x ,则∠OCD=∠ODC=3x.,在△ODC 中,利用三角形内角和定理求出x 的值,继而求得∠ODC 的度数,由此即可求得答案.[详解](1)∵AO =OC ,BO =OD ,∴四边形ABCD 是平行四边形,又∵∠AOB =2∠OAD ,∠AOB 是△AOD 的外角,∴∠AOB =∠OAD +∠ADO.∴∠OAD =∠ADO.∴AO =OD.又∵AC =AO +OC =2AO ,BD =BO +OD =2OD ,∴AC =BD.∴四边形ABCD矩形.(2)设∠AOB=4x,∠ODC=3x,则∠ODC=∠OCD=3x,在△ODC中,∠DOC+∠OCD+∠CDO=180°∴4x+3x+3x=180°,解得x=18°,∴∠ODC=3×18°=54°,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO=∠ADC-∠ODC=90°-54°=36°.[点睛]本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.25. 在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.[答案](1)证明详见解析;(2)证明详见解析;(3)10.[解析][分析](1)利用平行线的性质及中点的定义,可利用AAS证得结论;(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.[详解](1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE =DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF =DB . ∵AD 为BC 边上的中线∴DB =DC ,∴AF =CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,E 是AD 的中点, ∴AD =DC =12BC , ∴四边形ADCF 是菱形;(3)连接DF ,∵AF ∥BD ,AF =BD ,∴四边形ABDF 是平行四边形,∴DF =AB =5,∵四边形ADCF 是菱形,∴S 菱形ADCF =12AC ▪DF =12×4×5=10. [点睛]本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD 是解题的关键,注意菱形面积公式的应用.。
人教版八年级下册数学《期中检测试题》(含答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的)1. 下列式子中,是分式的是()A.12a-B.3xπ-C. ﹣3xD.2xy+2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<26. 下列说法正确的是()A. 对角线相等四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 358. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 22﹣2C. 23﹣2D. 26﹣49. 若关于x方程333x m mx x++--=3的解为正数,则m的取值范围是()A. m<92B. m<92且m≠32C. m>﹣94D. m>﹣94且m≠﹣3410. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()5 B. 3 C. 213二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-值_____.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ 13. 若分式2||123x x x ---值为0,则x 的值为_____. 14. 如图,点D 是等边△ABC 外部一点,∠ADC =30°,BD =8,则四边形ABCD 面积的最小值为_____.三、解答题(共9小题,计58分)15. 因式分解:(1)x 3﹣8x 2+16x ;(2)x (x 2﹣5)﹣4x .16. 解不等式组253(2)123x x x x +≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来. 17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. 18. 如图,四边形ABCD 中,∠A =∠C =90°,若AB =BC .求证:BD 平分∠ABC .19. 已知在平面直角坐标系中,A (﹣2,0)、B (3,﹣1)、C (2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC ;(2)将△ABC 平移,使得平移后点C 的对应点为原点,A 、B 的对应点分别为A 1,B 1,请作出平移后的△A 1B 1O ,并直接写出平移的距离为 ;(3)将△ABC 绕点A 逆时针旋转90°,得到△AB 2C 2,B 、C 的对应点分别为B 2、C 2,请作出△AB 2C 2,并求出B 2、C 2点的坐标.