循环水泵节能变频改造分析

合集下载

热源厂循环水泵变频节能改造方案分析

热源厂循环水泵变频节能改造方案分析
黼 专论
热源厂循环水泵变频节能改造方案分析
刘佳友 延吉市集中供热有限责任公司 吉林延吉
【 摘要l对 变频器使 用前后的节能效果进行 此对, 分析 了 水泵变频调
速 节能 效益 ; 同时 分析 了用智 能控 制 系统 对 循环 变频 系统 进 行优 化
【 关 键词】节能; 水泵; 变频调速; 智能控制
损失 , 增加 了 企业 的电费成本 。 在 使用变 频调速 装置 后, 可根据需 要调 采用高效 闭环控制系统控制 , 可按需 要进行 软件组态设定温 度、 压 节循 环泵转速 , 可 以提高电机转 速的控制精度 , 使 电机 在最节能的 转速 力进行P I D 调节 , 使 电机输 出功 率随负载 变化而变化 , 在满 足使用要求 下运 行。 根 据流体力学原 理, 轴 功率与 转速的三次 方成正 比。 当所 需水 的前 提下达 到最大限度的节 能。 量 减少, 循环 泵转速 降低时, 其 功率按转 速的三次 方下降 , 精确调 速的 方便调 节方式 , 可设定压 力、 温 度, 电压 电流 等参数可 现实在面板 节 电效果理 想, 由于 电机 轻载运 行的时间所 占比例 较高 , 使 用变频 调速 上 , 设 置和 调节监控功能使用方便 , 为远 程计算 机控制预 留接 口。 可提 高轻载运行 时的电机效率达到节 电效果可观 。 由于降 速运行和软 启动, 减少振动 和磨损 , 延长设备维护周期和使 用寿 命, 提高设 备的MT B F ( 平均故障 间隔时间) 值, 并减 少电网冲击, 二, 参 数计 算 对 于 热源厂使 用的循 环泵功 率较大 , 只用 工作流 量变化范 围大小 提高 系统可靠性 , 减 少维修费用。 确定节 能效 益 的大小就 不正 确了, 应根 据转 速变化 范 围确定 节能 效益 系统具 备各种 保护措 施 ( 过流 、 过 压、 过 载、 过热 、 电机 相间和对 的大小才正确。 地短 路 等) 且 系统具 有B I T ( l f 检测 ) 功能 , 使系统运转 率和安全 性大大 泵的功率N , 、 供水量Q , 与泵转速n 三 者的关系如下式: l 、 电机所耗功 率与电机转速 3 次成正 比, 即N , / N =( n I / n ) 。 2 、 流量Q 与电机转速 成正比 , 即Q / Q =n . / n

