(word完整版)浙江省温州市2018-2019学年九年级上学期期末测试数学试题

合集下载

2018-2019学年浙江省温州市瑞安市西部学校九年级(上)期末数学试卷(解析版)

2018-2019学年浙江省温州市瑞安市西部学校九年级(上)期末数学试卷(解析版)

2018-2019学年浙江省温州市瑞安市西部学校九年级(上)期末数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的不选、多选、错选,均不给分)1.(4分)下列事件属于不确定事件的是()A.若a是实数,则|a|≥0B.今年元旦那天温州的最高气温是10℃C.抛掷一枚骰子,掷得的数不是奇数就是偶数D.在一个装有红球与白球的袋子中摸球,摸出黑球2.(4分)已知点P在半径为5cm的圆内,则点P到圆心的距离可以是()A.4cm B.5cm C.6cm D.7cm3.(4分)若将抛物线y=x2向下平移1个单位,则所得抛物线对应的函数关系式为()A.y=(x﹣1)2B.y=(x+1)2C.y=x2﹣1D.y=x2+14.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为3cm,4.5cm 和6m,另一个三角形的最长边长为12cm,则它的最短边长为()A.6cm B.9cm C.16cm D.24cm5.(4分)已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是()A.(﹣2,0)B.(0,﹣2)C.(0,﹣3)D.(﹣3,0)6.(4分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.7.(4分)已知(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y28.(4分)如图,⊙O是△ABC的外接圆,它的半径为3,若∠ABC=40°,则劣弧的长为()A.B.3πC.D.4π9.(4分)如图,Rt△ABC中,∠ACB=Rt∠,BC=2AC.正方形DEFG如图放置,点D,G分别在AC,BC上,E,F都在边AB上,若AB=14,则EF的长为()A.2B.4C.2D.810.(4分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=7,且AC+BC=8,则AB的长为()A.6B.2C.5D.二、填空题(本题有6小题.每小题5分,共30分)11.(5分)二次函数y=(x﹣1)2+4的最小值是.12.(5分)一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m 的值约为.13.(5分)如图,在△ABC中,DE∥BC,BD=2AD,AE=3,则AC的长是.14.(5分)在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是cm.15.(5分)如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连结AE,若AE=4,则四边形ABCD的面积为.16.(5分)如图,已知二次函数y=﹣x2+2x+3的图象与y轴交于点A,MN是该抛物线的对称轴,点P在射线MN上,连结PA,过点A作AB⊥AP交x轴于点B,过A作AC⊥MN于点C,连结PB,在点P的运动过程中,抛物线上存在点Q,使∠QAC=∠PBA,则点Q的横坐标为.三、解答题(本题有8小题,共80分)17.(8分)已知二次函数y=ax2+bx+c的图象过点(2,﹣6),顶点坐标为(4,﹣8).(1)求这个二次函数的表达式;(2)求这个函数图象与x轴的交点的坐标.18.(8分)规定:每个顶点都在格点的三角形叫做格点三角形(如格点△ABC如图①所示),要求在图②、图③中分别以DE为边画出两个不同的三角形,并且都与图①中的△ABC相似(注:若所画的两个三角形全等,视为同一种).19.(8分)某校团委计划在元且期间组织优秀团员到敬老院去服务,现选出了10名优秀团员参加服务,其中男生6人,女生4人.(1)若从这10人中随机选一人当队长,求选中女生当队长的概率;(2)现决定从甲、乙中选一人当队长,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则选甲为队长;否则,选乙为队长.试问这个游戏公平吗?请用树状图或列表法说明理由.20.(10分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.21.(10分)如图,Rt△ABC中,∠ACB=90°,AB的中垂线交边BC于点E,交AC的延长线于点F,连结AE.(1)求证:△ADE∽△FDA;(2)若DE=EF=1,求AE的长.22.(10分)如图,Rt△OAB中,∠OAB=90°,以OA为半径的⊙O交BO于点C,交BO延长线于点D.在⊙O上取一点E,且=,延长DE与BA交于点F.(1)求证:△BDF是直角三角形;(2)连接AC,AC=2,OC=2BC,求AF的长.23.(12分)某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政府给该企业补偿(补偿额=(批发价﹣生产成本价)×销售量).大学生小明投资销售本市企业生产的一种新型节能灯,调查发现,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.已知这种节能灯批发价为每件12元,设它的生产成本价为每件m元(m<12)(1)当m=10时.①若第一个月的销售单价定为20元,则第一个月政府要给该企业补偿多少元?②设所获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)物价部门规定,这种节能灯的销售单价不得超过30元.今年三月小明获得赢利,此时政府给该企业补偿了920元,若m,x都是正整数,求m的值.24.(14分)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=4,点P是射线BA上的一个动点,以BP为半径的⊙P交射线BC于点D,直线PD交直线AC于点E,点P关于直线AC的对称点为点P′,连结P′A,P′E,设直线P′E与直线BC交于点F.(1)当点P在线段BA上时,①求证:PE=PA;②连结P'P,当BF=2PB时,求P′P的长;(2)连结AD,AF,当△ADF恰为等边三角形时,求此时四边形PAP′E的面积;(3)当四边形PAP′E在⊙P内部时,请直接写出BP的取值范围.2018-2019学年浙江省温州市瑞安市西部学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的不选、多选、错选,均不给分)1.(4分)下列事件属于不确定事件的是()A.若a是实数,则|a|≥0B.今年元旦那天温州的最高气温是10℃C.抛掷一枚骰子,掷得的数不是奇数就是偶数D.在一个装有红球与白球的袋子中摸球,摸出黑球【分析】直接利用随机事件以及确定事件的定义分析得出答案.【解答】解:A、若a是实数,则|a|≥0,是确定事件,不合题意;B、今年元旦那天温州的最高气温是10℃,是随机事件,符合题意;C、抛掷一枚骰子,掷得的数不是奇数就是偶数,是确定事件,不合题意;D、在一个装有红球与白球的袋子中摸球,摸出黑球,是不可能事件,故此选项错误.故选:B.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.2.(4分)已知点P在半径为5cm的圆内,则点P到圆心的距离可以是()A.4cm B.5cm C.6cm D.7cm【分析】直接根据点与圆的位置关系进行判断.【解答】解:∵点P在半径为5cm的圆内,∴点P到圆心的距离小于5cm,所以只有选项A符合,选项B、C、D都不符合;故选:A.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3.(4分)若将抛物线y=x2向下平移1个单位,则所得抛物线对应的函数关系式为()A.y=(x﹣1)2B.y=(x+1)2C.y=x2﹣1D.y=x2+1【分析】根据向下平移纵坐标减写出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵抛物线y=x2向下平移1个单位,∴平移后的抛物线的顶点坐标为(0,﹣1),∴所得抛物线对应的函数关系式为y=x2﹣1.故选:C.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,此类题目,利用顶点的变化求解更简便.4.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为3cm,4.5cm 和6m,另一个三角形的最长边长为12cm,则它的最短边长为()A.6cm B.9cm C.16cm D.24cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最短边长为xcm,根据题意,得:=,解得:x=6,即另一个三角形的最短边的长为6cm.故选:A.【点评】本题考查相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(4分)已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是()A.(﹣2,0)B.(0,﹣2)C.(0,﹣3)D.(﹣3,0)【分析】利用点B与点A关于直线x=﹣1对称确定B点坐标.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=﹣1对称,而对称轴是直线x=﹣1,点A的坐标为(1,0),∴点B的坐标是(﹣3,0).故选:D.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.6.(4分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小华获胜的情况数,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选:C.【点评】此题主要考查了列表法和树状图法求概率知识,用到的知识点为:概率=所求情况数与总情况数之比.7.(4分)已知(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y2【分析】首先根据二次函数解析式确定抛物线的对称轴为x=2,再根据抛物线的增减性以及对称性可得y1,y2,y3的大小关系.【解答】解:∵二次函数y=﹣x2+4x+c=﹣(x﹣2)2+c+4,∴对称轴为x=2,∵a<0,∴x<2时,y随x增大而增大,当x>2时,y随x的增大而减小,∵(﹣1,y1),(2,y2),(3,y3)在二次函数y=﹣x2+4x+c的图象上,且﹣1<2<3,|﹣1﹣2|>|2﹣3|,∴y1<y3<y2.故选:D.【点评】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,关键是掌握二次函数图象上点的坐标满足其解析式.8.(4分)如图,⊙O是△ABC的外接圆,它的半径为3,若∠ABC=40°,则劣弧的长为()A.B.3πC.D.4π【分析】根据圆周角定理和弧长公式解答即可.【解答】解:∵∠ABC=40°,∴∠AOC=80°,∴劣弧的长==π,故选:C.【点评】此题考查三角形的外接圆与外心,关键是根据圆周角定理和弧长公式解答.9.(4分)如图,Rt△ABC中,∠ACB=Rt∠,BC=2AC.正方形DEFG如图放置,点D,G分别在AC,BC上,E,F都在边AB上,若AB=14,则EF的长为()A.2B.4C.2D.8【分析】作CH⊥AB于H,交DG于K.设EF=x,则DG=DE=FG=x.三心两意勾股定理求出AC,BC,利用面积法求出CH,根据△CDG∽△CAB,可得=,由此构建方程即可解决问题.【解答】解:作CH⊥AB于H,交DG于K.设EF=x,则DG=DE=FG=x.在Rt△ACB中,∵∠ACB=90°,BC=2AC,AB=14,∴AC=,BC=,∴CH===,∵DG∥AB,∴△CDG∽△CAB,∴=,∴=,解得x=4,∴EF=4,故选:B.【点评】本题考查相似三角形的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.10.(4分)如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=7,且AC+BC=8,则AB的长为()A.6B.2C.5D.【分析】根据勾股定理得到AC2+BC2=AB2,根据扇形面积公式、完全平方公式计算即可.【解答】解:由勾股定理得,AC2+BC2=AB2,∵S1+S2=7,∴×π×()2+×π×()2+×AC×BC﹣×π×()2=7,∴AC×BC=14,AB===6,故选:A.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二、填空题(本题有6小题.每小题5分,共30分)11.(5分)二次函数y=(x﹣1)2+4的最小值是4.【分析】由解析式为顶点式,根据其解析式即可直接求的二次函数解析式.【解答】解:由于(x﹣1)2为非负数,所以可将当x=1时,二次函数即可取得最小值4.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.(5分)一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m 的值约为20.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:根据题意,得:=0.2,解得:m=20,故答案为:20.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.13.(5分)如图,在△ABC中,DE∥BC,BD=2AD,AE=3,则AC的长是9.【分析】利用平行线分线段成比例定理即可解决问题.【解答】解:∵DE∥BC,BD=2AD,∴==,∵AE=3,∴EC=6,∴AC=AE+EC=9,故答案为9.【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(5分)在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是6 cm.【分析】连接OA,作OC⊥AB于C,如图,根据垂径定理得到AC=BC=AB=8,然后根据勾股定理计算OC的长即可.【解答】解:连接OA,作OC⊥AB于C,如图,∵OC⊥AB,∴AC=BC=AB=8,在Rt△AOC中,OC===6,即点O到弦AB的距离为6cm.故答案为6.