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=12BC,连接DE,F是AD的中点,连接CF.(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A、B两种品牌消毒酒精捐赠当地医院,已知A品牌消毒酒精每桶的价格比B品牌消毒酒精每桶的价格多20元,用3000元购进A品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A品牌消毒酒精每桶的价格和B品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A,B两种品牌消毒酒精共40桶,其中A品牌消毒酒精的数量不低于B品牌消毒酒精数量的一半,小明有几种购买方案?22. 如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(﹣2,0),l2与x轴交于点C(4,0)(1)填空:不等式组0<mx+n<kx+b解集为;(2)若点D和点E分别是y轴和直线l2上的动点,当p=32时,是否存在以点A、B、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,请说明理由.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.答案与解析一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的) 1. 下列式子中,是分式的是( ) A. 12a - B. 3x π- C. ﹣3x D. 2x y + [答案]A[解析][分析]利用分式定义可得答案.[详解]解:A 、12a -的分母含字母,是分式,故此选项符合题意; B 、3x π-的分母不含字母,不是分式,是整式,故此选项不合题意; C 、﹣3x 的分母不含字母,不是分式,是整式,故此选项不合题意; D 、2x y +的分母不含字母,不是分式,是整式,故此选项不合题意; 故选:A .[点睛]本题考查分式的定义,熟练掌握分式的定义是解答本题的关键.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:根据轴对称图形与中心对称图形的概念求解.解:A 、不是轴对称图形,也不是中心对称图形.故错误;B 、轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b[答案]D[解析][分析]根据不等式的性质逐一进行判断即可.[详解]解:∵a<b,∴﹣3a>﹣3b,故A错误;∵a<b,∴a﹣3<b﹣3,故B错误;∵a<b,当m>0时,am<bm,故C错误;∵a<b,∴2a<2b,故D正确.故选:D.[点睛]本题考查了不等式的性质,掌握知识点是解题关键.4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°[答案]C[解析][分析]根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.[详解]解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=35°,∵∠B=80°,∠C=35°,∴∠BAC=65°,∴∠BAD=∠BAC﹣∠DAC=65°﹣35°=30°,故选:C.[点睛]本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<2[答案]A[解析][分析]根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.[详解]解:∵点A(x+3,2﹣x)在第四象限,∴30 20 xx+>⎧⎨-<⎩,解得x>2. 故选:A.[点睛]本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6. 下列说法正确的是()A. 对角线相等的四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形[答案]D[解析][分析]根据平行四边形的判定方法分别对各个选项进行判断即可.[详解]解:∵对角线互相平分的四边形是平行四边形,∴选项A不符合题意;∵一组对边平行,另一组对边相等的四边形不一定是平行四边形,∴选项B不符合题意;C、∵一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C不符合题意;∵一组对边平行且相等的四边形是平行四边形,∴选项D符合题意;故选:D.[点睛]本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 35[答案]A[解析][分析]利用平行四边形的性质,三角形中位线定理即可解决问题.[详解]解:∵平行四边形ABCD的周长为52,∴BC+CD=26,∵OD=OB,DE=EC,∴OE+DE=12(BC+CD)=13,∵BD=18,∴OD=12BD=9,∴△DOE的周长为13+9=22.