火力发电厂循环水泵变频改造节能探究

火力发电厂循环水泵变频改造节能探究

火力发电厂循环水泵变频改造节能探究
火力发电厂循环水泵是保证发电机组正常运行的重要设备,其工作效率直接关系到整
个发电厂的能耗和运行成本。

而循环水泵的能耗主要取决于其运行状态和工作参数的设定。

为了降低火力发电厂的能耗和运行成本,可以考虑对循环水泵进行变频改造,以提高其工
作效率和节能效果。

循环水泵的变频改造主要是通过安装变频器来实现。

变频器是一种可变频调速的设备,通过改变电机的转速,调整水泵的运行状态和工作参数,从而实现节能的效果。

具体的改
造措施包括以下几个方面:
进行循环水泵的参数调整。

通过变频器来调整水泵的转速和出水压力,以适应实际工
况需要。

在低负荷时可以降低水泵的转速和出水压力,以减少能耗;在高负荷时可以提高
水泵的转速和出水压力,以保证运行稳定。

通过合理调整水泵的工作参数,可以最大限度
地减少能耗。

还可以通过变频器来实现循环水泵的软启动和软停止。

传统的水泵启动和停止都是直
接由电源控制,容易产生起动冲击和停机冲击,从而造成能耗的浪费。

而软启动和软停止
可以通过变频器来实现,可以逐渐调整水泵的转速,使得启动和停止过程更加平稳,减少
能耗的浪费。

需要进行循环水泵的运行监测和数据分析。

通过安装传感器和监测系统,可以对水泵
的运行状态和工作参数进行实时监测和数据分析,了解水泵的实际工况和能耗情况。

通过
对数据的分析,可以及时发现问题和优化改进的方向,进一步提高水泵的工作效率和节能
效果。

火力发电厂循环水泵变频改造节能探究

火力发电厂循环水泵变频改造节能探究

火力发电厂循环水泵变频改造节能探究火力发电厂是以煤炭、天然气、石油等燃料为能源,通过火力发电机组将热能转化为电能的一种发电方式。

在火力发电过程中,水泵作为循环水系统的重要组成部分,起着循环供水、冷却设备和锅炉等设备的散热等重要作用。

传统的循环水泵工作模式存在一些问题,如能耗高、效率低、噪音大等,因此需进行变频改造以实现节能减排和提高运行效率的目标。

循环水泵变频改造是指通过安装变频器控制水泵的转速,使其随着系统负荷的变化而自动调整转速,以达到节约能源和提高工作效率的目的。

具体探究变频改造对节能的影响,可以从以下几个方面展开:变频改造可以实现根据实际需要调整水泵的功率输出。

水泵通常按照额定功率运行,无论系统负荷大小,都以额定功率运行,会造成能源的浪费。

而通过变频器可以根据实际需要调整水泵的转速和功率输出,避免了额定功率的固定运行,从而节约能源。

变频改造可以提高水泵的工作效率。

传统的水泵通常采用调节阀门的方式来调整流量,通过阀门调节流量会增大水泵的出口压力,从而降低系统的效率。

而采用变频控制的水泵可以根据系统负荷的变化调整转速,实现最佳工作点,提高系统的效率。

变频改造可以减少水泵的运行噪音。

水泵在传统工作模式下,由于流量的变化导致压力的不稳定,产生的水流和气泡会引起噪音。

而通过变频控制水泵的转速,可以使水泵在稳定区域内工作,减少噪音的产生,提高工作环境的舒适度。

变频改造可以延长水泵的使用寿命。

传统的水泵由于长时间以额定功率运行,容易导致设备过负荷运行,从而加速设备的损坏和磨损。

而通过变频控制使水泵在不同负荷下工作,可以有效减少设备的负荷和磨损,延长水泵的使用寿命。

火力发电厂循环水泵的变频改造可以有效地节约能源、提高工作效率、降低噪音、延长使用寿命等,具有重要的节能减排和经济效益。

随着能源的紧张和环境保护的要求越来越高,火力发电厂循环水泵的变频改造将成为未来发展的趋势。

火力发电厂循环水泵变频改造节能探究

火力发电厂循环水泵变频改造节能探究

火力发电厂循环水泵变频改造节能探究随着社会经济的不断发展和人们生活水平的提高,能源消耗问题逐渐凸显出来。

火力发电是一种重要的能源供应方式,但是其能源消耗效率并不高。

为了提高火力发电的能源利用率,节约能源资源,火力发电厂循环水泵的变频改造成为了当前节能减排的热点课题。

本文将从火力发电厂循环水泵的工作原理、变频改造的意义以及节能效果等方面进行探究。

一、火力发电厂循环水泵的工作原理火力发电厂是利用化石燃料(如煤、油、天然气等)进行燃烧以产生高温高压蒸汽,然后利用蒸汽驱动汽轮机转动发电机,最终转化为电能的过程。

