2016-2017年福建省师大附中高二上学期数学期中试卷带答案(理科)

合集下载

福建省师大附中高二数学上学期期中试题 理

福建省师大附中高二数学上学期期中试题 理

福建师大附中2015-2016学年第一学期模块考试卷高二数学(理科)必修5本试卷共4页. 满分150分,考试时间120分钟.注意事项:试卷分第I 卷和第II 卷两部分,将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.已知a ,R b ∈,下列结论成立的是A .若a b <,则ac bc <B .若a b <,c d <,则ac bd <C .若0a b <<,则11a b> D .若a b <,则n n a b <(n *∈N ,2n ≥) 2.下列函数中,最小值为22的是 A .=y 32322+++x x B .xx y 2+= C .)0(sin 2sin π<<+=x xx y D .x x y lg 2lg +=0(>x 且)1≠x 3.设等比数列}{n a 的前n 项和为n S ,若423S S =,则64S S = A .2 B .73C .83 D .34.设n S 为等差数列}{n a 的前n 项和,已知1596a a a -+=,则9S 的值为 A .54 B .45 C .27 D .185.若关于x 方程22(1)20x m x m +-+-=的一个实根小于1-,另一个实根大于1,则实数m 的取值范围是A .(2,2)-B .(2,0)-C .(2,1)-D .(0,1)6.已知0,0>>b a ,若不等式ba mb a +≥+212恒成立,则实数m 的最大值是 A .10 B .9 C .8 D .7410 1228 30 36 …7.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知()sin sin 2sin a A c C a b B -=-,则角C 的大小为A.34π B.4π C.3πD.2π8.已知等差数列{}n a 的前n 项和n S 满足65S S <且876S S S >=,则下列结论错误..的是 A .6S 和7S 均为n S 的最大值 B .07=aC .公差0d <D .59S S >9.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若B a A b tan tan 22=,则△ABC 的形状是A. 直角三角形B. 等腰三角形C. 等腰直角三角形D. 等腰或直角三角形10.已知实数,x y 满足不等式组2040250x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,若目标函数z y ax =-取得最大值时的唯一最优解是(1,3),则实数a 的取值范围为A. (,1)-∞-B. (0,1)C. (1,)+∞D. [1,)+∞11.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知60A =o ,43b =,为使此三角形有两个,则a 满足的条件是A. 643a <<B. 06a <<C. 043a <<D. 43a ≥或6a = 12.设数列}{n a 是集合{33|0,sts t +≤<且,}s t Z ∈中所有的数从小到大排列成的数列,即a 1=4,a 2=10,a 3=12,a 4=28,a 5=30,a 6=36,…. 将数列}{n a 中各项按照上小下大,左小右大的原则排成如下等腰直角三角形数表:则200a 的值为A .91933+ B .101933+ C .92033+ D .102033+第Ⅱ卷 共90分第14题图二、填空题:本大题有4小题,每小题5分,共20分,把答案填在答卷的相应位置. 13.已知关于x 的不等式210mx nx +-<的解集为11{|,}32x x x <>或,则m n +等于 .14.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30O 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75O 的方向上,仰角为30O ,则此山的高度CD = m.15.在ABC ∆中,D 为边BC 的中点,2,1,30AB AC BAD ==∠=o,则AD = . 16.已知数列{}n x 满足21||()n n n x x x n N *++=-∈,若121,(1,0)x x a a a ==≤≠,且nn x x =+3对于任意正整数n 均成立,则数列{}n x 的前2015项和2015S 的值为 .(用具体的数字表示)三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 的前n 项和为n S ,已知37a =,5726a a +=. (Ⅰ)求n a 及n S ; (Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n T .18.(本小题满分10分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.