故选:A.[点睛]本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.8. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 2﹣2C. 3﹣2D. 6﹣4[答案]C[解析][分析]过点D作DJ⊥BC于J,根据勾股定理求出BC,利用等腰直角三角形的性质求出DJ、BJ、JC,利用平行线分线段成比例定理求出JC′即可解决问题.[详解]解:过点D作DJ⊥BC于J.∵DB =DC =2∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′, ∴DJ A B ''=C J C B''', 434C J ', ∴C′J =3∴JB′=4﹣3,∴BB′=2﹣(4﹣3=3 2.故选:C .[点睛]本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理.9. 若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A. m <92B. m <92且m≠32C. m >﹣94 D. m >﹣94且m≠﹣34 [答案]B[解析][详解]解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.10. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()A. 5B. 3C. 32D. 13[答案]D[解析][分析]取AB的中点F,连接NF、MF,根据直角三角形的性质得到∠CAB+∠CBA=90°,根据三角形中位线定理分别求出MF、NF,以及∠MFN=90°,根据勾股定理计算,得到答案.[详解]解:取AB的中点F,连接NF、MF,△ABC中,∵∠ACB=90°,∴∠CAB+∠CBA=90°, ∵AM=MD,AF=FB,∴MF是△ABD的中位线,∴MF=12BD=3,MF//BC,∴∠AFM=∠CBA,同理,NF=12AE=2,NF//AC,∴∠BFN=∠CAB,∴∠AFM+∠BFN=∠CAB+∠CBA=90°,∴∠MFN=90°,∴MN故选:D.[点睛]本题考查了三角形的中位线,平行线的性质,以及勾股定理等知识,三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-的值_____.[答案]2[解析][分析]根据完全平方公式解答即可.[详解]解:∵a﹣b=2,∴222a bab +-=2222a ab b-+=2 ()2a b -=222=2,故答案为:2.[点睛]本题主要考查了完全平方公式,熟记公式是解答本题的关键.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ [答案]7[解析][分析]根据凸n 边形的内角和为1440°,求出凸n 边形的边数,即可得出从一个顶点出发可引出(n ﹣3)条对角线.[详解]解:∵凸n 边形的内角和为1440°, ∴(n ﹣2)×180°=1440°,解得:n =10,∴:10﹣3=7.故答案为:7.[点睛]本题考查多边形内角和定理,解题关键是根据多边形内角和定理求出凸n 边形的边数.13. 若分式2||123x x x ---的值为0,则x 的值为_____. [答案]1[解析][分析]根据分子为零列出方程求解,然后验证分母是否为0可得答案.[详解]解:∵分式2||123x x x ---的值为0, ∴|x|﹣1=0,∴x=±1,当x=1时,x 2﹣2x ﹣3=-4≠0,当x=-1时,x 2﹣2x ﹣3=0,∴x =1,故答案为:1.[点睛]本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.14. 如图,点D是等边△ABC外部一点,∠ADC=30°,BD=8,则四边形ABCD面积的最小值为_____.[答案]163﹣16[解析][分析]过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,根据全等三角形的判定得△ABD≌△ACE,设等边三角形ABC的边长为a,等边三角形ADE的边长为b,根据等边三角形的性质、全等三角形的性质,得到四边形ABCD面积的表达式,进而即可求解.