而循环水泵是将冷却水从冷却塔中抽出,通过管道输送到汽轮机和发电机中进行冷却,同时再将被加热后的水回到冷却塔中进行循环使用的设备。

在火力发电厂的整个发电系统中,循环水泵是起到冷却作用的重要设备,其工作稳定性和效率直接影响到整个发电系统的运行效果。

二、变频改造的意义目前,火力发电厂循环水泵的驱动方式主要是采用恒频电机进行驱动,这种方式在一定程度上存在能源利用率低、运行效率不高、噪音大等问题。

而采用变频器来改造循环水泵的驱动系统,主要有以下几点意义:1. 节省能源:通过变频改造的方式,可以根据实际需要调整循环水泵的转速和流量,使其能够在满足冷却需要的尽可能地节省能源。

2. 提高稳定性:采用变频器驱动系统可以使循环水泵的启动、停止和调速更加平稳和灵活,减少了因恒频启动而对设备产生的冲击和损坏。

3. 减少噪音:相比于恒频驱动方式,变频器驱动的循环水泵在运行过程中的噪音要小很多,可以减少对周围环境和人员的影响。

4. 增加寿命:变频器可以根据实际使用情况对电机进行调速,避免了因频繁启停和恒速运行对电机寿命的影响,延长了设备的使用寿命。

三、节能效果的探究采用变频器进行火力发电厂循环水泵的驱动系统改造,可以有效地节约能源并提高设备运行效率。

据实际数据统计和研究,变频改造后的循环水泵节能效果明显,具体表现在以下几个方面:1. 能源消耗减少:通过变频改造,循环水泵的启动、停止和调速都变得更加灵活,可以根据实际需要进行调节,实现能耗的最优化配置,从而实现了能源消耗的降低。