已知3=a ,36cos =A ,2π+=A B . (Ⅰ)求b 的值; (Ⅱ)求ABC ∆的面积.19.(本小题满分12分)某小型餐馆一天中要购买,A B 两种蔬菜,,A B 蔬菜每公斤的单价分别为2元和3 元.根据需要,A 蔬菜至少要买6公斤,B 蔬菜至少要买4公斤,而且一天中购买这两种蔬菜的总费用不能超过60元.如果这两种蔬菜加工后全部卖出,,A B 两种蔬菜加工后每公斤的利润分别为2元和1元,餐馆如何采购这两种蔬菜使得利润最大,利润最大为多少元?20.(本小题满分12分)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍. (Ⅰ)求CB∠∠sin sin ;(Ⅱ)若22,1==DC AD ,求BD 和AC 的长.21.(本小题满分12分)某企业为解决困难职工的住房问题,决定分批建设保障性住房供给困难职工,首批计划用100万元购买一块土地,该土地可以建造每层1000平方米的楼房一幢,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元,已知建筑第1层楼房时,每平方米的建筑费用为920元.为了使该幢楼房每平方米的平均费用最低(费用包括建筑费用和购地费用),应把楼房建成几层?此时平均费用为每平方米多少万元?22.(本小题满分14分)已知数列{}n a ,0n a >,其前n 项和n S 满足122n n n S a +=-,其中*n ∈N .{}n b 是等差数列; (Ⅱ)设2nn n c b -=⋅,n T 为数列{}n c 的前n 项和,求证:3n T <;(Ⅲ)设14(1)2n bn n n d λ-=+-⋅(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n d d >+1成立.福建省师大附中2015-2016学年第一学期模块考试高二数学(理科)必修5参考答案一、选择题:1-12:CBBADB BDDCAC 二、填空题:13.1- 14.6100 15. 3216. 1344 三、解答题:17.解: (Ⅰ)设等差数列{a n }的公差为d ,∵37a =,5726a a += ∴112721026a d a d +=⎧⎨+=⎩,解得13,2a d == ……… 2分∴32(1)21n a n n =+-=+,2(321)22n n n S n n ++==+.……… 6分(Ⅱ)由(Ⅰ)知21n a n =+, ∴221111111()1(21)14(1)41n n b a n n n n n ===⋅=⋅--+-++,……… 8分 ∴11111111(1)(1)42231414(1)n nT n n n n =-+-+⋅⋅⋅+-=-=+++.……… 10分 18.解: (Ⅰ)∵36cos =A ∴23sin 1cos 3A A =-= ……… 1分 ∵2π+=A B ∴6sin sin()cos 23B A A π=+==……… 3分 由正弦定理得63sin 332sin 3a Bb A⨯===……… 5分 (Ⅱ)21sin sin()sin(2)cos 22cos 123C A B A A A π=+=+==-=……… 8分 ∴11132sin 3322232ABC S ab C ∆==⨯⨯⨯=……… 10分 19.解:设A 蔬菜购买的公斤数x ,B 蔬菜购买的公斤数y ,餐馆加工这两种蔬菜利润为z 元.x 、y 则之间的满足的不等式组为:……… 3分z=2x+y ……… 4分画出的平面区域如图.……… 7分 ∵y=﹣2x+z∴z 表示过可行域内点斜率为﹣2的一组平行线在y 轴上的截距. 联立解得即B (24,4) ……… 9分∴当直线过点B (24,4)时,在y 轴上的截距最大,即z max =2×24+4=52 ……… 11分答:餐馆应购买A 蔬菜24公斤,B 蔬菜4公斤,加工后利润最大为52元.……… 12分 20.解:(Ⅰ)BAD AD AB S ABD ∠⋅⋅=∆sin 21CAD AD AC S ACD∠⋅⋅=∆sin 212,ABD ACD S S BAD CAD ∆∆=∠=∠QAC AB 2=∴ ……… 2分由正弦定理可知21sin sin ==∠∠AB AC C B ……… 4分(II ) ::2:1ABD ACD BD DC S S ∆∆==Q ,22DC =2=∴BD ……… 6分设AC x =,则2AB x =在ABD ∆与ACD ∆中,由余弦定理可知2222cos 222AD BD AB ADB AD BD +-∠==⋅⋅222232cos 22xAD CD AC ADC AD CD -+-∠==⋅ 8分ΘADB ADC π∠+∠=,∴ADC ADB ∠-=∠cos cos ……… 10分2222322x -=1x =即1AC = ……… 12分21. 解:设建筑楼房为x 层,该楼房每平方米的平均费用为()f x 万元,由题意知……… 10分建筑第1层楼房建筑费用为:920×1000=920000(元)=92(万元)楼房每升高一层,整层楼建筑费用提高:20×1000=20000(元)=2(万元) 建筑x 层楼时,该楼房总费用为2(1)922100911002x x x x x -+⨯+=++(x ∈N *)…… 6分(不给定义域扣1分) 则291100191()10001000101000x x x f x x x ++==++1912911112100010100010010001000x x ≥⋅+=+=当且仅当10x=,即x=10时,等号成立;……… 11分答:了使该幢楼房每平方米的平均综合费用最低,应把楼房建成10层,此时平均费用为每平方米0.111万元. ……… 12分 22.