[详解]解:过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,如下图所示:∵DE⊥DC,∴∠EDC=90°,∵∠ADC=30°,∴∠EDA=60°,∵DE=DA,∴三角形ADE是等边三角形,∴AD =AE ,∠DAE =60°,∴∠CAE =∠CAD +∠DAE =∠CAD +60°,∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°,∴∠BAD =∠BAC +∠CAD =60°+∠CAD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴CE =BD ,∵BD =8,∴CE =8,设等边三角形ABC 的边长为a ,等边三角形ADE 的边长为b ,直角三角形DEC 中,CE =8,DE =b ,∴2264DC b =-,在直角三角形AMD 中,∠ADC =30°,AD =b ,∴AM =12b , ∴DM =32b , ∴CM =264b -﹣32b , 在直角三角形ACM 中,222AC AM CM =+,∴222213()(64)22a b b b =+--, ∵ABCD S 四边形=S △ABC +S △ACD =12×a×32 a +12DC·AM=12×a×32a +12×12b×264b -, =222313()(64)422b b b ⎡⎤+--⎢⎥⎣⎦ +14b 264b -==∴当b²=32时,即b=,ABCDS四边形最小值1322⨯16,故答案为:16.[点睛]本题主要考查全等三角形的判定与性质、等边三角形的性质、旋转的性质,解题关键是根据题意求出边之间的关系.三、解答题(共9小题,计58分)15. 因式分解:(1)x3﹣8x2+16x;(2)x(x2﹣5)﹣4x.[答案](1)x(x﹣4)2;(2)x(x+3)(x﹣3).[解析][分析](1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.[详解]解:(1)原式=x(x2﹣8x+16)=x(x﹣4)2;(2)原式=x(x2﹣5﹣4)=x(x+3)(x﹣3).[点睛]此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16. 解不等式组253(2)123x xx x+≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来.[答案]﹣1≤x≤3,数轴见解析[解析][分析]先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集,然后画数轴表示即可.[详解]解:253(2)123x x x x +≤+⎧⎪⎨-≤⎪⎩①②, 由①式得x≥﹣1,由②得x≤3,所以﹣1≤x≤3, .[点睛]本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. [答案]﹣2m ﹣6,﹣4.[解析][分析] 把m +2看成21m +,先计算括号里面的,再算乘法,化简后代入求值. [详解]解:(m +252m +-)324m m -÷- =(2512m m +--)()223m m-⋅-, ()2224523m m m m---=⋅--, ()()()332223m m m m m-+-=⋅-- =﹣2(m +3)=﹣2m ﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣4.[点睛]本题考查了分式的化简求值.掌握分式的加减乘除运算是关键.18. 如图,四边形ABCD中,∠A=∠C=90°,若AB=BC.求证:BD平分∠ABC.[答案]详见解析[解析][分析]利用HL证明Rt△ABD≌Rt△CBD可得∠ADB=∠CDB,进而证明结论.[详解]证明:∵∠A=∠C=90°,在Rt△ABD和Rt△CBD中,AB=BC,BD=BD,∴Rt△ABD≌Rt△CBD(HL),∴∠ADB=∠CDB,∴BD平分∠ABC.[点睛]本题主要考查全等三角形的判定与性质,证明Rt△ABD≌Rt△CBD是解题的关键.19. 已知在平面直角坐标系中,A(﹣2,0)、B(3,﹣1)、C(2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC;(2)将△ABC平移,使得平移后点C的对应点为原点,A、B的对应点分别为A1,B1,请作出平移后的△A1B1O,并直接写出平移的距离为;(3)将△ABC绕点A逆时针旋转90°,得到△AB2C2,B、C的对应点分别为B2、C2,请作出△AB2C2,并求出B2、C2点的坐标.[答案](1)作图见解析;(2)22;(3)作图见解析;B2(﹣4,4),C2(﹣1,5)[解析][分析](1)根据点的坐标作出三角形即可;(2)分别作出A,B的对应点A1,B1即可;(3)分别作出B,C的对应点B2、C2即可.[详解]解:(1)如图,△ABC即为所求;(2)如图△A1B1O即为所求,平移的距离为22;故答案22.(3)如图△A B2C2即为所求B2、C2点的坐标分别为(﹣4,4),(﹣1,5)[点睛]本题考查了作图-旋转变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=1BC,连接DE,F是AD的中点,连接CF.2(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的性质得AD//BC,且AD=BC,证出DF=CE,即可得出四边形CEDF是平行四边形;(2)过点D作DH⊥BE于点H,由直角三角形的性质得CH=12CD=4,DH3CH=3由梯形面积公式即可得出答案.[详解](1)证明:在ABCD中,AD//BC,且AD=BC.