火力发电厂循环水泵变频改造节能探究

火力发电厂循环水泵变频改造节能探究

火力发电厂循环水泵变频改造节能探究一、循环水泵在火力发电中的重要性火力发电厂是利用燃烧煤炭、石油和天然气等能源,转换成高温高压的蒸汽,带动汽轮机发电的一种方式。

而蒸汽发电过程中会产生大量的余热冷凝成水,需要通过循环水泵把冷凝水送回锅炉再次加热成蒸汽,形成循环。

循环水泵在火力发电中扮演着至关重要的角色,它的性能直接关系到整个发电厂的能源利用率和生产效率。

传统的循环水泵采用的是定频供电方式,按照设计参数运行,无法根据实际负荷变化情况进行调节,因此存在着很大的能源浪费。

尤其是在火力发电厂实际运行中,负荷变化较大,导致循环水泵的运行效率低下,能源消耗大。

如何提高循环水泵的能效,降低能源消耗成为了亟待解决的问题。

二、循环水泵变频改造的原理和技术为了解决传统循环水泵能源浪费的问题,近年来逐渐显现出变频技术的优势。

循环水泵变频改造是指通过安装变频器,实现对循环水泵电机转速的控制,使得水泵能够根据实际需求进行调速运行。

变频技术可以根据系统负荷的变化,智能调节水泵的运行次数和功率,使得水泵能够始终在最佳工作点运行,达到节能的目的。

循环水泵变频改造的原理是通过安装变频器,改变水泵电机的输入频率和电压,从而改变电机的转速和运行效率。

通过调节变频器的输出频率,可以实现水泵的流量和扬程控制,使得水泵能够根据实时负荷情况进行智能调节。

变频器还可以实现软启动、软停止等功能,减少水泵的启停次数,延长设备寿命,提高稳定性和可靠性。

循环水泵变频改造技术的应用对提高火力发电厂的能源利用率具有重要意义。

通过变频改造,循环水泵的运行效率和能效将得到提高,从而降低电能消耗,减少运行成本,提高发电效率。

循环水泵变频改造技术的应用对于节能减排有着显著的效果。

通过变频改造,循环水泵可以根据实际负荷情况智能调节,避免了传统定频方式下的大量能源浪费。

据统计,循环水泵变频改造后,能耗节约率可达30%以上,对于大型火力发电厂来说,是一个巨大的能源节约潜力。

浅析中央空调循环水泵闭环变频控制的节能应用

浅析中央空调循环水泵闭环变频控制的节能应用
电力 电子 ● P o we r E l e c t r o n i c s
浅析 中央空调循环水泵 闭环 变频控制的节能应用
文/ 周 明馨
同时 ,缺乏 与制冷机组生产厂家之 间的联系与
我 国社 会 经 济 建 设 进 程 的 推 进 , 为 物 业 管 理 行 业 提 供 了广 阔 的发展 空间,在 物业 管理行 业 的
变化 而改变其工作频率 ,使得系统热ห้องสมุดไป่ตู้换器 中 地 自动调整电机转速 ,确保水泵进 出口温差恒 的冷冻水与冷却水温差控制在一定范围内,在 定,找出系统 的最佳运行工作点。 中央空调系 控制流量的 同时有效提升循环水泵电机的输出 统变频 闭环控 制,技术先进 ,动态响应快 ,自
功率 。
变频节能 可行性分析
这大大 降低 了水泵 中电动机的运转功率 ,实现 了对循环水系统能耗 的有效控制 。
3空调循环水泵闭环变频节能可行性研究 1中央空调机 自动化控制现状分析
在 空调循环水泵 系统的运行中 ,冷却水的
高了建筑 的舒适性 。
5 结 束语
随着 中共空调 系统 在城 市建筑 中应 用的 水温度是 由蒸发器 的设定值决定 的,而系统 回 中央 空调水 泵通 过变频 闭环 控制 ,可 以 普及 ,空调 系统的循环水泵节能控制 日 渐受到 水温度则取决于中央 空调所在建筑 的热负荷 , 实现在满足空调负荷 要求的前提下 ,自动调节 物业 管理部 门的关注 。循环水泵系统作为 中央 通常中央空调 系统 的冷冻水温度和冷冻水的回 电机转速 ,有 效提升 空调主机和循环水泵的工 空调 系统建设 的重要组成部分 ,在水泵系统建 水 温 度 差值 为 5摄 氏度 左 右 ,如 循 环 水 变 频 系 作效率 ,可以空调系统运行 中大幅减少运行费 设 时通 常以建筑物 的最大冷负荷为基础 ,在系 统 的 出 水 温度 为 8摄 氏度 ,那 么 回水 温 度 就 应 用,并且在延长设备 的使用寿命 、减少运行维 统选 型时保 留 1 0 % ̄ 2 0 % 左右的剩余量 ,以此 控制在 l 3摄 氏度 ,这 样才能保 证冷却水 系统 护工作量方面效 果均 非常显著 。中央空调循环 保证 中央空调 制冷效果 的稳定性 。在 中央空调 中的冷却水的利用效率 。实 际循环水泵的冷却 水泵通过变频闭环控 制能够优化制冷机组的工 的实 际建设 中,由于空调运行时其冷负荷无法 水控 制 方 案如 图 : 作效率和质量 。中央 空调循环水泵采用闭环变 得 到稳 定控制 ,这在一定程度上缩短了空调系 如图所示 ,为实现对 循环水泵冷却水系统 频控制在保证 空调运行效果的 同时 ,实现了建 统 的满 负荷运行时 间,长时间处于轻载工作状 的有 效控制,通常在蒸发器 的出水管和 回水管 筑运行 的节能减排 ,符合科学发展观的要求 , 态的空调主机 ,与工频状态下满负荷运行的循 上安 装温度检测装置 ,并使 其与 P I D温差调节 也是我国提高建筑节能水平的发展方 向。 环水泵 系统无法得到有效协调 ,使得中央空调 器和变频器构 成一个 闭环控 制系统 ,通过对此 系统在运行状态下不仅浪费 了大量能源 ,也影 系统进行运行调控将冷却水 的温差控制在 5摄