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(5分)如图,圆内接四边形ABCD中,∠BCD=90°,AB=AD,点E在CD的延长线上,且DE=BC,连结AE,若AE=4,则四边形ABCD的面积为8.【分析】如图,连接AC,BD.由△ABC≌△ADE(SAS),推出∠BAC=∠DAE,AC=AE=4,S△ABC =S△ADE,推出S四边形ABCD=S△ACE,由此即可解决问题;【解答】解:如图,连接AC,BD.∵∠BCD =90°,∴BD 是⊙O 的直径,∴∠BAD =90°,∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE ,∵AB =AD ,BC =DE ,∴△ABC ≌△ADE (SAS ),∴∠BAC =∠DAE ,AC =AE =4,S △ABC =S △ADE ,∴∠CAE =∠BAD =90°,∴S 四边形ABCD =S △ACE =×4×4=8.故答案为8.【点评】本题考查圆内接四边形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型. 16.(5分)如图,已知二次函数y =﹣x 2+2x +3的图象与y 轴交于点A ,MN 是该抛物线的对称轴,点P 在射线MN 上,连结PA ,过点A 作AB ⊥AP 交x 轴于点B ,过A 作AC ⊥MN 于点C ,连结PB ,在点P 的运动过程中,抛物线上存在点Q ,使∠QAC =∠PBA ,则点Q 的横坐标为 或 .【分析】通过作辅助线,连接CO ,过点Q 作AC 的垂线交AC 延长线于点D ,先证明△AOB与△ACP相似,得到∠ABP=∠AOC,再证△QDA与△CAO相似,设出点Q的坐标,通过相似比即可求出点Q坐标.【解答】解:如图1,连接CO,过点Q作AC的垂线交AC延长线于点D,∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴对称轴为x=1,与y轴交点A坐标(0,3)∴OC=1,∵AP⊥AB,AC⊥MN,∴∠BAP=∠OAC=90°,∴∠BAP﹣∠OAP=∠OAC﹣∠OAP,即∠BAO=∠PAC,又∵∠AOB=∠ACP=90°,∴△AOB∽△ACP,∴,∴,又∵∠BAP=∠OAC,∴△BAP∽△OAC,∴∠ABP=∠AOC,∵∠QAC=∠ABP,∴∠AOC=∠QAC,∵∠QDA=∠CAO=90°,∴△QDA∽△CAO,∴,设Q(a,﹣a2+2a+3),则QD=﹣a2+2a,AD=a,∴,解得a1=0(舍去),a2=,∴Q(,),∴点Q的横坐标为;如图2,设点E是点Q关于直线AC的对称点,∵Q(,),y A=3,∴E(,),设直线y AE=kx+3,将点E(,)代入,得,k=﹣,∴y AE=﹣x+3,解方程﹣x2+2x+3=﹣x+3,得,x1=0(舍去),x2=,∴Q'(,),∴点Q'的横坐标为;故答案为或.【点评】本题考查了抛物线与坐标轴交点坐标,二次函数图象上点的坐标特征,重点考查了三角形的相似,解答本题的关键是对三角形相似的判定要掌握牢固.三、解答题(本题有8小题,共80分)17.(8分)已知二次函数y=ax2+bx+c的图象过点(2,﹣6),顶点坐标为(4,﹣8).(1)求这个二次函数的表达式;(2)求这个函数图象与x轴的交点的坐标.【分析】(1)根据题意设抛物线的解析式为y═a(x﹣4)2﹣8,然后代入点(2,﹣6),根据待定系数法即可求得;(2)令y=0,解得x的值,可得出函数图象与x轴的交点横坐标.【解答】解:(1)设抛物线的解析式为y═a(x﹣4)2﹣8(a≠0).把点(2,﹣6)代入,得a(2﹣4)2﹣8=﹣6,解得a=,所以该二次函数的表达式是:y═(x﹣4)2﹣8;(2)令y=0得(x﹣4)2﹣8=0,解得x=0或8,∴函数图象与x轴的交点坐标为(0,0)和(8,0).【点评】本题主要考查抛物线与x轴的交点,二次函数的性质,待定系数法确定函数解析式等知识点,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.18.(8分)规定:每个顶点都在格点的三角形叫做格点三角形(如格点△ABC如图①所示),要求在图②、图③中分别以DE为边画出两个不同的三角形,并且都与图①中的△ABC相似(注:若所画的两个三角形全等,视为同一种).【分析】直接利用相似图形的性质以及相似三角形的判定方法分析得出答案.【解答】解:如图②,图③即为所求..【点评】此题主要考查了相似变换,正确得出对应边的比是解题关键.19.(8分)某校团委计划在元且期间组织优秀团员到敬老院去服务,现选出了10名优秀团员参加服务,其中男生6人,女生4人.(1)若从这10人中随机选一人当队长,求选中女生当队长的概率;(2)现决定从甲、乙中选一人当队长,他们准备以游戏的方式决定由谁担任,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则选甲为队长;否则,选乙为队长.试问这个游戏公平吗?请用树状图或列表法说明理由.【分析】(1)直接利用概率公式求出即可;(2)利用列表法表示出所有可能进而利用概率公式求出即可.【解答】解:(1)∵现有10名优秀团员到敬老院去服务,其中男生6人,女生4人,∴从这10人中随机选一人当队长,选到女生的概率为=;(2)列树状图如图所示,牌面数字之和的所有可能结果为:5,6,7,5,7,8,6,7,9,7,8,9共12种.∴甲参加的概率为:P (和为偶数)==,乙参加的概率为:P (和为奇数)==,因为≠,所以游戏不公平.【点评】此题主要考查了游戏公平性以及概率公式应用,正确列出表格得出所有等可能结果及概率公式的应用是解题关键.20.(10分)如图,点C 在以AB 为直径的半圆⊙O 上,AC =BC .以B 为圆心,以BC 的长为半径画圆弧交AB 于点D .(1)求∠ABC 的度数;(2)若AB =2,求阴影部分的面积.【分析】(1)根据圆周角定理得到∠ACB =90°,根据等腰三角形的性质即可得到结论;(2)根据扇形的面积公式即可得到结论.【解答】解:(1)∵AB 为半圆⊙O 的直径,∴∠ACB =90°,∵AC =BC ,∴∠ABC =45°;(2)∵AB =2,∴阴影部分的面积=2×1﹣=1﹣.【点评】本题考查了扇形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.21.(10分)如图,Rt △ABC 中,∠ACB =90°,AB 的中垂线交边BC 于点E ,交AC 的延长线于点F ,连结AE .(1)求证:△ADE∽△FDA;(2)若DE=EF=1,求AE的长.【分析】(1)想办法证明∠DAE=∠F即可解决问题;(2)理由相似三角形的性质求出AD,再利用勾股定理求出AE即可.【解答】(1)证明:∵DF垂直平分线段AB,∴EA=EB,∴∠B=∠EAB,∵∠EDB=∠ECF=90°,∠DEB=∠CEF,∴∠B=∠F,∴∠DAE=∠F,∵∠ADE=∠FDA,∴△ADE∽FDA.(2)∵△ADE∽FDA,∴=,∴AD2=DE•DF=1×2=2,∵AD>0,∴AD=,在Rt△ADE中,AE===.【点评】本题考查相似三角形的判定和性质,勾股定理,线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形相似的条件,属于中考常考题型.22.(10分)如图,Rt△OAB中,∠OAB=90°,以OA为半径的⊙O交BO于点C,交BO延长线于点D.在⊙O上取一点E,且=,延长DE与BA交于点F.(1)求证:△BDF是直角三角形;(2)连接AC,AC=2,OC=2BC,求AF的长.【分析】(1)如图连接EC交OA于H.首先证明DF∥OA,由OA⊥BF推出DF⊥BF 即可;(2)由EC∥FB,推出==2,推出OH=2AH,设AH=m,则OH=2m,OC=3m,由CH2=OC2﹣OH2=AC2﹣AH2,构建方程方程求出m即可解决问题;【解答】(1)证明:如图连接EC交OA于H.∵=,∴OA⊥EC,∵CD是⊙O的直径,∴∠DEC=90°,∴DF⊥EC,∴OA∥DF,∵BF是⊙O的切线,∴OA⊥BF,∴DF⊥BF,∴∠F=90°,∴△DFB是直角三角形.(2)解:∵∠DEC=∠F=90°,∴EC∥FB,∴==2,∴OH =2AH ,设AH =m ,则OH =2m ,OC =3m , ∵CH 2=OC 2﹣OH 2=AC 2﹣AH 2, ∴9m 2﹣4m 2=40﹣m 2,∴m =(负根已经舍弃),∴CH =,∵OA ⊥EC ,∴EH =HC =,∵∠F =∠FAH =∠AHE =90°, ∴四边形AFEH 是矩形,∴AF =EH =.【点评】本题考查垂径定理,圆周角定理,圆心角、弧、弦之间的关系等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(12分)某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政府给该企业补偿(补偿额=(批发价﹣生产成本价)×销售量).大学生小明投资销售本市企业生产的一种新型节能灯,调查发现,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y =﹣10x +500.已知这种节能灯批发价为每件12元,设 它的生产成本价为每件m 元(m <12) (1)当m =10时.①若第一个月的销售单价定为20元,则第一个月政府要给该企业补偿多少元? ②设所获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (2)物价部门规定,这种节能灯的销售单价不得超过30元.今年三月小明获得赢利,此时政府给该企业补偿了920元,若m ,x 都是正整数,求m 的值.【分析】(1)①把x =20代入y =﹣10x +500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;②由总利润=销售量•每件纯赚利润,得w =(x ﹣10)(﹣10x +500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(2)根据题意列出关于m 和x 的方程,再从两个未知数取值条件求得结果.【解答】解:(1)①当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,答:第一个月政府要给该企业补偿600元.②由题意得,小明每月的利润为w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.答:当销售单价定为30元时,小明每月可获得最大利润4000元.(2)由题意得,(12﹣m)(﹣10x+500)=920,∴m=,∵12≤x≤30,x为整数,∴﹣38≤x﹣50≤﹣20,且x﹣50为整数,∵m<12,且m为整数,∴x﹣50=﹣23,∴m=.【点评】本题主要考查了二次函数的应用,一次函数的应用,解不定方程的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,第(2)小题较难,突破的方法是根据两个未知的取值范围和整数条件限制,得出不定方程的有限解.24.(14分)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=4,点P是射线BA上的一个动点,以BP为半径的⊙P交射线BC于点D,直线PD交直线AC于点E,点P关于直线AC的对称点为点P′,连结P′A,P′E,设直线P′E与直线BC交于点F.(1)当点P在线段BA上时,①求证:PE=PA;②连结P'P,当BF=2PB时,求P′P的长;(2)连结AD,AF,当△ADF恰为等边三角形时,求此时四边形PAP′E的面积;(3)当四边形PAP′E在⊙P内部时,请直接写出BP的取值范围.【分析】(1)①欲证明PA=PE,利用等角的余角相等证明∠BAC=∠AEB即可;②如图2中,作PH⊥BD于H,连接PP′交AC于点J.设PB=x,则BF=2x.易知CD=CF=2x﹣4,根据BD+CD=4,可得x+2x﹣4=4,推出x=,由PJ∥BC,可得=,由此即可解决问题;(2)分两种情形分别求解即可:①如图3中,当点D在BC上时.②如图4中,当点D 在BC的延长线上时,分别求解即可;(3)如图4中,当点P在线段AB上,点P′在⊙P上时,设PB=m则AP=5﹣m,构建方程求出m的值,再求出点P在AB的延长线上,P′在⊙P上时的m的值,即可判断.【解答】(1)①证明:如图1中,∵∠ACB=∠DCE=90°,∴∠BAC+∠ABC=90°,∠CDE+∠AEB=90°,∵PB=PD,∴∠PBD=∠PDB=∠CDE,∴∠BAC=∠AEB,∴PA=PE.②如图2中,作PH⊥BD于H,连接PP′交AC于点J.设PB=x,则BF=2x.在Rt△ABC中,∵∠ACB=90°,AB=5,BC=4,∴AC==3,∵PH∥AC,∴=,∴=,∴BH=x,∵PB=PD,PH⊥BD,∴BH=HD=x,∵PA=PE=P′A=P′E,∴四边形PAP′E是菱形,∴∠CEF=∠CED,PJ=JP′,∵∠CEF+∠CFE=90°,∠CDE+∠CED=90°,∴∠CDE=∠CFE,∴EF=ED,∴CD=CF=2x﹣4,∵BD+CD=4,∴x+2x﹣4=4,∴x=,∵PJ∥BC,∴=,∴=,∴PJ =,∴PP ′=.(2)①如图3中,当点D 在BC 上时,连接AD ,AF ,作PH ⊥BC 于H ,连接PP ′交AC 于点J .∵△ADF 是等边三角形,AC ⊥DF ,AC =3, ∴∠DAC =30°,∴CD =,BD =4﹣,∴BH =DH =,∵四边形PJCH 是矩形,∴PJ =CH =,∴AJ =JE =×,∴S 四边形PAP ′E =•(4+)••(4+)=.②如图4中,当点D 在BC 的延长线上时,连接AD ,AF ,当△ADF 是等边三角形时,作PH ⊥BC 于H ,连接PP ′交AC 于点J .同法可得:CH =PJ =,AJ =JE =×,∴S 四边形PAP ′E =•(4﹣)•(4﹣)=.(3)如图4中,当点P ′在⊙P 上时,设PB =m 则AP =5﹣m∵PJ =JP ′=(5﹣m )×,∴PP ′=(5﹣m ), ∵PB =PP ′,∴m =(5﹣m ),∴m=,如图5中,当点P在AB的延长线上时,P′在⊙P上,设PB=m则AP=m﹣5.∵PJ=JP′=(m﹣5)×,∴PP′=(m﹣5),∵PB=PP′,∴m=(m﹣5),∴m=,观察图象可知:当四边形PAP′E在⊙P内部时,BP的取值范围为<PB<5或5<m<.【点评】本题属于圆综合题,考查了轴对称变换,等边三角形的判定和性质,解直角三角形,等腰三角形的判定和性质,矩形的判定和性质,菱形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.。