(Ⅰ)当1n =时,1124S a =-,∴14a =……… 1分当2n ≥时,1112222n n n n n n n a S S a a +--=-=--+,∴122nn n a a --=,……… 3分 即11122n n n n a a ---=, ∴11n n b b --=(常数),……… 4分 又1122a b ==,∴{}n b 是首项为2,公差为1的等差数列,1n b n =+.……… 5分 (Ⅱ)12(1)2nnn n c b n -=⋅=+⋅2231222n n n T +=+++L ,231123122222n n n n n T ++=++++L ,……… 6分 相减得23111111122222n n n n T ++=++++-L211111(1)13112211222212n n n n n n -++-++=+-=---,……… 7分∴213333222n n n n n n T ++=--=-<. ……… 9分……… 11分 ……… 12分……… 13分 ……… 14分(Ⅲ) 由n n d d >+1得。

福建省厦门市2016-2017学年高二上学期期中考试数学试题 Word版含答案

福建省厦门市2016-2017学年高二上学期期中考试数学试题 Word版含答案

考号_____________ 班级_________ 座号______ 姓名_____________厦门市翔安第一中学2016~2017学年第一学期高二年期中考试卷数学科命题人:郭志坚 审核人:江雪华(考试时间: 120 分钟 满分:150 )第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“若a >-3,则a >0”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .1B .2C .3D .4 2.已知a <0,-1<b <0,则有( )A .ab 2<ab <aB .a <ab <ab 2C .ab >b >ab 2D .ab >ab 2>a 3.若数列{a n }满足a n +1=11-a n,a 1=12,则a 2016等于( )A.12B .2C .-1D .1 4.边长为1( )A .60°B .120°C .135°D .150°5.已知0,0a b >>,,,2a b -成等差数列,又,,2a b -适当排序后也可成等比数列,则a b +的值等于( )A .3B .4C .5D .66.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若B =2A ,a =1,b =3,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形7.已知函数f (x )=x 2+bx 的图像过点(1,2),记1()n a f n =. 若数列{}n a 的前n 项和为S n ,则S n 等于( )A.1n B.11n + C. 1n n - D.1n n + 8.下列函数中,最小值为2的是( )A .y =x +1xB .y =sin x +1sinx ,(0,)2x π∈C .y =42x x +,[0,)x ∈+∞D .y =x 2+3x 2+29.一船以22 6 km/h 的速度向正北航行,在A 处看灯塔S 在船的北偏东45°,1小时30分后航行到B 处,在B 处看灯塔S 在船的南偏东15°,则灯塔S 与B 之间的距离为( )A .66 kmB .96 kmC . 132 kmD .33 km 10.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( ) A .8 B .7 C .6 D .5 11.已知0x >,若2y x -=,则x y +的最小值是( )A . 2233B .3323 C .233 D .32212.已知命题p :m >2,命题q :x 2+2x -m >0对[1,2]x ∈恒成立.若p ∧q 为真命题,则实数m 的取值范围是( )A .2<m <3B .m >2C .m <-1或m >2D .m <-1第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .测得∠BCD =15°,∠BDC =30°,CD =40米,并在点C 测得塔顶A 的仰角为60°,则塔高AB =________米.14.设x ∈R ,则“x >12”是“2x 2+x -1>0”的_________________条件.(填:充分不必要、必要不充分、充要、既不充分也不必要条件)15.已知正数x ,y 满足8x y xy +=,则x +2y 的最小值为__________.13题图4016.