冷却循环水系统水泵节能改造技术方案

冷却循环水系统水泵节能改造技术方案

冷却循环水系统水泵节能改造技术方案1.安装变频器:变频器可以根据实际的冷却需求调整水泵的转速,使其运行在最佳效率点上。

这样可以避免不必要的能量浪费,降低运行成本。

2.采用高效水泵:更换传统的水泵为高效水泵,可以提高水泵的效率。

高效水泵通过改进水轮叶片设计、减少水泵内部摩擦和导流损失等方式,使得单位能耗下降,从而降低运行成本。

3.安装节能控制系统:通过安装节能控制系统,可以对冷却循环水系统进行智能化控制和监测。

系统可以根据室内外温度、湿度等参数实时调整水泵的运行状态,从而进一步降低能耗。

4.改进冷却设备的布局:在冷却设备的布局上,可以采用合理的方式,减少水泵的阻力和摩擦损失。

例如,可以将冷却设备尽量靠近水泵,减少管道的弯曲和长度,提高水流速度,降低能量损失。

5.进行定期维护:定期对水泵进行维护和保养,保持水泵的正常运行。

经过长时间运行后,水泵内部可能会积累污垢和沉积物,这会导致水泵的效率降低。

通过清洗和更换损坏的零件,可以有效提高水泵的效率,延长使用寿命。

6.优化冷却循环水的循环方式:通过优化冷却循环水的循环方式,可以减少不必要的水泵运行时间和能耗。

例如,可以使用变压器来调整冷却循环水的流速和流量,根据实际需要进行调整,避免过量供水和过大的泵功率。

7.使用高效节能电机:水泵的电机也是能源的重要消耗者。

选择高效节能电机可以有效减少能源的消耗。

根据水泵的负荷情况,选用功率适当的电机,提高电机的效率。

总之,通过采用上述节能改造技术方案,可以提高冷却循环水系统水泵的效率,降低能源的消耗,从而实现节能减排的目标。

循环水泵节能改造方法措施与案例

循环水泵节能改造方法措施与案例

循环水泵节能改造方法措施与案例随着社会的发展和工业化进程的加快,水泵在工业生产和生活中扮演着重要的角色。

然而,传统的水泵在使用过程中存在能耗高、效率低、运行成本高等问题,给企业和社会带来了不小的压力。

为了解决这些问题,循环水泵节能改造成为了一种重要的手段。

本文将就循环水泵节能改造的方法措施和相关案例进行介绍。

一、循环水泵节能改造的方法措施。

1. 优化水泵系统。

循环水泵节能改造的第一步是对水泵系统进行全面的优化。

首先要对水泵的选型进行合理的设计,选择适合的水泵类型和规格,以保证系统的运行效率。

其次要对管道系统进行合理布局和设计,减少管道阻力,提高输送效率。

此外,还可以通过安装变频器、调速器等设备,对水泵进行智能控制,降低系统的运行成本。

2. 提高水泵效率。

提高水泵的效率是循环水泵节能改造的重要手段。

可以通过优化水泵叶轮、提高水泵的内部流体动力学性能,减少能量损失,提高水泵的输送效率。

此外,还可以采用高效节能的电机和传动装置,减少水泵的能耗,提高系统的运行效率。

3. 定期维护和管理。

定期的维护和管理对于水泵的节能改造至关重要。

定期检查水泵的运行状态,及时发现和排除故障,保证水泵的正常运行。

此外,还可以通过合理的运行管理,避免水泵的过载运行和空转运行,降低系统的能耗,延长设备的使用寿命。

4. 引入新技术。

引入新技术是循环水泵节能改造的重要手段。

可以通过引入先进的水泵设计理念和制造工艺,提高水泵的性能和效率。

同时,还可以引入智能化的监控系统和远程控制技术,实现对水泵的实时监测和智能控制,提高系统的运行效率。

二、循环水泵节能改造的案例。

1. 某化工企业循环水泵节能改造。

某化工企业在生产过程中使用了大量的循环水泵,但由于设备老化和管理不善,导致水泵的能耗较高,效率较低。

为了解决这一问题,企业对水泵系统进行了全面的改造。

首先对水泵进行了全面的检修和维护,排除了设备的故障和隐患。

其次对水泵的选型进行了优化,选择了适合的水泵类型和规格,提高了系统的运行效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环水泵节能变频改造分析
摘要:在满足企业生产情况下,通过电机变频技术,并在设备原有的基础上做局部的改动,达到节能降耗的结果,提升设备运行电能使用效率,为企业节约大量的电费,同时为节能减排做出贡献。