浙江省温州市2019届九年级上学期期末测试数学试题

浙江省温州市2019届九年级上学期期末测试数学试题

2018-2019 学年第一学期九年级期末测试数 学 试 题 卷一、单选题(共 10 题,共 40 分)1. 若35a b =,则a b b+的值为( ) A .85 B .35 C . D .582. 在平面直角坐标系中,若⊙O 是以原点为圆心,2 为半径的圆,则点 M (1,1)在( )A .⊙O 内B .⊙O 外C .⊙O 上D .不能确定3. 抛物线 y = x 2 + 2x 的对称轴是()A .直线 x =1B .直线 x =2C .直线 x =-1D .直线 x =-24. 如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于 3 的数的概率是 ( ) A .23 B .16 C .13 D .12第 4 题图第 5 题图第 6 题图第 7 题图5. 如图,在 Rt △ABC 中,∠C =90°,BC =4,AC =3,则 cos B 的值是( )A .43 B .34 C .45 D .356. 如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A =40°,∠C =60°,则∠DOE =( ) A .80° B .90° C .100° D .110° 7. 如图,AB 是⊙O 的直径,且 AB =6,D ,C 为⊙O 上两点,∠D =30°,则扇形 AOC 的面积为( ) A .1.5π B .3π C .4.5π D .6π328.如图,一条抛物线的对称轴是直线x=-1,点A(-3,3),B(1.5,5.25),C(-1,-1)在该抛物线上,当-3≤x≤1.5 时,则下列说法正确的是( )A.有最小值-1,有最大值3 B.有最小值-1,有最大值5.25C.有最小值3,有最大值5.25 D.有最小值-1,没有最大值9.如图,⊙O 中,AB 是直径,AC 是弦,D 是AC 上一点,若弧BC 的度数和∠ADO 都是60°,CD=2,则AB 的长是( )A.4 B.3C.3D.12第8 题图第9 题图第10 题图10.如图,在Rt△ABC 中,∠ACB=90°,AB=10,BC=6,里面放置有两个大小相同的正方形CDEF 与正方形MNGH,点D 在BC 上,点F,M 在AC 上,点N,G 在AB 上,点H 在EF 上.则正方形CDEF 的边长DE 为( )A.3013B.3613C.185D.125二、填空题(共6 题,共30 分)11.计算:sin30°+ tan45°=.12.已知点A(-2,y1),B(32,y2)在二次函数y =x2 - 2x -m 的图象上,则y1y2(填“>”、“=”或“<”).13.如图,在等边△ABC 中,AB=3,D 为BC 上一点,E 为AC 上一点,且∠ADE=60°,BD=1,则CE=.APMEGB D C第13 题图第15 题图第16 题图14.一个不透明的布袋中,装有红、黄两种只有颜色不同的小球,其中红色小球有20 个,为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色后放回,再次搅匀……若经过大量试验后发现摸到黄球的频率是27,则可估计黄色小球的数目是个.15.如图,AB,CD 是⊙O 的弦,且AB∥CD,AB=6,CD=4,AO= 13(两个弓形)的面积之和为.16.在△ABC 中,AB=AC= 5BC=4,P 是AB 上一点,连结PC,以PC 为直径作⊙M 交BC 于 D ,连结PD ,作DE ⊥AC 于点 E ,交PC 于点G ,已知PD =P G .则BD=.三、解答题(共8 题,共80 分)17.(8 分)如图,在⊙O 中,AC =C B ,CD⊥OA 于D,CE⊥OB 于E,求证:AD=BE.18.(8 分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1 个,若从中随机摸出一个球,这个球是白球的概率为23.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,不放回,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)19.(8 分)已知二次函数y =x2 +bx +c 的图象过A(1,0),B(3,0)两点.(1)求b,c 的值;(2)画出函数的大致图象;(3)当x 取何值时,函数值y 随x 的增大而增大.20.(8 分)如图在△ABC 中,已知DE∥BC,AD=3,DB=6,DE=4.(1)求BC 的长;A(2)若△ADE 的面积为4,求四边形BCED 的面积.D EB C 21.(10 分)如图,在一条河的北岸有两个目标M、N,现在在它的对岸设定两个观测点A、B.已知AB∥MN,在A 点测得∠MAB=60°,在B 点测得∠MBA=45°,AB=600 米.(1)求点M 到AB 的距离;(结果保留根号)(2)在B 点又测得∠NBA=53°,求MN 的长.(结果精确到1 3≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)22.(12 分)如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD⊥CD 于点D.E 是AB 延长线上一点,CE 交⊙O 于点F,连结OC,AC.(1)求证:AC 平分∠DAO.(2)若∠DAO=105°,∠E=30°.①∠OCE=.②若⊙O 的半径为,求线段EF 的长.23.(12 分)如图一个梯形的地面ABCD,AB//CD,已知AB=10 m,BC=8 m,CD=16 m,∠B=∠C=90°,割线EF,PG,PH 将梯形ABCD 分割成四个四边形,其中四边形AEPG 是菱形,四边形CFPH 是矩形,设菱形AEPG 的边长为5x m.(1)则AD 的长为m ;用含x 的代数式表示BF= m.(2)设菱形AEPG 与矩形CFPH 的面积之和为y m²,求y 关于x 的函数关系式.(3)求x 取何值时,菱形AEPG 与矩形CFPH 的面积之和最小.24.(14 分)直角坐标系中矩形OABC,已知A(5,0),C(0,4),点D 在BC 上,且CD=2,P 是射线OC 上一动点(P 不与O 重合),过O,P,D 三点的⊙M 交直线OA 于点E,连结PE、PD、ED,设P 坐标为(0,m).(1)如图1,当点E 与点A 重合时,求CP 的长;(2)如图2,求证:tan∠DEP= 1 2;(3)当⊙M 与矩形OABC 的一边相切时,求m 的值;(4)如图3,当点P 在线段OC 上时,连结OM 并延长交⊙M 于点H,当DH=BD 时,m 的值为(直接写出结果).。