在公差不为零的等差数列{a n }中,18a =,且157,,a a a 成等比数列,则n S 最大时,n S =________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)在ABC ∆中,π4A =,cos B =.(1)求cos C ;(2)设BC =ABC ∆的面积.18.(本小题满分12分)已知函数f (x )= ∣x +1∣-∣2x -1∣.(1)在答题卷该题图中画出y = f (x )的图像; (2)求不等式f (x )+1﹥0的解集.19.(本小题满分12分)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润.该公司如何正确规划投资,才能在这两个项目上共获得的利润最大,最大利润是多少?20.(本小题满分12分)变量x 、y 满足430,35250,1x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩.(1)设z =1yx -,求z 的取值范围; (2)设z =x 2+y 2,求z 的最小值.21.(本小题满分12分)在锐角△ABC 中,,,A B C 的对边分别为,,,a b c 且cos ,cos ,cos a C b B c A 成等差数列.(1)求B 的值;(2)求22sin cos()A A C +-的范围.22.(本小题满分12分)已知{}n a 是等比数列,21=a ,183=a ;{}n b 是等差数列,21=b ,203214321>++=+++a a a b b b b .(1)求数列{}n b 的通项公式;(2)设23741-++++=n n b b b b P ,82141210+++++=n n b b b b Q ,其中 ,2,1=n ,试比较n P 与n Q 的大小,并证明你的结论.厦门市翔安一中2016-2017学年度第一学期高二年级期中试卷数学科 参考答案与评分标准一、BDCCC BDCAA AA二、14.充分不必要 15.18 16.36三、解答题:17.解:(1)cos 10B =),0(π∈B ,sin B ∴==………………2分()C A B π=-+,)4cos(cos B C +-=∴π,B BC s i n 4s i n c o s 4c o s c o sππ+-=∴2102105=+=. …………5分(2) 根据正弦定理得B ACA BC sin sin =, sin sin BCB AC A⋅∴=3=, ……8分又sin 5C =……………9分 1s i n 32ABC S AC BC C ∆∴=⋅⋅=, 即ABC ∆的面积为3. ………………10分18.解:⑴2,1,1()3,1,212,2x x f x x x x x ⎧⎪-<-⎪⎪=-≤<⎨⎪⎪-+≥⎪⎩………………3分 如图所示:………………7分⑵ f (x )﹥-1由-x+2=-1,得x =3,由3x = -1,得13x =-,……………9分∵f (x )﹥-1,133x ∴-<<……………11分所以,不等式的解集为1(,3)3-……………12分19.解:设甲、乙两项目的投资分别为x ,y ,利润为z , ……………1分则依题意得⎩⎪⎨⎪⎧0<x +y ≤60,x ≥23y ,5≤x ≤60,5≤y ≤60,……………3分目标函数为z =0.4x +0.6y ,……………4分可行域如下图阴影部分所示.……………6分z =0.4x +0.6y 化为2533y x z =-+, 213->-,直线2533y x z =-+经过点A时,z 最大.……………8分由⎩⎪⎨⎪⎧x =23y ,x +y =60,得2436x y =⎧⎨=⎩,∴A (24,36),……………10分所以z max =0.4×24+36×0.6=31.2……………11分答:投资甲、乙两个项目分别为24、36万元,获得的最大利润,且为31.2万元. (12)分20.解:由约束条件430,35250,1x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩作出(x ,y )的可行域如图所示.…………………………3分由⎩⎪⎨⎪⎧x =1,x -4y +3=0,解得C (1,1). 由⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,解得B (5,2).…………………………5分(1)z =1y x -=01y x --表示的几何意义是可行域中的点与点M (1,0)连线的斜率. ∴z min =k MB =211512y x ==--,…………………………8分∴z 的取值范围为1[,)2+∞.…………………………9分(2)z =x 2+y 2的几何意义是可行域上的点到原点O 的距离的平方. ∴可行域上的点到原点的距离中,d min =|OC |=2,故z 的最小值为2.…………………………12分 21.