∵F是AD的中点,∴AF=DF=12 AD.又∵CE=12 BC,∴DF=CE,∵DF//CE,∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在ABCD中,∵∠B=60°,AD//BC,∴∠B=∠DCE=60°,CD=AB=8,BC=AD=10, ∴∠CDH=30°,∴CH=12CD=4,DH22843由(1)得:AF=12AD=5,∴四边形ABCF的面积=12(AF+BC)×DH=12(5+10)×33.[点睛]本题考查了平行四边形的判定与性质、勾股定理、含30°角的直角三角形的性质、梯形面积公式等知识;熟练掌握平行四边形的判定与性质是解题的关键.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A 、B 两种品牌消毒酒精捐赠当地医院,已知A 品牌消毒酒精每桶的价格比B 品牌消毒酒精每桶的价格多20元,用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A 品牌消毒酒精每桶的价格和B 品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半,小明有几种购买方案?[答案](1)A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)5种[解析][分析](1)设B 品牌消毒酒精每桶价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据“用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同”列出方程求解即可;(2)设购买A 品牌消毒酒精m 桶,根据“用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半”列出一元一次不等式组,求解即可.[详解]解:(1)设B 品牌消毒酒精每桶的价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据题意得, 3000180020x x=+, 解得,x =30,经检验:x =30是原分式方程的解,且符合题意,∴x +20=30+20=50,答:A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)设购买A 品牌消毒酒精m 桶,则购买B 品牌消毒酒精(40﹣m )桶,根据题意得,5030(40)15601(40)2m m m m +-≤⎧⎪⎨≥-⎪⎩, 解得,40183m ≤≤ , ∵m 为正整数,∴m =14或m =15或m =16或m =17或m =18,∴共有5种购买方案.[点睛]本题考查了分式方程的应用和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,列出方程和不等式组是解题的关键.22. 如图,两个一次函数y =kx +b 与y =mx +n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (﹣2,0),l 2与x 轴交于点C (4,0)(1)填空:不等式组0<mx +n <kx +b 的解集为 ;(2)若点D 和点E 分别是y 轴和直线l 2上的动点,当p =32时,是否存在以点A 、B 、D 、E 为顶点的四边形是平行四边形?若存在,请求出点E 的坐标;若不存在,请说明理由.[答案](1)1<x <4;(2)E 点为(3,12),(﹣1,52),(﹣3,72). [解析][分析](1)观察图象即可求解; (2)已知点A 、B 、C 时,用待定系数法分别求出直线AB 与AC 的解析式;点A 、B 、D 、E 为顶点的四边形是平行四边形,有三种情况:①四边形ABDE 为平行四边形;②四边形EBDA 是平行四边形;③四边形EBAD 为平行四边形.[详解]解:(1)由图象可知满足0<mx +n <kx +b 的部分为A 点与C 点之间的部分,∴1<x <4;(2)∵p =32, ∴A (1, 32), 将点A 与B 代入y =kx +b ,得3220k b k b ⎧=+⎪⎨⎪-+=⎩,∴121k b ⎧=⎪⎨⎪=⎩,∴y =12x +1, 将点A 与点C 代入y =mx +n ,得3240m n m n ⎧+=⎪⎨⎪+=⎩, ∴122m n ⎧=-⎪⎨⎪=⎩,∴y =﹣12x +2, ①如图1:当四边形ABDE 为平行四边形时,∵E 在直线l 2上,此时,BD ∥AC ,∴BD 所在直线解析式为y =﹣12x ﹣1, ∴D (0,﹣1),∵DE∥AB,∴DE所在直线解析式为y=12x﹣1,∵﹣12x+2=12x﹣1,可得x=3,∴E(3,12);②如图2:当四边形EBDA是平行四边形时, 则有BD∥AC,∴BD所在直线解析式为y=﹣12x﹣1,∴D(0,﹣1),∴AD的直线解析为y=52x+1,∵AD∥BE,∴BE所在直线解析为y=52x+5,∵﹣12x+2=52x+5,解得x=﹣1,∴E(﹣1,52 );③如图3:当四边形EBAD为平行四边形时,设D(0,a),E(m,﹣12m+2),此时AE的中点M的横坐标为12m +,BD中点M的横坐标为﹣1,∴﹣1=12m +,∴m=﹣3,∴E(﹣3,72 );综上所述:满足条件的E点为(3,12),(﹣1,52),(﹣3,72).