关键词:循环水系统水泵电机高压变频器
中图分类号:te08 文献标识码:a 文章编号:
公司循环水装置主要功能是负责向公司各级生产设备输送合格的循环水,用以冷却工艺介质,确保生产装置运行正常。

1.工艺概况
该循环水系统由三台型号规格相同的水泵及与之匹配的三台电机组成,其工艺流程示意图如下:
循环水泵使用规律为“两用一备”,其“启动、停止”控制由远方操作室值班人员完成,启动方式为直接启动。

工艺设计该循环水系统的循环水供应能力为3500 m3/h,管网压力0.6mpa。

在实际运行过程中,循环水的实际需求量为2500~3000m3/h,其中一台循环水泵阀门为全开,另一台水泵阀门开度为30%左右,电机运行电流为55a,总管网压力为0.6mpa。

2.改造前系统分析
(1)循环水泵设计输送能力远大于实际需求,电能浪费严重。

根据资料此循环水系统的实际输送量在2500~3000m3/h时即可满足设备需求,远小于设计输送能力3500 m3/h。

而目前该循环水泵电机为工频定速运行,无法通过转速调节调整水泵流量,因此,为匹配循环水用户的实际需求量,只能采用阀门调节的方式调整水流量,从而造成很大部分的电能浪费在做“无用功”中。

(2)电机直接启动,启动冲击电流大
由于电机采用直接启动,启动电流较大,一般为额定电流的4-7倍。

因此在启动时,不但对电机电机绝缘造成损害,同时还会对电网造成了严重的冲击,影响电网上其他设备的稳定运行。

另外,电机在直接启动时,由于管网内水量在极短时间内的发生巨大变化,有可能产生“水锤效应”,对管网设备寿命极为不利。

(3)阀门控制时节流损耗大
由现场调查得知,其中一台水泵阀门开度仅为30%,水泵长期处于“憋泵”状态,加速了阀体自身磨损,导致阀门控制特性变差,同时还会有部分能耗消耗在节流损失中。

(4)低功率因数
电机功率因数不高(额定0.89,实际功率因数更低),降低了设备电能的使用效率。

2.变频改造后系统分析
水泵是典型的变转矩负载。

变转矩负载的特性是转矩随速度的上升而上升。

水泵的电动机的轴功率p与其流量q,扬程h之间的
关系式如下:
p∝q×h (1)
当流量q1有变化到q2时,电动机的转速为n1、n2,此时q、p、h相对于转速的关系如下:
q2=q1×(n2/n1)(2)
h2=h1×(n2/n1)2(3)
p2=p1×(n2/n1)3 (4)
而电动机的轴功率p和转矩t的关系为:
t∝p/n(5)
因此,t2=t1×(n2/n1)2(6)
由式(3)和式(6)可以看出,水泵的电动机的轴功率(功率输出)与转速的3次方成正比,而转矩与转速的2次方成正比。

图01(a)显示出了水泵的压力与流量的关系曲线,图01(b)显示出转矩与电机速度的关系曲线:
从图01(b)中可以看出,在低速时,电动机功率会有很大的下降。

由于水泵运行于额定转速以上是恒定功率调速,此时水泵效率很低,机械磨损很大,容易损坏电机。

从理论上讲,速度降低10%时会带来30%左右的功率下降,由于功率的大幅度降低,可获得显著的节能效果。

下表为速度降低后的理论节能表:
另外,根据水泵工作原理与运行曲线,我们可以得到下图中的100%转速运行特性曲线(阻抗曲线),这条曲线配合水泵在不同流量运行时可以得到在未应用变频调速情况下使用阀门调节流量时的功率。