(1)解法一:A c B b C a cos ,cos ,cos 成等差数列B b A cC a cos 2cos cos =+∴……………………2分由正弦定理得,sin cos cos sin A C A C +2sin cos B B = 即B B C A cos sin 2)sin(=+π=++C B A ,B C A sin )sin(=+∴B B B cos sin 2sin =∴…………………………4分又在△ABC 中,,0sin ≠B 21cos =∴B , π<<B 0 3π=∴B ………………6分解法二:A c B b C a cos ,cos ,cos 成等差数列B b A c C a cos 2cos cos =+∴…………2分由余弦定理得,acb c a b bc a c b c ab c b a 2222222222222-+⋅=-++++化简得:ac b c a =-+222……………………4分212cos 222=-+=∴ac b c a B,0π<<B 3π=∴B ……………6分(2)解:3π=B 32π=+∴C A 222sin cos()1cos 2cos(2)3A A C A A π+-=-+-………………8分11cos 2cos 222A A A =--=A A 2cos 232sin 231-+)32sin(31π-+=A ……………………10分ABC ∆ 为锐角三角形,32320,26ππππ<-<<<∴A A0)13A π∴<-≤……………11分)cos(sin 22C A A -+∴的范围是(1,……………………12分22.解:(1)设{a n }的公比为q ,由a 3=a 1q 2得23193a q q a ===±,,………………2分 当3q =-时,12326181420a a a ++=-+=<, 12320,a a a ++>与矛盾故舍去;………………3分 当3q =时,12326182620,a a a ++=++=>符合题意;………………4分 设数列的{}n b 的公差为,d123426b b b b +++=由得1434262b d ⨯+=, 12,3,b d ==又解得3 1.n b n =-所以………………6分(2)b 1,b 4,b 7,…,b 3n-2组成以3d 为公差的等差数列,所以21(1)953;222n n n P nb d n n -=+⋅=-………………7分 又10121428,,,,n b b b b +组成2d 为公差的等差数列,1029,b = 210(1)2326,2n n n Q nb d n n -∴=+⋅=+………………8分 22953()(326)(19),222n n P Q n n n n n n ∴-=--+=-………………9分当20n ≥时,;n m P Q > 当19n =时,;n n P Q =当18n ≤时,.n n P Q <………………12分。

2016-2017年福建省福州八中高二上学期数学期中试卷带答案(理科)

2016-2017年福建省福州八中高二上学期数学期中试卷带答案(理科)

2016-2017学年福建省福州八中高二(上)期中数学试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1.(5分)下列命题中,正确的是()A.若a>b,c>d,则ac>bd B.若ac<bc,则a<bC.若a>b,c>d,则a﹣c>b﹣d D.若ac2<bc2,则a<b2.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.3.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120° D.150°4.(5分)已知数列{a n}中,a n=﹣4n+5,等比数列{b n}的公比q满足q=a n﹣a n﹣1(n≥2),且b1=a2,则|b1|+|b2|+…+|b n|=()A.1﹣4n B.4n﹣1 C.D.5.(5分)等差数列{a n}中,S n为其前n项和,且S9=a4+a5+a6+72,则a3+a7=()A.22 B.24 C.25 D.266.(5分)已知a>0,b>0,若不等式﹣﹣≤0恒成立,则m的最大值为()A.4 B.16 C.9 D.37.(5分)△ABC中,a=x,b=2,∠B=60°,则当△ABC有两个解时,x的取值范围是()A.x> B.x<2或x> C.x<2 D.2<x<8.(5分)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.8日 B.9日 C.12日D.16日二、填空题(本大题共4小题,每小题5分,共20分)9.(5分)不等式﹣x2﹣x+2>0的解集为.10.(5分)如果﹣1,a,b,c,﹣9成等比数列,那么b=,ac=.11.(5分)在△ABC中,,则角B=.12.(5分)下列命题中正确的有.①常数数列既是等差数列也是等比数列;②在△ABC中,若sin2A+sin2B=sin2C,则△ABC为直角三角形;③若A,B为锐角三角形的两个内角,则tanAtanB>1;④若S n为数列{a n}的前n项和,则此数列的通项a n=S n﹣S n﹣1(n>1).三、解答题(本大题共有3个小题,共40分.解答应写出文字说明、演算步骤或证明过程.)13.(13分)设函数f(x)=ax2+(b﹣2)x+3(a≠0)(1)若不等式f(x)>0的解集(﹣1,3).求a,b的值;(2)若f(1)=2,a>0,b>0求+的最小值.14.(13分)已知数列{a n}中,a1=2,a2=6,且数列{a n﹣1﹣a n}{n∈N*}是公差为2的等差数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)记数列{}的前n项和为S n,求满足不等式S n>的n的最小值.15.