(温州)2018-2019学年第一学期九年级数学教学质量检测(一)参考答案及评分建议

(温州)2018-2019学年第一学期九年级数学教学质量检测(一)参考答案及评分建议

2018-2019学年第一学期九年级数学教学质量检测(一)参考答案及评分建议一、单选题(共 10 题,共 40 分) 1.C 2.D 3.A 4.B 5.B 6.D 7.D 8.C 9.D 10.B二、填空题(共 6 题,共 30 分) 11.54x = 12.> 13.34 14.11215.9616.(2,-3)或(114,1516-)三、解答题(共 8 题,共 80 分) 17.(8分)(1)当y =0时,2x 2-4x =0得:10x =,22x =∴与x 轴的交点坐标(0,0),(2,0) 由y =2x 2-4x 得()2212y x =--∴顶点坐标为(1,-2); (2)略(3)求当y 随着x 的增大而增大时,x 的取值范围是x ≥1.(2)从这批学习机中任选一个是次品的概率约为150. (3)估计这批学习机5000个,其中次品大约有100个.19.(9分)(1)二次函数的解析式()214y x =--+; (2)当y >0时求x 的取值范围是-1<x <320.(9分)(1)A (1,0),B (3,0),C (0,3),D (2,-1)(2)12OBC ODC S S S S -=-△△33323222⨯⨯=-=21.(10分)(1)1242÷=(个),4-2-1=1(个).布袋里红球有1个. (2)画树状图如下:∴两次摸到的球都是白球的概率为21126P ==. (3)设放入袋中的红球个数为x 个,则根据题意,得122113x x +=+++,解得x =5(经检验,符合题意), ∴放入袋中的红球个数为5个.(1)将A (4,0),B (0,1)代入抛物线214y x bx c =-++得213144y x x =-++ 2425416ac b a -= 羽毛球在最高处时,离地面的高度为2516米? (2)当x =1.6时,y =1.56>1.53,该羽毛球能过界.23.(12分)(1)当1≤x <50时,()()2200240302180200y x x x x =-+-=-++, 当50≤x ≤90时,()()2002903012012000y x x =--=-+,综上所述:()()221802000150120120005090x x x y x x ⎧-++≤<⎪=⎨-+≤≤⎪⎩; (2)当1≤x <50时,二次函数开口向下,二次函数对称轴为x =45, 当x =45时,22451804520006050y =-⨯+⨯+=最大,当50≤x ≤90时,y 随x 的增大而减小,当x =50时,y 最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元; (3)当20≤x ≤60时,每天销售利润不低于4800元,所以总计41天.24.(14分)(1)∵抛物线23y x bx =-++ 与x 轴交于A ,B 两点,与y 轴交于点C ,OA =OC ∴A (3,0),C (0,3)将A (3,0)代入23y x bx =-++得b=2 (2)设F (m ,0)则P (m ,-m 2+2m +3),E (m ,-m +3) ∴PE =-m 2+2m +3-(-m +3)= -m 2+3m , EF =-m +3当EF =2PE 时,-m +3=2(-m 2+3m ),m =3(舍去),12m = 求P 的坐标为(12 ,154);(3)当△PCE 为等腰三角形时,有①CE =PE ,②CP =CE ,③CP =PE①CE =PE 23m m =-+ ,3m =E ( 3②CP =CE ,223m m m =-+,m =1,E (1,2) ③CP =PE ,m =2,E (2,1)(4)即CE =EF 3m =-+,3m =E (3,6-。

