ETM多波段合成解析
【精选】LandsatTM、ETM数据介绍

TM各个波段的特征B1 为蓝色波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图;B2 为绿色波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝等特征;B3 为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提供丰富的植物信息;B4 为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、地貌等;B5 为短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而提高了区分作物的能力,此外,在该波段上雪比云的反射率低,两者易于区分,B5 的信息量大,应用率较高;B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可用于作物与森林区分、水体、岩石等地表特征识别;B7 为短波外波段,波长比 B5 大,是专为地质调查追加的波段,该波段对岩石、特定矿物反应敏感,用于区分主要岩石类型、岩石水热蚀变,探测与交代岩石有关的粘土矿物等;B8 为全色波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较广,空间分辨率较其他波段高,因而多用于获取地面的几何特征。
=============================波段组合:TM321(RGB):均是可见光波段,合成结果接近自然色彩。
对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。
一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。
可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。
Landsat7不同波段组合方案比较

• 各波段特征及用途
• 各波段不同假彩色合成方案 比较
• 最佳波段组合评价
各波段特征及用途
对7个波段的总结
• TM图像的光波信息具有3~4维结构, 其物理含义相当于亮度、绿度、热度 和湿度。在TM7个波段光谱图像中, 一般第5个波段包含的地物信息最丰富。
• 3个可见光波段(即第1、2、3波段) 之间相关性很高,表明这些波段的信 息中有相当大的重复性或者冗余性。
河滩易混。 • TM5:县城与农田不易分开。 • TM6:村庄与河流易混。
各波段不同假彩色合成方案比较 及最佳波段组合评价
• 下面先看一个真彩色合成的波段组合:
原始图像 321波段组合图像
各波段不同假彩色合成方案比较
突出表现了植被特征,和321 波段的组合不同。
451
453
451波段组合图 像
LANDSAT是美国陆地探测卫星 系统。从1972年开始发射第一 颗卫星LANDSAT 1,到目前最 新的LANDSAT 7。(其中第六 颗发射失败。)
LANDSAT 7简介
• LANDSAT 7 卫星于99年发射,装备有 Enhanced Thematic Map per Plus(ETM+)设备,ETM+被动感应地 表反射的太阳辐射和散发的热辐射, 有8个波段的感应器,覆盖了从红外到 可见光的不同波长范围。 ETM+比起 在LANDSAT 4、5上面装备的 Thematic Mapper(TM)设备在红外波 段的分辨率更高,因此有更高的准确 性。
• 第4、6波段较特殊,尤其是第4波段与 其他波段的相关性都很低,表明这个 波段信息有很大的独立性。其中第四 波段的道路辨认效果又不如第三波段。
• 第7波段主要是在探测森林火灾、岩矿 蚀变带及土壤粘土矿物类型等方面有 特殊的作用。
gee landsat波段合成

gee landsat波段合成GEE Landsat波段合成概述:GEE(Google Earth Engine)是一个基于云计算的平台,提供了丰富的遥感数据和强大的分析工具,能够实现对地球表面的全球范围内的数据分析和可视化。
Landsat是美国国家航空航天局(NASA)和美国地质调查局(USGS)联合运营的一系列卫星,其载荷为多光谱扫描仪(MSS)和增强型多光谱扫描仪(ETM+),用于获取地球表面的高分辨率影像数据。
本文将介绍如何在GEE平台上使用Landsat波段合成,以实现更全面的数据分析和可视化。
一、Landsat卫星数据简介Landsat卫星是全球最早的陆地观测卫星系统之一,自1972年以来已经发射了多颗卫星。
这些卫星通过不同的波段感应器获取地球表面的图像数据,包括可见光、近红外和热红外波段,以及其他一些特定的波段。
其中,Landsat 8卫星的载荷为OLI传感器,具有更高的空间分辨率和更丰富的光谱分辨率,为地球科学研究提供了更详细的数据。
二、GEE平台简介GEE是一个用于分析和可视化地球观测数据的云计算平台,提供了丰富的数据集和强大的分析工具。