(14分)某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观测点A,B(假设A,B,C,D在同一水平面上),且AB=80米,当航模在C 处时,测得∠ABC=105°和∠BAC=30°,经过20秒后,航模直线航行到D 处,测得∠BAD=90°和∠ABD=45°.请你根据以上条件求出航模的速度.(答案保留根号,单位:米/秒)一、选择题(本大题共4小题,每小题4分,共16分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)16.(4分)若命题“p∧q”为假,且“¬p”为假,则()A.p或q为假B.q假C.q真 D.不能判断q的真假17.(4分)下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若命题p:∃x∈R,x2﹣2x﹣1>0,则命题¬p:∀x∈R,x2﹣2x﹣1<0C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件18.(4分)设等差数列{a n}的前n项和为S n,且S15>0,S16<0,则中最大的是()A. B.C.D.19.(4分)大学生村官王善良落实政府“精准扶贫”精神,帮助贫困户张三用9万元购进一部节能环保汽车,用于出租.假设第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该车每年的运营收入均为11万元.若该车使用了n(n∈N*)年后,年平均盈利额达到最大值,则n等于(注:年平盈利额=(总收入﹣总成本)×)()A.3 B.4 C.5 D.6二、填空题(本大题共2小题,每小题4分,共8分)20.(4分)若在△ABC中,∠A=60°,b=1,S△ABC=,则=.21.(4分)若∃x∈[﹣2,3],使不等式2x﹣x2≥a成立,则实数a的取值范围是.三、解答题(本大题共有2个小题,共26分.解答应写出文字说明、演算步骤或证明过程.)22.(13分)数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.23.(13分)现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1)、B(x2,y2)两点间的“直角距离”为:D(AB)=|x1﹣x2|+|y1﹣y2|.(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;≤1的点P所组成的集合,(3)设P(x,y),集合B表示的是所有满足D(PO)点集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},求集合Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积.2016-2017学年福建省福州八中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1.(5分)下列命题中,正确的是()A.若a>b,c>d,则ac>bd B.若ac<bc,则a<bC.若a>b,c>d,则a﹣c>b﹣d D.若ac2<bc2,则a<b【解答】解:对于A:若a>0,b,c,d均小于0,则A不成立,对于B,若c<0,则不成立,对于C,若a=2,c=1,c=2,d=﹣1,则不成立.对于D,根据不等式的基本性质,两边同除以c2,则成立,故选:D.2.(5分)设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6]D.【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z为直线y=3x﹣z在y轴上的截距,截距越大,z 越小结合图形可知,当直线y=3x﹣z平移到B时,z最小,平移到C时z最大由可得B(,3),由可得C(2,0),z max=6∴故选:A.3.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120° D.150°【解答】解:由及正弦定理可得c=2b,再由可得a2=7b2 .再由余弦定理可得cosA===,故A=30°,故选:A.4.(5分)已知数列{a n}中,a n=﹣4n+5,等比数列{b n}的公比q满足q=a n﹣a n﹣1(n≥2),且b1=a2,则|b1|+|b2|+…+|b n|=()A.1﹣4n B.4n﹣1 C.D.【解答】解:q=a n﹣a n﹣1=(﹣4n+5)﹣[﹣4(n﹣1)+5]=﹣4,b1=a2=﹣4×2+5=﹣3,所以=﹣3•(﹣4)n﹣1,|b n|=|﹣3•(﹣4)n﹣1|=3•4n﹣1,所以|b1|+|b2|+…+|b n|=3+3•4+3•42+…+3•4n﹣1=3•=4n﹣1,故选:B.5.(5分)等差数列{a n}中,S n为其前n项和,且S9=a4+a5+a6+72,则a3+a7=()A.22 B.24 C.25 D.26【解答】解:由等差数列的性质可得a1+a9=a3+a7=a4+a6=2a5,所以S9===9a5,由S9=a4+a5+a6+72,得9a5=3a5+72,则a5=12.