浙教版2018-2019学年九年级上期末数学试卷

浙教版2018-2019学年九年级上期末数学试卷

浙教版2018-2019学年九年级上期末数学试卷一.选择题(共10小题,3*10=30)1.从甲,乙,丙三人中任选两名代表,甲被选中的可能性是()A.B.C.D.12.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣93.如图,矩形ABCD中,已知点M是线段AB的黄金分割点,且AM>BM,AD=AM,FB=BM,EF和GM把矩形ABCD分成四个小矩形,其面积分别用S1,S2,S3,S4表示,EF与MG相交与点N,则以下结论正确的有()①N是GM的黄金分割点②S1=S4③.A.①②B.①③C.③D.①②③4.在△ABC与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B′C′的共有()A.1组B.2组C.3组D.4组5.用圆心角为60°,半径为24cm的扇形做成一个圆锥的侧面,那么这个圆锥底面的半径是()A.4πcm B.8πcm C.4cm D.8cm6.如图,E、F分别在矩形ABCD的边CD、AB上,EF⊥AB,G、H分别是BC、EF 的中点,EH>HG,除矩形EFBC外,图中4个矩形都彼此相似,若BC=1,则AB等于()A.B.C.D.7.已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.8.二次函数y=x2+5x+4,下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣9.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1 B.2 C.12﹣6 D.6﹣610.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.3二.填空题(共6小题,4*6=24)11.若+x=3,则=.12.在下列图形中:等腰三角形、等边三角形、正方形、正五边形、平行四边形,等腰梯形,其中有个旋转对称图形.13.在盒子里放有四张分别画有等边三角形、平行四边形、矩形、圆的卡片(卡片除所画内容不同外,其余均相同),从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是.14.如图,直角梯形ABCD中,AD∥BC,∠BAC=∠ADC=90°,AB=AC,CE平分∠ACB交AB于点E,F为BC上一点,BF=AE,连接AF交CE于点G,连接DG交AC 于点H.下列结论:①AF⊥CE;②△ABF∽△DGA;③AF=DH;④.其中正确的结论有.15.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.16.在矩形ABCD中,AB=4,BC=6,动点P为矩形边上的一点,点P沿着B﹣C的路径运动(含点B和点C),则△ADP的外接圆的圆心O的运动路径长是.三.解答题(共7小题,66分)17.(8分)小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)18.(8分)如图,已知在⊙O中,AB=3,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求⊙O的半径;(2)求出图中阴影扇形OBD的面积.19.(10分)如图,点D在△ABC的边BC上,且与B,C不重合,过点D作AC的平行线DE交AB于E,作AB的平行线DF交AC于点F.又知BC=5.(1)设△ABC的面积为S.若四边形AEFD的面积为;求BD长.(2)若;且DF经过△ABC的重心G,求E,F两点的距离.20.(10分)某批足球的质量检测结果如下:抽取足球数n1002004006008001000合格的频数m93192384564759950合格的频率0.930.960.960.94(1)填写表中的空格.(结果保留0.01)(2)画出合格的频率的折线统计图.(3)从这批足球任意抽取的一只足球是合格品的概率估计值是多少?并说明理由.21.(10分)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x<99≤x<15x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?22.(10分)如图,已知⊙O的半径长为4,弦AB垂直平分半径OC,弦DE∥AB,过点B作AD的平行线交直线DE于点F.(1)当点E,F不重合时,试说明△BEF是等腰三角形.(2)填空:当AD=时,四边形ABFD是菱形.23.(10分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C (4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t 的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.参考答案与试题解析一.选择题(共10小题)1.从甲,乙,丙三人中任选两名代表,甲被选中的可能性是()A.B.C.D.1【分析】让2除以总人数即为所求的可能性.【解答】解:选两名代表共有以下情况:甲,乙;甲,丙;乙,丙;三种情况.故甲被选中的可能性是.故选:C.【点评】本题考查的是可能性大小的判断,用到的知识点为:可能性等于所求情况数与总情况数之比.2.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5 C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣9【分析】运用配方法把一般式化为顶点式即可.【解答】解:y=x2﹣6x+5=x2﹣6x+9﹣4=(x﹣3)2﹣4,故选:C.【点评】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.3.如图,矩形ABCD中,已知点M是线段AB的黄金分割点,且AM>BM,AD=AM,FB=BM,EF和GM把矩形ABCD分成四个小矩形,其面积分别用S1,S2,S3,S4表示,EF与MG相交与点N,则以下结论正确的有()①N是GM的黄金分割点②S1=S4③.A.①②B.①③C.③D.①②③【分析】首先证明四边形AMGD,四边形BMNF都是正方形,推出AM=AD=MG=BC,MB﹣BF=MN=FN,由点M是线段AB的黄金分割点,AM>BM,推出AM2=BM•AB,可得S1+S3=S3+S4,推出S1=S4,故②正确,推出MN2=GN•DG=NG•GM,可得N是GM 的黄金分割点,故①正确,因为==,由=.可得==,故③错误;【解答】解:∵四边形ABCD是矩形,AM=AD,BM=BF,∴四边形AMGD,四边形BMNF都是正方形,∴AM=AD=MG=BC,MB﹣BF=MN=FN,∵点M是线段AB的黄金分割点,AM>BM,∴AM2=BM•AB,∴S1+S3=S3+S4,∴S1=S4,故②正确,∴MN2=GN•DG=NG•GM,∴N是GM的黄金分割点,故①正确,∵==,∵=.∴==,故③错误,故选:A.【点评】本题考查黄金分割、矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.4.在△ABC与△A′B′C′中,有下列条件:(1),(2);(3)∠A=∠A′;(4)∠C=∠C′,如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组B.2组C.3组D.4组【分析】根据相似三角形的判定方法对各个条件进行分析,从而得到答案.【解答】解:共有3组,其组合分别是(1)和(2)三边对应成比例的两个三角形相似;(2)和(4)两边对应成比例且夹角相等的两个三角形相似;(3)和(4)两角对应相等的两个三角形相似.故选:C.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.5.用圆心角为60°,半径为24cm的扇形做成一个圆锥的侧面,那么这个圆锥底面的半径是()A.4πcm B.8πcm C.4cm D.8cm【分析】正确理解圆锥侧面与其展开得到的扇形的关系:圆锥的底面周长等于扇形的弧长.扇形中已知圆心角,半径,则根据扇形的弧长公式l===8π,设底面圆的半径是r,则8π=2πr,∴r=4cm.【解答】解:根据扇形的弧长公式l===8π,设底面圆的半径是r,则8π=2πr∴r=4cm,这个圆锥底面的半径是4cm.故选:C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.6.如图,E、F分别在矩形ABCD的边CD、AB上,EF⊥AB,G、H分别是BC、EF的中点,EH>HG,除矩形EFBC外,图中4个矩形都彼此相似,若BC=1,则AB等于()A.B.C.D.【分析】根据条件矩形ABCD∽矩形EHGC,根据相似多边形对应边的比相等,即可求解.【解答】解:GC=BC=0.5.设AB=CD=x,CE=y.则DE=x﹣y.∵矩形ABCD∽矩形EHGC.∴=,即=(1)∵矩形ABCD∽矩形ADEF.∴=,即=(2)由(1)(2)解得:x=.故选:C.【点评】本题主要考查了相似多边形的对应边的比相等,注意分清对应边是解决本题的关键.7.已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.【分析】设AC和BD的交点是O.过点O作GH⊥CD于G,交AB于H.根据等角的余角相等以及圆周角定理可以证明点H是AB的中点.再过点O作MN⊥AB于M,交CD于点N.同样可以证明N是CD的中点.设该圆的圆心是O′,连接O′N、O′H.根据垂径定理的推论,得O′N⊥CD,O′H⊥AB.则O′N∥GH,O′H∥MN,则四边形O′NOH是平行四边形,则O′H=ON=CD=2.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于N,交CD于点M.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.【点评】此题综合运用了等角的余角相等以及等弧所对的圆周角相等,发现垂直于一边的直线,和另一边的交点正好是它的中点.再根据垂径定理的推论,得到垂直,发现平行四边形.根据平行四边形的对边相等,即可求解.8.二次函数y=x2+5x+4,下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【分析】首先利用配方法把二次函数化成顶点式的形式,然后利用二次函数的性质判断.【解答】解:y=x2+5x+4=(x+)2﹣,二次项系数是1>0,则函数开口向上,故A错误;函数的对称轴是x=﹣,顶点是(﹣,﹣),B错误;则D正确,函数有最小值是﹣,选项C错误.故选:D.【点评】本题主要考查二次函数的最值,掌握二次函数的顶点式求最值是解题的关键,即二次函数y=a(x﹣h)2+k当x=h时有最值k.9.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1 B.2 C.12﹣6 D.6﹣6【分析】首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.【解答】解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AC,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选:D.【点评】此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选:B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.二.填空题(共6小题)11.若+x=3,则=.【分析】将方程+x=3的两边平方,得:=9,∴=7,代入化简后的式子即可.【解答】解:将方程+x=3的两边平方,得:=9,∴=7,∵x≠0,∴===.故答案为.【点评】根据所求分式,将已知条件中的分式方程进行变形,从而求出=7,是解答问题的关键.12.在下列图形中:等腰三角形、等边三角形、正方形、正五边形、平行四边形,等腰梯形,其中有4个旋转对称图形.【分析】根据旋转对称图形的定义:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.解答即可.【解答】解:在等腰三角形、等边三角形、正方形、正五边形、平行四边形,等腰梯形只有等边三角形、正方形、正五边形、平行四边形是旋转对称图形.故答案为4;【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.13.在盒子里放有四张分别画有等边三角形、平行四边形、矩形、圆的卡片(卡片除所画内容不同外,其余均相同),从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是.【分析】先根据轴对称图形的定义得到在所给图形中轴对称图有等边三角形、矩形、圆三个,然后根据概率公式进行计算.【解答】解:因为在等边三角形、平行四边形、矩形、圆中,轴对称图有等边三角形、所以从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了轴对称图形.14.