用户可以通过GEE平台访问Landsat卫星数据,并利用其波段合成功能对数据进行处理和分析。
波段合成是一种将不同波段的数据组合成一个单一的图像的技术,以提高数据分析的准确性和可视化的效果。
三、Landsat波段合成在GEE中的操作步骤1. 登录GEE平台,进入“代码编辑器”界面。
2. 在代码编辑器中,选择Landsat 8的影像数据集,并设置感兴趣区域(ROI)。
3. 选择需要合成的波段,并设置合成方式(如线性组合、加权组合等)。
4. 运行代码,生成合成后的影像数据,并可进行可视化和分析。
四、Landsat波段合成的应用案例1. 植被监测:利用红光和近红外波段的合成图像,可以获取植被的NDVI指数,进而监测植被的生长状况和植被覆盖度。
2. 土地利用分类:通过合成不同波段的影像数据,可以进行土地利用分类,如农田、森林、水域等,为土地规划和资源管理提供支持。
Landsat卫星的TMETM各波段介绍

Landsat卫星的TMETM各波段介绍Landsat卫星的TM/ETM各波段介绍北京揽宇⽅圆信息技术有限公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、PLEIADES、⾼分⼀号、⾼分⼆号、资源三号等世界上最⾼分辨率卫星影像的代理权,能够为户提供全天候、全覆盖、多分辨率、多尺度的影像产品。
整合最丰富的遥感影像数据资源,为⽤户提供最专业的遥感影像数据服务,北京揽宇⽅圆致⼒成为中国遥感影像数据服务第⼀品牌。
⼀、波段介绍1.TM1 0.45-0.52um,蓝波段对⽔体穿透强, 该波段位于⽔体衰减系数最⼩,散射最弱的部位(0.45—0.55um),对⽔体的穿透⼒最⼤,可获得更多⽔下信息,⽤于判断⽔深,浅海⽔下地形,⽔体浑浊度,沿岸⽔,地表⽔等;能够反射浅⽔⽔下特征,区分⼟壤和植被、编制森林类型图、区分⼈造地物类型,分析⼟地利⽤。
对叶绿素与叶⾊素反映敏感,有助于判别⽔深及⽔中叶绿素分布以及⽔中是否有⽔华等。
2.TM2 0.52-0.60um,绿波段对植物的绿反射敏感该波段位于健康绿⾊植物的绿⾊反射率(0.54—-0.55um)附近;对健康茂盛植物的反射敏感,主要观测植被在绿波段中的反射峰值,这⼀波段位于叶绿素的两个吸收带之间,利⽤这⼀波段增强鉴别植被的能⼒对绿的穿透⼒强,探测健康植被绿⾊反射率,按绿峰反射评价植物的⽣活状况,区分林型,树种,植被类型和评估作物长势对⽔体有⼀定的穿透⼒,可反映⽔下特征,⽔体浑浊度,⽔下地形,沙洲,沿岸沙地等。
. 可区分⼈造地物类型,3.TM3 0.62-0.69um ,红波段对⽔中悬浮泥沙反映敏感。
该波段位于含沙浓度不同的⽔体辐射峰值(0.58—-0.68um)附近,对⽔中悬浮泥沙反映敏感。
叶绿素的主要吸收波段,能增强植被覆盖与⽆植被覆盖之间的反差,亦能增强同类植被的反差,反映不同植物叶绿素吸收,植物健康状况,⽤于区分植物种类与植物覆盖率,测量植物绿⾊素吸收率,并以此进⾏植物分类;此外其信息量⼤,⼴泛⽤于对裸露地表,植被,岩性,地层,构造,地貌等为可见光最佳波段;可区分⼈造地物类型4 .TM4 0.76-0.96UM 近红外波段,对绿⾊植物类别差异最敏感,为植物通⽤波段,⽤于牧师调查,作物长势测量,处于⽔体强吸收区,⽔体轮廓清晰,⽤于勾勒⽔体,绘制⽔体边界、探测⽔中⽣物的含量和⼟壤湿度;区分⼟壤湿度及寻找地下⽔,识别与⽔有关的地质构造,地貌,⼟壤,岩⽯类型等均有利。
TM与ETM

各个波段的特征TM1 0.45-0.52um蓝波段:对叶绿素和叶色素浓度敏感,对水体穿透强,用于区分土壤与植被、落叶林与针叶林、近海水域制图,有助于判别水深及水中叶绿素分布以及水中是否有水华等。
TM2 0.52-0.60um,绿波段:对健康茂盛植物的反射敏感,对绿的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征。
在所有的波段组合中,TM 波段-2 的分类精度是最高的,达到了 75.6%。
从单时相遥感影像的分类来讲,这种分类精度只相当于中等水平。
但若从多时相图像的角度来看,这一精度则相当于在采用分类后比较法时,每一景图像的平均分类精度需达到 86.9% 的水平②,而这种分类精度,特别是在山区,其实已经是比较好的了。
TM3 0.62-0.69UM ,红波段:叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面。
TM4 0.76-0.96UM近红外波段:对无病害植物近红外反射敏感,对绿色植物类别差异最敏感,为植物通用波段,用于目视调查,作物长势测量,水域测量,生物量测定及水域判别。
TM51.55-1.75UM中红外波段:对植物含水量和云的不同反射敏感,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力,可判断含水量和雪、云。
在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。