故a3+a7=2a5=24.故选:B.6.(5分)已知a>0,b>0,若不等式﹣﹣≤0恒成立,则m的最大值为()A.4 B.16 C.9 D.3【解答】解:不等式恒成立⇒的最小值,∵a>0,b>0,=10+≥10+=16,当且仅当,即a=b时取等号.∴m≤16,即m的最大值为16.故选:B.7.(5分)△ABC中,a=x,b=2,∠B=60°,则当△ABC有两个解时,x的取值范围是()A.x> B.x<2或x> C.x<2 D.2<x<【解答】解:当△ABC有两个解时,有asinB<b<a,∵a=x,b=2,∠B=60°,∴xsin60°<2<x,解得2<x<,故选:D.8.(5分)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.8日 B.9日 C.12日D.16日【解答】解:由题可知,良马每日行程a n构成一个首项为103,公差13的等差数列,驽马每日行程b n构成一个首项为97,公差为﹣0.5的等差数列,则a n=103+13(n﹣1)=13n+90,b n=97﹣0.5(n﹣1)=97.5﹣0.5n,则数列{a n}与数列{b n}的前n项和为1125×2=2250,又∵数列{a n}的前n项和为×(103+13n+90)=×(193+13n),数列{b n}的前n项和为×(97+97.5﹣0.5n)=×(194.5﹣n),∴×(193+13n)+×(194.5﹣n)=2250,整理得:25n2+775n﹣9000=0,即n2+31n﹣360=0,解得:n=9或n=﹣40(舍),即九日相逢.故选:B.二、填空题(本大题共4小题,每小题5分,共20分)9.(5分)不等式﹣x2﹣x+2>0的解集为{x|﹣2<x<1} .【解答】解:∵﹣x2﹣x+2>0,∴x2+x﹣2<0,即(x+2)(x﹣1)<0,∴﹣2<x<1,即不等式的解集为{x|﹣2<x<1}.故答案为:{x|﹣2<x<1}.10.(5分)如果﹣1,a,b,c,﹣9成等比数列,那么b=﹣3,ac=9.【解答】解:∵﹣1,a,b,c,﹣9成等比数列,由等比中项的概念,得b2=(﹣1)×(﹣9)=9,∴b=﹣3或b=3.当b=3时,得a2=﹣1×3=﹣3矛盾,∴b=3舍掉.∴b=﹣3.由b2=ac,得ac=9.故答案为:﹣3,9.11.(5分)在△ABC中,,则角B=60°或120°.【解答】解:∵,∴=,又cosB=,∴cosB==,即sinB=,∵B为三角形的内角,则B=60°或120°.故答案为:60°或120°12.(5分)下列命题中正确的有②③.①常数数列既是等差数列也是等比数列;②在△ABC中,若sin2A+sin2B=sin2C,则△ABC为直角三角形;③若A,B为锐角三角形的两个内角,则tanAtanB>1;④若S n为数列{a n}的前n项和,则此数列的通项a n=S n﹣S n﹣1(n>1).【解答】解:①常数均为0的数列是等差数列,不是等比数列,故不正确;②在△ABC中,若sin2A+sin2B=sin2C,则a2+b2=c2,所以△ABC为直角三角形,正确;③因为三角形是锐角三角形,所以A+B>即:>A>﹣B>0,所以sinA >cosB,同理sinB>cosA,所以tanAtanB=>1,正确;④若S n为数列{a n}的前n项和,则此数列的通项a n=S n﹣S n﹣1(n>1);n=1,a1=S1,故不正确.故答案为:②③.三、解答题(本大题共有3个小题,共40分.解答应写出文字说明、演算步骤或证明过程.)13.(13分)设函数f(x)=ax2+(b﹣2)x+3(a≠0)(1)若不等式f(x)>0的解集(﹣1,3).求a,b的值;(2)若f(1)=2,a>0,b>0求+的最小值.【解答】解:(1)由f(x)>0的解集是(﹣1,3)知﹣1,3是方程f(x)=0的两根,由根与系数的关系可得,解得(2)f(1)=2得a+b=1,∵a>0,b>0∴(a+b)()=5+=5+2≥9当且仅当b=2a时取得等号∴的最小值是914.(13分)已知数列{a n}中,a1=2,a2=6,且数列{a n﹣1﹣a n}{n∈N*}是公差为2的等差数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)记数列{}的前n项和为S n,求满足不等式S n>的n的最小值.【解答】解:(Ⅰ)数列是首项为a2﹣a1=4,公差为2的等差数列,∴a n﹣a n=4+2(n﹣1)=2n+2(n∈N*).+1∴a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=2+4+6+…+2n=n2+n.(Ⅱ),∴=,由得,n>2015,又n∈N*,故n的最小值为2016.15.(14分)某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观测点A,B(假设A,B,C,D在同一水平面上),且AB=80米,当航模在C 处时,测得∠ABC=105°和∠BAC=30°,经过20秒后,航模直线航行到D 处,测得∠BAD=90°和∠ABD=45°.请你根据以上条件求出航模的速度.