如图,直角梯形ABCD中,AD∥BC,∠BAC=∠ADC=90°,AB=AC,CE平分∠ACB交AB于点E,F为BC上一点,BF=AE,连接AF交CE于点G,连接DG交AC 于点H.下列结论:①AF⊥CE;②△ABF∽△DGA;③AF=DH;④.其中正确的结论有①②③④.【分析】先判断出△ABC是等腰直角三角形,过点E作EF′⊥BC于F′,根据角平分线上的点到角的两边的距离相等可得AE=EF′,再根据等腰直角三角形的性质可得BF′=EF′,从而确定点F、F′重合,再利用“HL”证明△ACE和△FCE全等,根据全等三角形对应边相等可得AC=CF,根据等腰三角形三线合一的可得AF⊥CE,判断出①正确;求出∠AFC=∠FAC=67.5°,再求出∠DAG=∠AFB=112.5°,∠BAF=∠ACE=22.5°,再根据点A、G、C、D四点共圆得到∠ADG=∠ACE,然后利用两组角对应相等,两三角形相似判断出②正确;求出△ACF和△HCD相似,利用相似三角形对应边成比例列式求解即可得到AF=DH,判断出③正确;根据S四边形ADCG=S△ACG+S△ADC,利用三角形的面积列出整理成AF•DG的形式,再把AF用DG表示,然后代入进行计算即可判断④正确.【解答】解:∵∠BAC=∠ADC=90°,AB=AC,∴△ABC是等腰直角三角形,过点E作EF′⊥BC于F′,则△BEF′是等腰直角三角形,∴BF′=EF′,∵CE平分∠ACB,∴AE=EF′,∵BF=AE,∴BF=BF′,∴点F、F′重合,在△ACE和△FCE中,,∴△ACE≌△FCE(HL),∴AC=CF,∵CE平分∠ACB,∴AF⊥CE,故①正确;∵∠AFC=∠FAC=90°﹣×45°=67.5°,∴∠DAG=∠AFB=112.5°,∠BAF=∠ACE=×45°=22.5°,∵∠AGC=90°,∠ADC=90°,∴点A、G、C、D四点共圆,AC是直径,∴∠ADG=∠ACE=22.5°,∴∠ADG=∠BAF,∴△ABF∽△DGA,故②正确;∵∠CDH=90°﹣∠ADG=90°﹣22.5°=67.5°,∴∠CDH=∠FAC=67.5°,又∵∠ACF=∠ACD=45°,∴△ACF∽△HCD,∴=,∵△ACD中,∠ACD=90°﹣45°=45°,∠ADC=90°,∴△ACD是等腰直角三角形,∴AC=CD,∴AF=DH,故③正确;∵∠GDC=∠GCD=90°﹣22.5°=67.5°,∵△ABF∽△DGA,∴=,∴AF•DG=AD•AB=AD•AD=AD2,∴AD2=AF•DG,S四边形ADCG=S△ACG+S△ADC,=AG•CG+AD•CD,=×AF•DG+×AF•DG,=AF•DG,∵DG=DH+GH=DH+AG=AF+AF=AF,∴AF=DG,=×DG•DG=DG2,故④正确.∴S四边形ADCG综上所述,正确的结论有①②③④.故答案为:①②③④.【点评】本题考查了相似三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,直角梯形,根据角的度数22.5°和67.5°求出相等的角是解题的关键,也是本题的难点.15.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33).【分析】把含p的项合并,只有当p的系数为0时,不管p取何值抛物线都通过定点,可求x、y的对应值,确定定点坐标.【解答】解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).【点评】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数16.在矩形ABCD中,AB=4,BC=6,动点P为矩形边上的一点,点P沿着B﹣C的路径运动(含点B和点C),则△ADP的外接圆的圆心O的运动路径长是.【分析】如图,连接AC、BD交于点O′.当点P与B或C重合时,△PAD的外接圆的圆心与O′重合,当PA=PD时,设△PAD的外接圆的圆心为O,PO的延长线交AD于E,设PO=OD=x,因为△PAD的外心在线段AD的垂直平分线上,观察图象可知,点P沿着B﹣C的路径运动,△ADP的外接圆的圆心O的运动路径长是2OO′,由此即可解决问题;【解答】解:如图,连接AC、BD交于点O′.当点P与B或C重合时,△PAD的外接圆的圆心与O′重合,当PA=PD时,设△PAD的外接圆的圆心为O,PO的延长线交AD于E,设PO=OD=x,Rt△ODE中,∵OD2=OE2+DE2,∴x2=(4﹣x)2+32,解得x=,∴OE=4﹣=,∵O′B=O′D,AE=DE,∴O′E=AB=2,∴OO′=O′E﹣OE=,∵△PAD的外心在线段AD的垂直平分线上,2OO′=.故答案为.【点评】本题考查轨迹、矩形的性质、三角形的外接圆等知识,解题的关键是正确寻找点O的运动轨迹,属于中考常填空题中的压轴题.三.解答题(共7小题)17.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为180cm.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)【分析】(1)设灯泡的位置为点P,易得△PAD∽△PA′D′,设出所求的未知数,利用相似三角形的对应边的比等于对应高的比,可得灯泡离地面的高度;(2)同法可得到横向影子A′B,D′C的长度和;(3)按照相应的三角形相似,利用相似三角形的对应边的比等于对应高的比,用字母表示出其他线段,即可得到灯泡离地面的距离.【解答】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(4分)(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3分)(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(1分)(直接得出三角形相似或比例线段均不扣分)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=(1分).【点评】本题主要考查相似三角形的判定与性质,注意运用相似三角形对应高的比等于相似比这个性质.18.如图,已知在⊙O中,AB=3,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(2)求出图中阴影扇形OBD的面积.【分析】(1)由∠A=30°,可求得∠BOC=60°,再根据垂径定理得∠BOD=120°,求出BF以及OB的长即可;(2)由扇形面积公式求出阴影部分的面积即可.【解答】解:(1)∵AC⊥BD于F,∠A=30°,∴∠BOC=60°,∠OBF=30°,∠BOD=120°,∴BF=AB=,在Rt△BOF中,OB===,即⊙O的半径为;(2)图中阴影扇形OBD的面积==π.【点评】本题考查了垂径定理、含30°角的直角三角形的性质、三角函数、扇形面积的计算、以及圆周角定理;熟练掌握垂径定理,由三角函数求出半径是解决问题的关键.19.如图,点D在△ABC的边BC上,且与B,C不重合,过点D作AC的平行线DE 交AB于E,作AB的平行线DF交AC于点F.又知BC=5.(1)设△ABC的面积为S.若四边形AEFD的面积为;求BD长.(2)若;且DF经过△ABC的重心G,求E,F两点的距离.【分析】(1)由题中条件可得△BDE∽△BCA∽△DCF,由相似三角形可得其面积比与对应边长的比的关系,进而再由题中的已知条件,求解其长度即可;(2)由平行线可得对应线段的比,通过线段之间的转化以及角的相等,可得△DEF∽△ABC,由其对应边成比例可得线段EF的长.【解答】解:如图,(1)∵DE∥AC,DF∥AB,∴△BDE∽△BCA∽△DCF,=S1,S△DCF=S2,记S△BDE∵S AEFD=S,∴S1+S2=S﹣S=S.①=,=,于是+==1,即+=,两边平方得S=S 1+S2+2,故2=S AEFD=S,即S1S2=S2.②由①、②解得S1=S,即=.而=,即=,解得BD===.(2)由G是△ABC的重心,DF过点G,且DF∥AB,可得=,则DF=AB.由DE∥AC,=,得DE=AC,∵AC=AB,∴=,==,得=,即=,又∠EDF=∠A,故△DEF∽△ABC,得=,所以EF=.【点评】本题主要考查了相似三角形的判定及性质以及三角形的重心的一些基本知识,能够掌握并熟练运用.20.某批足球的质量检测结果如下:抽取足球数n1002004006008001000合格的频数m93192384564759950合格的频率0.930.960.960.940.950.95(1)填写表中的空格.(结果保留0.01)(2)画出合格的频率的折线统计图.(3)从这批足球任意抽取的一只足球是合格品的概率估计值是多少?并说明理由.【分析】(1)根据频率=频数÷总数计算可得;(2)由表格中数据在坐标系内用点描出来,再用线段依次相连即可得;(3)根据频率估计概率,频率都在0.95左右波动,所以任意抽取的一只足球是合格品的概率估计值是0.95.【解答】解:(1)完成表格如下:抽取足球数n1002004006008001000合格的频数m93192384564759950合格的频率0.930.960.960.940.950.95(2)如图所示:(3)从这批足球任意抽取的一只足球是合格品的概率估计值0.95,因为从折线统计图中可知,随着实验次数的增大,频率逐渐稳定到常数0.95附近,所以从这批足球任意抽取的一只足球是合格品的概率估计值0.95.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了频率分布折线图.21.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x<99≤x<15x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【分析】(1)设这个百分率是x,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;(2)根据两个取值先计算:当1≤x<9时和9≤x<15时销售单价,由利润=(售价﹣进价)×销量﹣费用列函数关系式,并根据增减性求最大值,作对比;(3)设第15天在第14天的价格基础上可降a元,根据第15天的利润比(2)中最大利润最多少127.5元,列不等式可得结论.【解答】解:(1)设该种水果每次降价的百分率是x,10(1﹣x)2=8.1,x=10%或x=190%(舍去),答:该种水果每次降价的百分率是10%;(2)当1≤x<9时,第1次降价后的价格:10×(1﹣10%)=9,∴y=(9﹣4.1)(80﹣3x)﹣(40+3x)=﹣17.7x+352,∵﹣17.7<0,∴y随x的增大而减小,∴当x=1时,y有最大值,y大=﹣17.7×1+352=334.3(元),当9≤x<15时,第2次降价后的价格:8.1元,∴y=(8.1﹣4.1)(120﹣x)﹣(3x2﹣64x+400)=﹣3x2+60x+80=﹣3(x﹣10)2+380,∵﹣3<0,∴当9≤x≤10时,y随x的增大而增大,当10<x<15时,y随x的增大而减小,∴当x=10时,y有最大值,y大=380(元),综上所述,y与x(1≤x<15)之间的函数关系式为:y=,第10天时销售利润最大;(3)设第15天在第14天的价格基础上可降a元,由题意得:380﹣127.5≤(8.1﹣4.1﹣a)(120﹣15)﹣(3×152﹣64×15+400),252.5≤105(4﹣a)﹣115,a≤0.5,答:第15天在第14天的价格基础上最多可降0.5元.【点评】本题考查了一元二次方程的应用及二次函数的有关知识,解题的关键是正确的找到题目中的等量关系且利用其列出方程,注意第2问中x的取值,两个取值中的最大值才是最大利润.22.如图,已知⊙O的半径长为4,弦AB垂直平分半径OC,弦DE∥AB,过点B作AD的平行线交直线DE于点F.(1)当点E,F不重合时,试说明△BEF是等腰三角形.(2)填空:当AD=4时,四边形ABFD是菱形.【分析】(1)根据已知条件得到四边形ABFD是平行四边形.于是得到∠EFB=∠DAB.根据圆内接四边形的性质即可得到结论;(2)连接OA,根据勾股定理即可得到结论.【解答】(1)证明:∵DF∥AB,BF∥AD,∴四边形ABFD是平行四边形.∴∠EFB=∠DAB.∵四边形ABED是⊙O的内接四边形,∴∠DAB+∠DEB=180°.又∵∠FEB+∠DEB=180°,∴∠FEB=∠DAB,∴BE=BF,∴△BEF是等腰三角形;(2)解:当AD=4时,四边形ABFD是菱形.理由:连接OA,∵⊙O的半径长为4,弦AB垂直平分半径OC,∴OA=4,OG=2,OG⊥AB,∴AG==2,∴AB=4,∴AD=AB=4时,四边形ABFD是菱形.故答案为:4.【点评】本题考查了勾股定理和垂径定理的应用,平行四边形的判定,正确的作出辅助线是解题的关键.23.如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t 的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【分析】(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB 的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,。