TM61.04-1.25UM远红外波段:可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,作温度图,植物热强度测量。
TM7 2.08-3.35UM,中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物。
TM波段介绍

TM图像波段介绍一、各波段特征:蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等.绿波段,对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征.,红波段,叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面.4 .TM4 近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量.中红外波段,处于水的吸收波段,一般内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力.易于反映云与雪.热红外波段,可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,进行热制图.中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物.二.波段组合:1、TM321(RGB):均是可见光波段,合成结果接近自然色彩。
对浅水透视效果好,可用于监测水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。
一般而言:深水深兰色;浅水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。
可用于水库、河口及海岸带研究,但对水陆分界的划分不合适。
这种RGB组合模拟出一副自然色的图象。
有时用于海岸线的研究和烟柱的探测。
2、TM453(RGB):2个红外波段、1个红色波段。
对内陆湖泊及河流分辨清楚。
植被类型及长势可由棕、绿、橙、黄等色调分别。
能区分土壤含水量(水分越多则越暗)。
用于土壤湿度和植被状况的分析。
也很好的用于内陆水体和陆地/水体边界的确定。
3、TM742(RGB):植被基本都是绿色,城市呈现品红色或紫色,草地淡绿色,森林深绿色(针叶林色调比阔叶林暗)。
Landsat8的不同波段组合说明

Landsat 8 OLI_TIRS 卫星数字产品波段介绍2013 年2月11日,美国航空航天局(NASA) 成功发射Landsat-8卫星。
Landsat-8卫星上携带两个传感器,分别是OLI陆地成像仪(Operational Land Imager)和TIRS热红外传感器(Thermal Infrared Sensor)。
Landsat-8 在空间分辨率和光谱特性等方面与Landsat 1-7保持了基本一致,卫星一共有11个波段,波段1-7,9-11的空间分辨率为30米,波段8为15米分辨率的全色波段,卫星每16 天可以实现一次全球覆盖。
OLI陆地成像仪有9个波段,成像宽幅为185x185km。
与Landsat-7 上的ETM 传感器相比,OLI陆地成像仪做了以下调整:1. Band 5的波段范围调整为0.845–0.885 μm,排除了0.825μm处水汽吸收的影响;2. Band 8全色波段范围较窄,从而可以更好区分植被和非植被区域;3. 新增两个波段。
Band 1蓝色波段(0.433–0.453 μm) 主要应用于海岸带观测,Band 9短波红外波段(1.360–1.390 μm) 应用于云检测。
LandSat-8上携带的TIRS热红外传感器主要用于收集地球两个热区地带的热量流失,目标是了解所观测地带水分消耗。
Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI 全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,详情参考表3。
ENVI实验三-四

实验三波段组合计算及图像增强在本专题中,以ETM数据为对象,介绍在图像处理过程中的波段组合方式,波段之间的运算方式,数据的拉伸及增强处理过程。
(1)打开影像1选择file →open image file,打开can_tmr.img,点击打开,影像就出现在可用波段例表中。
2 在可用波段列表中,点击RGB Color,选择R(4)G(5)B(3)三个波段来进行波段显示。
3 点击Load RGB,一幅假彩色图像就显示在影像窗口中。
(2)波段组合1 在显示的影像中,只用了can_tmr.img文件的三个波段,而文件有6个波段,在这里,可以尝试从6个波段当中,选取3个波段来组合,并比较不同波段组合之间的图像显示效果。
2 在可用波段列表中,点击RGB Color,选择R(7)G(4)B(1)三个波段来进行波段显示。