采用阀门控制、变频控制时水泵能耗特性如下图:由此可见,采用变频调速装置调节流量时,水泵消耗的功率几乎是理论最低耗能值。

在流量为60%时,阀门控制消耗电机额定功率的约85%,而变频控制只有消耗电机额定功率的约25%。

采用变频调速装置在泵类等具有平方转矩特性的负载时,可以节约大量的能量。

无功功率消耗不但增加线损和设备的发热,更主要的是使设备使用效率低下,浪费严重。

由公式
p=s*cosф
q=s*sinф
其中:s-视在功率,p-有功功率,
q-无功功率,cosф-功率因数,
可知cosф越大,有功功率p越大,普通水泵电机的功率因数在0.6-0.7之间,使用变频调速装置后,由于变频器内部滤波电容的作用,cosф≈1,从而减少了无功损耗,增加了电网的有功功率,更重要的是使水泵工作效率总是处于最佳工作状态。

由于电机为直接启动或y/δ启动,启动电流等于4~7倍额定电流,这样会对机电设备和供电电网造成严重的冲击,而且还对电网容量要求过高,启动时产生的震动和冲击对挡板和阀门的损害极大,对设备、管路的使用寿命极为不利。

而使用变频节能装置后,利用变频器的软启动功能将使启动电流从零开始,最大值也不超过额定电流,减轻了对电网的冲击和对供电容量的要求,同时通过对升速时间的预置来延长启动过程,使启动过程中的动态转矩大为减小,从而能有效地避免“水锤效应”的产生,极大减小了对管道、阀门及检测元件的冲击,延长了设备和阀门的使用寿命,节省了设备的维护费用。

同样在停机时,采用变频软停止,也能有效的避免“水锤效应”。

3.改造后节能效果分析(以单台循环水泵为例)
(1)水泵系统阀门调节时耗电成本(m1)
根据电机设备参数可知,阀门全开的水泵电机运行电流约71a,当阀门开度为30%的水泵电机运行电流为55a,因此在阀门控制时消耗功率为
p阀 =√3uicosφ= 1.732×6000×55×0.89 = 508kw
全年以8500小时运行时间计算,则年度耗电量为:
年度耗电量 =508kw×8500h = 4318000kwh
电费以0.63元/度计算,则年度耗电成本为:
年度耗电成本(m1)=4318000kwh ×0.63元/kwh = 2720340元
(2)水泵系统变频调节时耗电成本(m2)
设电机效率为98%,变频器效率为97%,额定流量时轴功率为630kw。

目前循环水用户的实际需求量在2500-3000m3/h,而单台循环水泵的输送能力为1872 m3/h,因此在满足用户最大循环水需求量时另外一台输送水量只需1128 m3/h,那么在使用变频器后,根据泵类负载转速、流量关系设定频率为35hz即可满足工艺要求。

由于此次改造只针对其中一台水泵电机,因此,对于有工频泵和变频泵同时运行的循环水泵系统,为保证管网设备的更安全运行(特别是要满足最低压力要求0.45mpa),可将频率调整至39hz,那么采用变频器后,在变频运行时(阀门全开),由流体力学知识可知,电机输出功率为:
p电机 =p额×(n2/n1)3÷η1÷η2 =630×(39/50)3÷0.98÷0.97 = 314.5kw
年度耗电量:= 314.5kw×8500h = 2673250kwh
年度耗电成本(m2)= 2673250kwh×0.63元/kwh = 1684148元(3)年度直接节电效益(m3)
节电率 = (p阀– p电机)/ p阀 = (508-314.5)÷508 = 38% 年度节电效益(m3)= m1 – m2 = 2720340 –1684148 =1036192元
(4)年度间接节省效益(m4)
延长电气设备以及水泵、管道等设备寿命,降低设备维护维修费用(暂无法估计,但从长远来看,其节省经济效益应该是相当可观的)。

相关文档
最新文档