[点睛]本题考查一次函数的综合应用;熟练掌握代入法求函数解析式,平行四边形的性质与直线平行的关系灵活结合是解题的关键.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.[答案](1)4+33;(2)115;(3)存在;365.[解析][分析](1)根据旋转的性质可知△BCB1是等边三角形,根据线段的垂直平分线的判定得A1B垂直平分线段CB1,利用勾股定理求出BD、A1D即可解决问题;(2)过A作AF⊥BC于F,过C作CE⊥AB于E,利用面积法求出CE的长,根据勾股定理求出BE的长,进而可求线段AB1的长;(3)过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,和以C为圆心BC为半径画圆交BC的延长线于F1,得出最大和最小值解答即可.[详解]解:(1)如图1中,∵CB=CB1,∠BCB1=60°,∴△BCB1是等边三角形,∴BC=BB1,∵A1C=A1B1,∴A1B垂直平分线段CB1,∴A1B⊥B1C,B1D=DC.∵△BCB1是等边三角形,BD是高,BC=6,∴∠CBD=30°,∴CD=12BC=3,∴BD =2263-=33, 在Rt △A 1DC 中,A 1D =221AC CD -=2254-=4, ∴A 1B =A 1D +BD =4+33,故答案为4+33;(2)过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,如图2:∵AB =AC ,AF ⊥BC ,BC =6,∴BF =CF =3,∴AF=2253=4-,∴S △ABC =12BC ×AF=12. ∵B 1C =BC =6, ,CE ⊥AB ,∴B 1B =2BE ,∵EC =2ABC S AB ∆=245, ∴BE=2224186=55⎛⎫- ⎪⎝⎭,则BB 1=365, 故AB 1=365﹣5=115; (3)如图3,过C 作CF ⊥AB 于F ,此时在Rt △BFC 中,∵112 2ABCAB CF S⋅==,∴CF=245,∴CF1=245,如图,以C为圆心CF为半径画圆交BC于F1,EF1有最小值,此时EF1的最小值为245﹣3=95;如图,以C为圆心BC为半径画圆交BC的延长线于F1,EF1有最大值;此时EF1=EC+CF1=3+6=9,∴线段EF1最大值与最小值的差为9﹣95=365.[点睛]此题考查了旋转的性质、等边三角形的判定、等腰三角形的性质、线段的垂直平分线的判定和性质、勾股定理、三角形的面积等知识,关键是根据旋转的性质和三角形的面积公式进行解答.。
八年级语文下册期中测试卷(及参考答案)

八年级语文下册期中测试卷(及参考答案)满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字读音完全正确的一项是()A.镌.刻(juàn)遗嘱.(zhǔ)咆哮.(xiào)水皆缥.碧(piǎo)B.桅.杆(wéi)翘首(qiáo)刹.那(chà)凛冽.(liè)C.要塞.(sè)悄.然(qiǎo)溃.退(kuì)殚.精竭虑(dān)D.承载.(zǎi)娴.熟(xián)澎湃.(pài)屏.息敛声(bǐng)3、下列句子中加点的成语使用不正确的一项是()A.今年十一假期,前来秦始皇陵兵马俑游玩的人络绎不绝....。
B.小草虽然是微不足道....的角色,它却以顽强的生命力为世人所钦佩和赞颂。
C.列夫·托尔斯泰的小说,情节起伏跌宕,抑扬顿挫....。
D.上海一人工湖惊现巨幅“中国地图”,这一巧妙设计可谓独具匠心。
.....4、下列句子没有语病的一项是()A.散文通常写自然风物、社会风云的一角,写名士凡人的片段事迹,抒写一缕情思,传达某种趣味。
B.政府不断继续加大公共服务事业,如关注教育均衡、食品安全等问题,这些都与老百姓的生活密切相关。
C.我们常说的知识改变命运,实则是知识改变了你对整个世界的认知,从而对每一件事的态度。
D.在第26届“汤姆斯杯”羽毛球锦标赛上,中国男队折戟沉沙,其原因是队伍青黄不接的缘故。
5、对下列句子使用修辞手法的判断正确的一项是()A.山河睡了而风景醒着,春天睡了而种子醒着。
(洛夫《湖南大雪——赠长沙李元洛》)(排比)B.风声在云外呼唤着,远山也在送青了。
(张晓风《到山中去》)(反复)C.五十岁上下的女人站在我面前,两手搭在髀间,没有系裙,张着两脚,正像一个画图仪器里细脚伶仃的圆规。
(鲁迅《故乡》)(比喻)D.在我们面前,天边远处仿佛有一片紫色的阴影从海里钻出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年——2013年茂名市新世纪学校第二学期期中八年级语文试卷说明:1.本试卷共12页,28小题,满分120分。
考试时间为120分钟。
2.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡和答题卷相应位置上。