3 在可用波段列表中,点击Display#1,在下拉菜单中,选择New display,点击Load RGB,一幅真彩色图像就显示在影像窗口中。
【截图一张,】4 动态链接比较前后两幅影像的效果,在主影像窗口中,选择tools →link →link displays,在link displays对话框中,点击ok,两幅影像就链接起来了。
5 在可用波段列表中,选择其余的波段组合方式,并加以比较。
(2)波段运算Band math功能为用户提供了一个灵活的图像处理工具,在Band math对话框中,可以实现不同波段之间的加减乘除等运算。
在这里还是为对象进行波段运算。
1在主菜单栏中,选择Basic Tools →Band math。
将出现band math对话框。
图6.2 Band math对话框3 在enter an expression的文本框中,输入需要进行波段计算的IDL (Interactive Data Language)表达式,使用变量代替波段名或文件名,变量名必须以字符“b”或“B”开头,后面跟着5个以内的数字字符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ETM+遥感不同波段的用途(转)
各个波段的特征
B1 为蓝色波段,该波段位于水体衰减系数最小的部位,对水体的穿透力最大,用于判别水
深,研究浅海水下地形、水体浑浊度等,进行水系及浅海水域制图;
B2 为绿色波段,该波段位于绿色植物的反射峰附近,对健康茂盛植物反射敏感,可以识别
植物类别和评价植物生产力,对水体具有一定的穿透力,可反映水下地形、沙洲、沿岸沙坝
等特征;
B3 为红波段,该波段位于叶绿素的主要吸收带,可用于区分植物类型、覆盖度、判断植物
生长状况等,此外该波段对裸露地表、植被、岩性、地层、构造、地貌、水文等特征均可提
供丰富的植物信息;
B4 为近红外波段,该波段位于植物的高反射区,反映了大量的植物信息,多用于植物的识
别、分类,同时它也位于水体的强吸收区,用于勾绘水体边界,识别与水有关的地质构造、
地貌等;
B5 为短波红外波段,该波段位于两个水体吸收带之间,对植物和土壤水分含量敏感,从而
提高了区分作物的能力,此外,在该波段上雪比云的反射率低,两者易于区分,B5 的信息
量大,应用率较高;
B6 为热红外波段,该波段对地物热量辐射敏感,根据辐射热差异可用于作物与森林区分、
水体、岩石等地表特征识别;
B7 为短波外波段,波长比 B5 大,是专为地质调查追加的波段,该波段对岩石、特定矿物
反应敏感,用于区分主要岩石类型、岩石水热蚀变,探测与交代岩石有关的粘土矿物等;
B8 为全色波段(Pan),该波段为 Landsat-7 新增波段,它覆盖的光谱范围较广,空间分
辨率较其他波段高,因而多用于获取地面的几何特征。
波段组合:
TM321(RGB):均是可见光波段,合成结果接近自然色彩。对浅水透视效果好,可用于监测
水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。一般而言:深水深兰色;浅
水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。可用于水库、河口及
海岸带研究,但对水陆分界的划分不合适。
这种RGB组合模拟出一副自然色的图象。
有时用于海岸线的研究和烟柱的探测。
TM453(RGB):2个红外波段、1个红色波段。对内陆湖泊及河流分辨清楚。植被类型及长
势可由棕、绿、橙、黄等色调分别。能区分土壤含水量(水分越多则越暗)。
用于土壤湿
度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。
TM742(RGB):植被基本都是绿色,城市呈现品红色或紫色,草地淡绿色,森林深绿色(针
叶林色调比阔叶林暗)。能区分土壤和植被的含水量。适用于水/陆边界划分、土/植被边界
划分,但不适于植被分类。
土壤和植被湿度内容分析;内陆水体定位。植被显示为
绿色的阴影。
TM432(RGB):标准假彩色。植被呈现各种红色调。深红色/亮红色为阔叶林,浅红色为草
地等生物量较小的植被。密集的城市地区为青灰色。最适合用于植被分类。 红外假色。在
植被、农作物、土地利用和湿地分析的遥感方面,这是最常用的波段组合。
TM543(RGB):城镇和农村土地利用的区分;陆地/水体边界的确定。
TM457(RGB):探测云,雪和冰(尤其在高维度地区)。
tm4-tm3/tm4+tm3 NDVI-标准差植被指数;TM波段4:3的不同比率被证明在增强不同
植被类型对比度方面很有用。
===================
类型提取
1.城市与乡镇的提取:TM1+TM7+TM3+TM5+TM6+TM2-TM4
2.乡镇与村落:TM1+TM2+TM3+TM6+TM7-TM4-TM5
3.河流的提取:TM5+TM6+TM7-TM1-TM2-TM4
4.道路的提取:TM6-(TM1+TM2+TM3+TM4+TM5+TM7)
========================
光谱差异
TM1 居民地与河流菜地不易分开.