浙江省2018-2019学年数学九年级上册期末模拟试卷(浙江专版)及参考答案

浙江省2018-2019学年数学九年级上册期末模拟试卷(浙江专版)及参考答案

A. B.
C. D.
7. 如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC,BD,以BD为直径的圆交AC于点E. 若DE=3,则AD的长为( )
A.5B.4C.3 D.2 8. 如图,小明为检验四边形MNPQ四个顶点是否在同一圆上,用尺规分别作了MN,MQ的垂直平分线交于点O,则M,N, P,Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )
,那么它对应的函数解析
12. 如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格 点数为________.
13. 将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为________ 14. 如图,四边形ABCD内接于 ,若四边形ABCO是平行四边形,则

两点,且与 轴交于点 .
(1) 求抛物线的表达式;
(2) 如图②,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交
于 、 两点(点 在点 的左侧),连接 ,在线段 上方抛物线上有一动点 ,连接 、 .
(Ⅰ)若点 的横坐标为 ,求
面积的最大值,并求此时点 的坐标;
(1) 设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3;(填“>”“=”或“<”) (2) 写出图中的三对相似三角形,并选择其中一对进行证明. 22. 如图,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动 ,设AP=x,
(1) 求AD的长; (2) 点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的

(温州)2018-2019学年第一学期九年级数学教学质量检测(一)及答案

(温州)2018-2019学年第一学期九年级数学教学质量检测(一)及答案

)
B.对称轴是直线 x=1,最大值是 2 D.对称轴是直线 x=-1,最大值是 2 )
6. 某校举行以“激情十月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲、乙、丙、 丁四名同学,则甲、乙同学获得前两名的概率是( A.
1 2
B.
2
1 3
C.
1 4
D.
1 6
)
7. 已知二次函数 y a x 1 3 ,当 x<1 时,y 随 x 的增大而增大,则 a 取值范围是( A.a≥0 B.a≤0 C.a>0 D.a<0
九年级数学第 3 页(共 4 页)
21.(10 分)一个不透明的布袋里装有 2 个白球,1 个黑球和若干个红球,它们除颜色外其 余都相同,从中任意摸出 1 个球,是白球的概率为 (1)布袋里红球有多少个? (2)先从布袋中摸出 1 个球后不放回,再摸出 1 个球,请用列表或画树状图等方法求出两 次摸到的球都是白球的概率. (3的概率为 入袋中的红球个数. 22.(10 分)2017 年苏迪曼杯羽毛球混合团体锦标赛的比赛中,某次羽毛球的运动路线可
C.打开电视机,正在播放“中央新闻” D.任意一个三角形,它的内角和等于 180° 3. 抛物线 y x 2 2 x 3 与 y 轴的交点的纵坐标为( A.-3 B.-1 ) D.3
C.1
4. 若将函数 y 2 x 2 的图象向右平行移动 1 个单位,再向上平移 5 个单位,可得到的抛物线 是( )
10.小明同学用描点法画二次函数 y ax2 bx c 图象过程中,函数 y 与自变量 x 的部分对 应值如表: x 0 1 2 3 … -1 y 8 5 4 5 8 … 若 A(t,y1),B(t+8,y2)两点都在该函数的图象上,且 y1=y2.则 t 的值为( A.-4 B.-3 C.4 D.3

2018-2019浙教版九年级上数学期末综合检测试卷含解析

2018-2019浙教版九年级上数学期末综合检测试卷含解析

2018-2019浙教版九年级上数学期末综合练习试卷含解析范围:九上-九下第一章姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.2.下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D .同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为3.已知二次函数y=x2+bx的图象经过点(1,﹣2),则b的值为( )A.﹣3 B.3 C.1 D.﹣14.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.教习网-海量精品课件试卷教案免费下载5.如图所示,河堤横断面堤高米,迎水坡面的坡度为(坡度是指坡面的铅直高度与水平宽度之比,又称坡比),则的长是()A.米B.米C.米D.米6.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.下列四个三角形中,与图中的三角形相似的是()A.B.C.D.9.如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连结AB并延长到C,连结CO,若△COB∽△CAO,则点C的坐标为()A.(1,B.C.D.10.如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为E,如果CE=2,那么AB的长是()A.4 B.8 C.6 D.10二、填空题(本大题共6小题,每小题4分,共24分)11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为.12.在中,若,则的度数是______.13.(1)三条平行线截两条直线,所得的的比相等.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的相等.(3)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所得的三角形与原三角形.14.在矩形ABCD中,AB=8,AD=6,以A为圆心作圆,如果B,C,D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是____________.15.已知一个二次函数的图象开口向上,顶点坐标为(0,﹣1 ),那么这个二次函数的解析式可以是.16.如图,P、Q分别是⊙O的内接正五边形的边AB、BC上的点,BP=CQ,则∠POQ= .三、解答题(本大题共8小题,共66分)17.先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.18.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB于点E,BD交CE于点F.求证:CF=BF.19.如图,如果,,那么与是否相似?与是否位似?试说明理由.20.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.如图,某仓储中心有一斜坡AB,其坡度为i=1∶2,顶部A处的高AC为4 m,B,C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5 m,EF=2 m,将该货柜沿斜坡向上运送,当BF=3.5 m时,求点D离地面的高.(参考数据:5≈2.236,结果精确到0.1 m)22.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A.B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.23.(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.24.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A.B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析一、选择题1.【考点】锐角三角函数的定义.【分析】利用锐角三角函数定义求出cosB的值即可.解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A【点评】此题考查了锐角三角函数定义,熟练掌握锐角三角函数定义是解本题的关键.2.【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.解:A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.3.【考点】二次函数图象上点的坐标特征.【分析】将点(1,﹣2)代入函数解析式,得出关于b的方程,解出即可得出答案.解:将点(1,﹣2)代入函数解析式得:1+b=﹣2,解得:b=﹣3.故选A.【点评】此题考查了待定系数法求二次函数解析式的知识,解答本题的关键是掌握二次函数图象上的点的坐标满足二次函数解析式.4.【考点】几何概率【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.解:如图,连接PA.PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.5.【考点】解直角三角形的应用﹣坡度坡角问题【分析】Rt△ABC中,已知坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.解:Rt△ABC中,∵BC=5米,tanA=,∴AC=BC÷tanA=15米.故选C.【点睛】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用坡度的定义是解答本题的关键.6.【考点】圆内接四边形的性质;平行四边形的性质;圆周角定理.【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ADC=∠AOC;∵∠ADC=β,∠AOC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选C.【点评】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.7.【考点】二次函数图象与几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.【考点】相似三角形的判定.【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.解:设单位正方形的边长为1,给出的三角形三边长分别为,2,.A.三角形三边2,,3,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,2,与给出的三角形的各边成正比例,故B选项正确;C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;教习网-海量精品课件试卷教案免费下载D、三角形三边,4,,与给出的三角形的各边不成比例,故D选项错误.故选:B.【点评】此题考查三边对应成比例,两三角形相似判定定理的应用.9.【考点】相似三角形的性质;坐标与图形性质.【分析】根据相似三角形对应边成比例求出CB、AC的关系,从而得到===,过点C作CD ⊥y轴于点D,然后求出△AOB和△CDB相似,根据相似三角形对应边成比例求出CD、BD,再求出OD,最后写出点C的坐标即可.解:∵A(﹣4,0),B(0,2),∴OA=4,OB=2,∵△COB∽△CAO,∴==============,∴CO=2CB,AC=2CO,∴AC=4CB,∴===,过点C作CD⊥y轴于点D,∵AO⊥y轴,∴AO∥CD,∴△AOB∽△CDB,∴=========,∴CD==AOA==,BD==OOB==,∴OD=OB+BD=2++===,∴点C的坐标为((,,).故选B.【点评】本题考查了相似三角形的性质,坐标与图形性质,主要利用了相似三角形对应边成比例,求出∴===,是解题的关键,也是本题的难点.10.【考点】垂径定理;勾股定理.【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,又CE=2,OC=5,易求OE,在Rt△AOE中利用勾股定理易求AE,进而可求AB.解:连接OA,∵半径OC⊥AB,∴AE=BE=AB,∵OC=5,CE=2,∴OE=3,在Rt△AOE中,AE===4,∴AB=2AE=8,故选B.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题11.【考点】概率的意义.【分析】求出一次抛一枚硬币正面朝上的概率即可.解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,∴正面向上的概率为.故答案为:.【点评】本题考查的是概率的意义,注意抛硬币只有两种情况,每次抛出的概率都是一致的,与次数无关.12.【考点】特殊角的三角函数值【分析】先根据非负数的性质求出,,再由特殊角的三角函数值求出与的值,根据三角形内角和定理即可得出结论.解:在中,,,,,,.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.13.【考点】平行线分线段成比例【分析】根据平行线分线段成比例的定理直接填空.解:(1)三条平行线截两条直线,所得的对应线段的比相等.(2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的两边上的对应线段的比相等.(3)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所得的三角形与原三角形的三边对应成比例.故答案是:对应线段;两边上的对应线段的比;的三边对应成比例.【点评】本题考查了平行线分线段成比例.(1)定理1:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)定理2:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)定理3:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.14.【考点】点与圆的位置关系解:如图,连接AC,∵在矩形ABCD中,AB=8,AD=6,∠ABC=90°,∴,∴AD<AB<AC,∵B,C,D三点中至少有一点在⊙A内,且至少有一点⊙A在外,∴点D一定在⊙A内,点C一定在⊙A外,∴⊙A半径r的取值范围应大于AD的长,小于对角线AC的长,即6<r<10.故答案为:6<r<10.【点睛】要确定点与圆的位置关系,就要确定点到圆心的距离与半径的大小关系,设点与圆心的距离d,圆的半径为r,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.15.【考点】待定系数法求函数解析式【分析】利用抛物线的解析式顶点式确定解:∵抛物线经过顶点(0,-1)∴该抛武线的解析式为y=ax2﹣1,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1.【点评】本题主要考查待定系数法求函数解析式,熟练掌握抛物线的顶点式是解题的关键.16.【考点】正多边形和圆.【分析】连接OA.OB、OC,证明△OBP≌△OCQ,根据全等三角形的性质得到∠BOP=∠COQ,结合图形计算即可.解:连接OA.OB、OC,∵五边形ABCDE是⊙O的内接正五边形,∴∠AOB=∠BOC=72°,∵OA=OB,OB=OC,∴∠OBA=∠OCB=54°,在△OBP和△OCQ中,,∴△OBP≌△OCQ,∴∠BOP=∠COQ,∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,∴∠BOP=∠QOC,∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,∴∠POQ=∠BOC=72°.故答案为:72°.【点评】本题考查的是正多边形和圆、全等三角形的判定和性质,掌握正多边形的中心角的求法、全等三角形的判定定理是解题的关键.三、解答题17.【考点】分式的化简求值;特殊角的三角函数值.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】此题考查分式的混合运算及特殊角的函数值.18.【考点】圆周角定理【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ACB=90°,又由CE⊥AB,根据同角的余角相等,可证得∠2=∠A,又由C是弧BD的中点,证得∠1=∠A,继而可证得CF﹦BF.解:如图所示:∵AB是⊙O的直径,∴∠ACB﹦90°,又∵CE⊥AB,∴∠CEB﹦90°,∴∠2﹦90°-∠3﹦∠A,又∵C是弧BD的中点,∴∠1﹦∠A,∴∠1﹦∠2,∴CF﹦BF.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.也考查了直径所对的圆周角为90度和等角的余角相等.19.【考点】位似变换【分析】由AC∥BD,CE∥DF,可证△OAC∽△OBD,△OCE∽△ODF ,继而证得,∠ACE=∠BDF,即可证得△ACE∽△BDF;又由△ACE与△BDF的各对应边的连线过点O,可得△ACE与△BDF位似.解:与相似,与位似.理由:∵,,∴,,教习网-海量精品课件试卷教案免费下载∴,,,,∴,,∴;∵与的各对应顶点的连线过点,∴与位似.【点睛】此题考查了位似变换以及相似三角形的判定与性质.注意相似三角形的各对应顶点连线过同一个点,即可得位似.20.【考点】列表法与树状图法;用样本估计总体;频数(率)分布表;频数(率)分布直方图.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A.B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.21.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)根据坡度定义直接解答即可;(2)作DS ⊥BC ,垂足为S ,且与AB 相交于H .证出∠GDH=∠SBH ,根据=,得到GH=1m ,利用勾股定理求出DH 的长,然后求出BH=5m ,进而求出HS ,然后得到DS .解:(1)∵坡度为i =1∶2,AC =4 m , ∴BC =4×2=8 m ;(2)作DS ⊥BC ,垂足为S ,且与AB 相交于H .∵∠DGH =∠BSH ,∠DHG =∠BHS , ∴∠GDH =∠SBH , ∴GH GD =12,∵DG =EF =2 m ,∴GH =1 m , ∴DH =5 m ,BH =BF +FH =3.5+(2.5-1)=5 m ,设HS=x m,则BS=2x m,∴x2+(2x)2=52,∴x= 5 m,∴DS=5+5=25≈4.5 m.∴点D离地面的高为4.5 m.【点评】本题考查了解直角三角形的应用-坡度坡角问题,熟悉坡度坡角的定义和勾股定理是解题的关键.22.【考点】二次函数综合题。