3.第Ⅰ卷选择题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
4.第Ⅱ卷必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然目再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生必须保持答题卡、答题卷的整洁。
考试结束后,将试卷、答题卡和答题卷一并交回。
第Ⅰ卷(20分)一、答题提示:认真听录音,1—4题读一遍,然后根据要求完成答题。
考生可边听边答题。
1.听读词语,选出读音不正确的一项。
()(2分)A.懵懵懂懂张冠李戴朝秦暮楚B.寄人篱下刮目相看刚正不阿C.不能自己心乱如麻闻鸡起舞D.参天大树介胄之士中流击楫2.听读诗句,下列朗读停顿不正确的一项是()(2分)A.故国哟,啊啊,要到何年何月何日才能让我回到你的怀抱里B.而黄河今夜仍然要从你身旁流过流进我不眠的梦中C.但你轻轻嘘着我的面颊许我以湿咸的海风D.大堰河,是我的保姆。
她的名字就是生她的村庄的名字听读一则新闻,完成3-4题。
3.目前,青少年高血压发病率越来越高,下列与此无关的因素是()(2分)A.多吃高脂肪、高热量食物。
B.食盐的增加。
C.缺少运动。
D.超重肥胖率高。
4.根据所读文字,下列理解有误的一项是()(2分)A.2012年度北京市高超体检不合格(学校有关专业可不录取)12人,占总体检人数的0.16%。
B.2012年度北京市高超体检不完全合格的学生主要是视力不足和体重超标。
C.成年人体检人群中,血脂异常、脂肪肝和超重肥胖高居男女十大健康问题榜单“前三甲”,且同年龄组男性检出率远高过女性。
D.全市18岁以上体检人群中,血脂异常的检出率为31.2%,男性高过女性近11个百分点;脂肪肝的检出率为24.91%,同年龄组的男性检出率同样明显高过女性近17个百分点。
5、下列各句没有语病的一项是()A.睡眠三忌:一忌睡前不可恼怒,二忌睡前不可饱食,三忌卧处不可当风。
B.为了防止这类交通事故不再发生,我们加强了交通安全的教育和管理。
C.退休以后,马永倾几乎无时无刻不忘垦荒、植树,他要用几年的时间把自己前半生砍的三万多棵树补种上。
D.他写信告诉我说,近几年来,他几乎无时无刻不在思念家乡。
6、下面情境下,女儿的回答最得体的一项是( )【情境】妈妈对经常与笔友通信的女儿说:“你不要再与笔友通信了,妈妈怕你被坏人欺骗,也怕你分散精力,耽误学习。
”A.通信自由是我的权利,您不让我与笔友通信是违法的。
B.我求您别唠叨了,我以后不与笔友通信就是了。
C.谢谢妈妈,您的提醒我会注意,但我与笔友通信除了交流思想,更重要的是为了练笔,请您理解并允许我这么做吧。
D.好吧,我可以不与他们通信,但我给他们发短信或打电话总可以吧。
三、文言文阅读,本大题4小题,共8分。
7、下列各组加点词意思和用法相同的一项是()A众妙必备.前人文述备.矣B全石以.为底可以.为师矣C齐国之.美丽者也花之.隐逸者也D衣食所安.安.能辨我是雄雌阅读下面文言文,完成8-10题。
文帝之后六年,匈奴大入边。
乃以宗正刘礼为将军,军霸上;祝兹侯徐厉为将军,军棘门;以河内守亚夫为将军,军细柳,以备胡。
上自劳军。
至霸上及棘门军,直驰入,将以下骑送迎。
已而之细柳军,军士吏被甲,锐兵刃,彀弓弩,持满。
天子先驱至,不得入。
先驱曰:“天子且至!”军门都尉曰:“将军令:‘军中闻将军令,不闻天子诏。
’”居无何,上至,又不得入。
于是上乃使使持节诏将军:“吾欲入劳军。
”亚夫乃传言开壁门。
壁门士吏谓从属车骑曰:“将军约,军中不得驱驰。
”于是天子乃按辔徐行。
至营,将军亚夫持兵揖曰:“介胄之士不拜,请以军礼见。
”天子为动,改容式车,使人称谢曰:“皇帝敬劳将军。
”成礼而去。
既出军门,群臣皆惊。
文帝曰:“嗟乎,此真将军矣!曩者霸上、棘门军,若儿戏耳,其将固可袭而虏也。
至于亚夫,可得而犯邪?”称善者久之。
8.加点词解释正确的一项是()(2分)A、其将固可袭而虏.也(俘虏)B、居无何..(没什么)C、天子先驱..至(前军)D、介胄之士....(穿着盔甲的将士)9.下列加横线的词属通假字的一项是()(2分)A.军士吏被甲B. 于是上乃使使持节C. 改容式车,使人称谢D.其将固可袭而虏也10.下列对文章内容理解不正确的一项是()(2分)A. 皇上劳军两次不得入,“乃使使持节诏将军”才“按辔徐行”,从这里可看出周亚夫周亚夫治军有方,令行禁止。
B. 周亚夫是一个治军严格、刚正不阿、恪尽职守、不阿谀奉承, 不趋炎附势的人。
C. 表现细柳军训练有素、时刻有备的一句是“军士吏被甲,锐兵刃,彀弓弩,持满”。
D. 周亚夫军纪严明,军令畅达,治军有方。
这些从正面表现了周亚夫的“真将军”本色第Ⅱ卷(50分)二、语言运用与综合性实践,本大题4小题,共12分。
四、听力和语言运用(本大题小题,共分)11.听读一篇短文,回答问题。
(7分)(1)写出你所听到的三个成语。