TM2 居民地与河流菜地不易分
TM3 乡村与菜地不易分
TM4 农田与道路不易分,乡镇,道路,河滩易浑.
TM5 县城与农田不易分
TM6 村庄与河流易混.
========================
融合实例
741
波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次
感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解
译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地
层单元的边界、特殊岩性的展布以及火山机构也显示清楚。
743
TM7波段(2.08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区
,能反映植被的最佳波段;同时TM7、TM4、TM3(分别赋予红、 绿、蓝色)的彩色合成
图的色调接近自然彩色。
754
对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成
的 标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水
位变化的地理规律
754
陆地卫星图像的标准假彩色 指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MS
S4图像、第五波段MSS5图像和第七波段MSS7图像,分别配以兰、绿、红色的彩色合成
图像上的彩色。并称此种合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红
色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。
543
例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然
彩
色合成图像,适合于非遥感应用专业人员使用。
543
波段选取及主成份分析 我们的研究采用1995年8月2日的TM数据。对于屏幕显示和屏
幕图
象分析,选用信息量最为丰富的5、4、3波段组合配以红、绿、兰三种颜色生成假彩色合成
图象,这个组合的合成图象不仅类似于自然色,较为符合人们的视觉习惯,而且由于信息
量丰富,能充分显示各种地物影像特征的差别。
453
采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地
物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。
TM321(RGB):均是可见光波段,合成结果接近自然色彩。对浅水透视效果好,可用于监测
水体的浊度、含沙量、水体沉淀物质形成的絮状物、水底地形。一般而言:深水深兰色;浅
水浅兰色;水体悬浮物是絮状影象;健康植被绿色;土壤棕色或褐色。可用于水库、河口及
海岸带研究,但对水陆分界的划分不合适。
这种RGB组合模拟出一副自然色的图象。
有时用于海岸线的研究和烟柱的探测。
TM453(RGB):2个红外波段、1个红色波段。对内陆湖泊及河流分辨清楚。植被类型及长
势可由棕、绿、橙、黄等色调分别。能区分土壤含水量(水分越多则越暗)。
用于土壤湿
度和植被状况的分析。也很好的用于内陆水体和陆地/水体边界的确定。
TM742(RGB):植被基本都是绿色,城市呈现品红色或紫色,草地淡绿色,森林深绿色(针
叶林色调比阔叶林暗)。能区分土壤和植被的含水量。适用于水/陆边界划分、土/植被边界
划分,但不适于植被分类。
土壤和植被湿度内容分析;内陆水体定位。植被显示为
绿色的阴影。
TM432(RGB):标准假彩色。植被呈现各种红色调。深红色/亮红色为阔叶林,浅红色为草
地等生物量较小的植被。密集的城市地区为青灰色。最适合用于植被分类。 红外假色。在
植被、农作物、土地利用和湿地分析的遥感方面,这是最常用的波段组合。
TM543(RGB):城镇和农村土地利用的区分;陆地/水体边界的确定。
TM457(RGB):探测云,雪和冰(尤其在高维度地区)。
tm4-tm3/tm4+tm3 NDVI-标准差植被指数;TM波段4:3的不同比率被证明在增强不同
植被类型对比度方面很有用。