最新浙教版2018-2019学年上学期九年级数学期末测试题含答案

最新浙教版2018-2019学年上学期九年级数学期末测试题含答案

18.动手画一画,请把下图补成以 A 为对称中心的中心对称图形.
A
19.如图, AB 是⊙ O 的直径,点 C 是⊙ O 上一点,连接 BC, AC,OD ⊥ BC 于 E.
( 1)求证: OD ∥ AC;
( 2)若 BC=8, DE =3,求⊙ O 的直径.
D
C
E
B
A
O
20.已知关于 x 的一元二次方程 x2+ 2( k- 1) x+ k2- 1=0 有两个不相等的实数根. ( 1)求实数 k 的取值范围; ( 2) x=0 可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.
16.如图,在⊙ O 中, AB 为⊙ O 的直径, AB=4.动点 P 从 A 点出发,以每秒 π个单位的速度在⊙ O 上按顺时针方 向运动一周.设动点 P 的运动时间为 t 秒,点 C 是圆周上一点,且
∠AOC =40°,当 t= ▲ 秒时,点 P 与点 C 中心对称,且对称中心在直径 AB 上.
A . 70°
B. 110 °
C. 120 °
D. 130 °
C
F E
O
B′
C
C′
B
D
A
(第 4 题)
B
A
(第 5 题)
5.如图,把△ ABC 绕着点 A 顺时针方向旋转 34°,得到△ AB′C′,点 C 刚好落在边 B′C′上. 则∠ C′(= ▲ )
A . 56°
B. 62°
C. 68°
D. 73°
4. 本次考试不得使用计算器,请耐心解答 . 祝你成功!
一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019 学年第一学期九年级期末测试
数学试题卷
一、单选题(共10 题,共40 分)
1.若
3
5
a
b
=,则
a b
b
+
的值为( )
A.
8
5B.
3
5C.D.
5
8
2.在平面直角坐标系中,若⊙O 是以原点为圆心,2 为半径的圆,则点M(1,1)在( ) A.⊙O 内B.⊙O 外C.⊙O 上D.不能确定3.抛物线y =x2 + 2x 的对称轴是( )
A.直线x=1 B.直线x=2 C.直线x=-1 D.直线x=-2 4.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3 的数的概率是( )
A.
2
3B.
1
6C.
1
3D.
1
2
第4 题图第5 题图第6 题图第7 题图
5.如图,在Rt△ABC 中,∠C=90°,BC=4,AC=3,则cos B 的值是( ) A.
4
3B.
3
4C.
4
5D.
3
5
6.如图,⊙O 是△ABC 的内切圆,D,E,F 是切点,∠A=40°,∠C=60°,则∠DOE=( ) A.80°B.90°C.100°D.110°
7.如图,AB 是⊙O 的直径,且AB=6,D,C 为⊙O 上两点,∠D=30°,则扇形AOC 的面积为( )
A.1.5πB.3πC.4.5πD.6π
3
2
8.如图,一条抛物线的对称轴是直线x=-1,点A(-3,3),B(1.5,5.25),C(-1,-1)在该抛物线上,当-3≤x≤1.5 时,则下列说法正确的是( )
A.有最小值-1,有最大值3 B.有最小值-1,有最大值5.25
C.有最小值3,有最大值5.25 D.有最小值-1,没有最大值
9.如图,⊙O 中,AB 是直径,AC 是弦,D 是AC 上一点,若弧BC 的度数和∠ADO 都是60°,CD=2,则AB 的长是( )
A.4 B.3C.3D.12
第8 题图第9 题图第10 题图
10.如图,在Rt△ABC 中,∠ACB=90°,AB=10,BC=6,里面放置有两个大小相同的正方形CDEF 与正方形MNGH,点D 在BC 上,点F,M 在AC 上,点N,G 在AB 上,点
H 在EF 上.则正方形CDEF 的边长DE 为( )
A.30
13B.
36
13C.
18
5D.
12
5
二、填空题(共6 题,共30 分)
11.计算:sin30°+ tan45°=.
12.已知点A(-2,y1),B(3
2
,y2)在二次函数y =x2 - 2x -m 的图象上,则y1y2
(填“>”、“=”或“<”).
13.如图,在等边△ABC 中,AB=3,D 为BC 上一点,E 为AC 上一点,且∠ADE=60°,BD=1,则CE=.
A
P
M
E
G
B D C
第13 题图第15 题图第16 题图
14.一个不透明的布袋中,装有红、黄两种只有颜色不同的小球,其中红色小球有20 个,为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色后放回,再
次搅匀……若经过大量试验后发现摸到黄球的频率是2
7,则可估计黄色小球的数目是
个.
15.如图,AB,CD 是⊙O 的弦,且AB∥CD,AB=6,CD=4,AO= 13(两个弓形)的面积之和为.
16.在△ABC 中,AB=AC= 5BC=4,P 是AB 上一点,连结PC,以PC 为直径作⊙M 交BC 于 D ,连结PD ,作DE ⊥AC 于点 E ,交PC 于点G ,已知PD =P G .则BD=.
三、解答题(共8 题,共80 分)
17.(8 分)如图,在⊙O 中, AC =C B ,CD⊥OA 于D,CE⊥OB 于E,求证:AD=BE.18.(8 分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其
中红球有1 个,若从中随机摸出一个球,这个球是白球的概率为2
3

(1)求袋子中白球的个数;(请通过列式或列方程解答)
(2)随机摸出一个球后,不放回,再随机摸出一个球,求两次都摸到相同颜色的小球的概
率.(请结合树状图或列表解答)
19.(8 分)已知二次函数y =x2 +bx +c 的图象过A(1,0),B(3,0)两点.
(1)求b,c 的值;
(2)画出函数的大致图象;
(3)当x 取何值时,函数值y 随x 的增大而增大.
20.(8 分)如图在△ABC 中,已知DE∥BC,AD=3,DB=6,DE=4.
(1)求BC 的长;
(2)若△ADE 的面积为4,求四边形BCED 的面积.
D E
B C 21.(10 分)如图,在一条河的北岸有两个目标M、N,现在在它的对岸设定两个观测点
A、B.已知AB∥MN,在A 点测得∠MAB=60°,在B 点测得∠MBA=45°,AB=600 米.
(1)求点M 到AB 的距离;(结果保留根号)
(2)在B 点又测得∠NBA=53°,求MN 的长.(结果精
确到1 3≈1.732,sin53°≈0.8,
cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)
22.(12 分)如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD⊥CD 于点D.E 是AB 延长线上一点,CE 交⊙O 于点F,连结OC,AC.
(1)求证:AC 平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①∠OCE=.
②若⊙O 的半径为,求线段EF 的长.
23.(12 分)如图一个梯形的地面ABCD,AB//CD,已知AB=10 m,BC=8 m,CD=16 m,∠B=∠C=90°,割线EF,PG,PH 将梯形ABCD 分割成四个四边形,其中四边形AEPG 是菱形,四边形CFPH 是矩形,设菱形AEPG 的边长为5x m.
(1)则AD 的长为m ;用含x 的代数式表示BF= m.
(2)设菱形AEPG 与矩形CFPH 的面积之和为y m²,求y 关于x 的函数关系式.
(3)求x 取何值时,菱形AEPG 与矩形CFPH 的面积之和最小.
24.(14 分)直角坐标系中矩形OABC,已知A(5,0),C(0,4),点D 在BC 上,且CD=2,P 是射线OC 上一动点(P 不与O 重合),过O,P,D 三点的⊙M 交直线OA 于点E,连结PE、PD、ED,设P 坐标为(0,m).
(1)如图1,当点E 与点A 重合时,求CP 的长;
(2)如图2,求证:tan∠DEP= 1 2;
(3)当⊙M 与矩形OABC 的一边相切时,求m 的值;
(4)如图3,当点P 在线段OC 上时,连结OM 并延长交⊙M 于点H,当DH=BD 时,m 的值为(直接写出结果).。

相关文档
最新文档