(3分)__________________________________________________________________________________________________________________________________ (2)犹太人的生意经给了你哪些启示?(4分)__________________________________________________________________________________________________________________________________12、把下面歌颂教师的对联补充完整。
(2分)上联:三尺讲台_________________________________________________________下联:一支粉笔_________________________________________________________13、综合性学习。
(4分)“轻轻地我走了,正如我轻轻地来。
”三年的时光已悄然流逝,初识犹在昨天,分别即在眼前。
回首往昔,校园处处留下欢歌笑语,而今不免涌起缕缕怅惘。
但人生就是这样,走过一个“驿站”,既意味着结束,更是一段新征程的开始。
南充某校某班举行“岁月如歌”综合性学习活动,下面是活动中的几项内容,请按要求完成。
(1)班上组织编写一本班史,为其内容设计两个板块,写出板块名称。
①___________________ _②__________________ __(2)班委准备策划一台“难忘今宵”的毕业晚会,请你帮忙设计一个简要的晚会活动方案。
__________________________________________________14.名著阅读。
(2分)“稳定的生活、温暖和睦的家庭气息复苏了他那颗由于长期漂泊而变得冷漠的心,简朴但是充足的饭食保证了他从少年到青年的过渡时期急剧增长的营养需求,对琢玉技艺的不懈追求激起他以创造充实人生的信念,繁华的都市环境塑造了他以竞争求得立足之地的性格。
三年的时间,他等于重新开始了人生,吸吮着师傅的心血、北京的水土,悄悄地长成了一个男子汉,个子猛蹿到和师傅那样高,宽宽的肩膀,挺实的腰身,充满了青春的活力。
”选段出自名著《》,选段中的“他”是指()五、古诗文默写、翻译,本大题2小题,共10分。
15、古诗文默写。
(6分)①?尘暗旧貂裘。
②羹饭一时熟,。
③,载渴载饥。
④,坐断东南战未休。
⑤在《朝天子•咏喇叭》中,暗喻宦官身为奴仆却虚张声势的诗句是。
16、翻译下列句子。
(4分,每句2分)①天子为动,改容式车,使人称谢。
译文②至霸上及棘门军,直驰入,将以下骑送迎。
译文:。
2六、现代文阅读,本大题7小题,共28分。
阅读下面选文,完成17——23题。
(一)一笑(10分)王虎林①齐白石老先生有一句座右铭:“人誉之,一笑;人骂之,一笑。
”②人生于天地之间,有人称赞,就一定会有人诋毁。
这就像天气一样,有晴就有阴,有阳光普照,就难免有淫雨绵绵。
这道理也许人人都懂,但真正能做到齐老那两笑,并不容易。
③别人夸奖,自然欢喜,高帽子谁不愿意戴呀!清代大才子袁枚,少年聪慧,秉赋过人,二三十岁就官拜七品县令。
赴任之前,袁枚去向他的老恩师──清乾隆年间的名臣尹文端辞行。
尹文端问:你此去赴任,都准备了些什么?袁枚老老实实地回答:学生也没有准备什么,就准备了一百顶高帽子。
尹文端一听就有些不高兴,说你年纪轻轻,怎么能搞这一套,还是要讲究勤政务实呀!袁枚说,老师您有所不知,如今社会上的人大都喜欢戴高帽子,像您老人家这样不喜欢戴高帽子的人真是凤毛麟角呀!尹文端听罢此言,很是受用。
袁枚不愧为才子,对世事洞明如镜,在不知不觉中,就将一顶高帽子送给了尹文端。
④连自以为高明的尹文端,都做不到“人誉之,一笑”,何况普通人呢。
如果一个人真正能做到“人誉之,一笑”,那么他无论做什么都能够了然于心,淡然处世,其人生境界就已经有了一定的高度了。
⑤更进一步,如果能够做到“人骂之,一笑”,那就更是了不得了。
⑥有一段时期,释迦牟尼经常遭到一个人的嫉妒和谩骂。
对此,释迦牟尼并没有恶语相向给予回击。
他心平气和,一笑了之。
直到有一天,这个人终于骂累了,这时,释迦牟尼微笑着问他:“我的朋友,当一个人送东西给别人,别人不接受时,那么这个东西属于谁呢?”这个人不假思索地答道:“当然是属于送东西的人自己了。
”释迦牟尼又问:“”这个人闻听此言,一时语塞。
从此,他再也不敢谩骂释迦牟尼了。
⑦面对突如其来的诽谤和指责,释迦牟尼不为所动,表现出了少有的冷静与清醒。
他不理睬,也不还击,不给对方以可乘之机,而是以他慈悲宽大的胸怀,让指责无处落脚,将谩骂化解于无形,让对方最终自惭形秽,败下阵来,而且,搬起石头砸了自己的脚。
⑧面对无聊的诽谤与谩骂,有时候,一笑其实就是最有力的还击。
17.作者在这篇文章中表达的主要观点是:(3分)18.(1)联系前后文,将第⑥段中释迦牟尼的问话写在下面的横线上。
(2分)(2).说说本文采用的两个事例在论证角度上有什么不同。
(2分)19.指出文章的结构方式,并作简要分析。
(3分)(二)目送(18分)龙应台有些路啊,只能一个人走。
——题记①华安上小学第一天,我和他手牵着手,穿过好几条街,到维多利亚小学。
九月初,家家户户院子里的苹果和梨树都缀满了拳头大小的果子,枝丫因为负重而沉沉下垂,越出了树篱。