(答案保留根号,单位:米/秒)【解答】解、由条件可知∠ACB=45°,∠CBD=60°.…(1分)在△ABD中∵∠BAD=90°,∠ABD=45°,AB=80∴…(4分)在△ABC中∠BAC=30°,∠ACB=45°,AB=80根据正弦定理有即…(7分)在△BCD中∴,,∠CBD=60°根据余弦定理有==…(10分)所以航模的速度米/秒.…(12分)一、选择题(本大题共4小题,每小题4分,共16分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)16.(4分)若命题“p∧q”为假,且“¬p”为假,则()A.p或q为假B.q假C.q真 D.不能判断q的真假【解答】解:因为“¬p”为假,所以p为真;又因为“p∧q”为假,所以q为假.对于A,p或q为真,对于C,D,显然错,故选:B.17.(4分)下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若命题p:∃x∈R,x2﹣2x﹣1>0,则命题¬p:∀x∈R,x2﹣2x﹣1<0 C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件【解答】解:对于A,否命题是“若x2≠1,则x≠1”,∴A错误;对于B,命题p的否定¬p:∀x∈R,x2﹣2x﹣1≤0,∴B错误;对于C,命题“若x=y,则sinx=siny”是真命题,∴它的逆否命题是真命题,∴C正确;对于D,“x=﹣1”时,“x2﹣5x﹣6=0”,∴是充分条件,∴D错误;故选:C.18.(4分)设等差数列{a n}的前n项和为S n,且S15>0,S16<0,则中最大的是()A. B.C.D.【解答】解由题意可得S15==15a8>0,∴a8>0.而S16===8(a8+a9)<0.∴a9<0.故等差数列{a n}是递减数列.故a8是正项当中最小的,a9是负项当中最大的,∴S8最大,故最大,故选:C.19.(4分)大学生村官王善良落实政府“精准扶贫”精神,帮助贫困户张三用9万元购进一部节能环保汽车,用于出租.假设第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该车每年的运营收入均为11万元.若该车使用了n(n∈N*)年后,年平均盈利额达到最大值,则n等于(注:年平盈利额=(总收入﹣总成本)×)()A.3 B.4 C.5 D.6【解答】解:设该汽车第n年的营运费为a n,万元,则数列{a n}是以2为首项,2为公差的等差数列,则a n=2n,则该汽车使用了n年的营运费用总和为T n=n2+n,设第n年的盈利总额为S n,则S n=11n﹣(n2+n)﹣9=﹣n2+10n﹣9,∴年平均盈利额P=10﹣(n+)当n=3时,年平均盈利额取得最大值4,故选:A.二、填空题(本大题共2小题,每小题4分,共8分)20.(4分)若在△ABC中,∠A=60°,b=1,S△ABC=,则=.【解答】解:由∠A=60°,得到sinA=,cosA=,又b=1,S=,△ABC∴bcsinA=×1×c×=,解得c=4,根据余弦定理得:a2=b2+c2﹣2bccosA=1+16﹣4=13,解得a=,根据正弦定理====,则=.故答案为:21.(4分)若∃x∈[﹣2,3],使不等式2x﹣x2≥a成立,则实数a的取值范围是a≤1.【解答】解:当x∈[﹣2,3]时,f(x)=2x﹣x2,在x=1时取最大值1,若∃x∈[﹣2,3],使不等式2x﹣x2≥a成立,则a≤1.故答案为:a≤1.三、解答题(本大题共有2个小题,共26分.解答应写出文字说明、演算步骤或证明过程.)22.(13分)数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.=(n+1)a n+n(n+1),【解答】证明(Ⅰ)∵na n+1∴,∴,∴数列{}是以1为首项,以1为公差的等差数列;(Ⅱ)由(Ⅰ)知,,∴,b n=3n•=n•3n,∴•3n﹣1+n•3n①•3n+n•3n+1②①﹣②得3n﹣n•3n+1==∴23.(13分)现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1)、B(x2,y2)两点间的“直角距离”为:D(AB)=|x1﹣x2|+|y1﹣y2|.(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;≤1的点P所组成的集合,(3)设P(x,y),集合B表示的是所有满足D(PO)点集A={(x,y)|﹣1≤x≤1,﹣1≤y≤1},求集合Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积.【解答】解:(1)(0,2)、(1,1)、(2,0)、(1,﹣1)、(0,﹣2)、(﹣1,﹣1)、(﹣2,0)、(﹣1,1);(2)设定点坐标为(a,b),定值为r,则“圆”的方程为|x﹣a|+|y﹣b|=r.则.“圆”的方程为|x﹣2|+|y﹣2|=2.作其图象如下,.(3)B={(x,y)||x|+|y|≤1},∵,∴,∵(x2,y2)∈B,∴|x2|+|y2|≤1,即|x﹣x1|+|y﹣y1|≤1,∵点集A表示以原点为中心,边长为2的正方形及其内部,∴点集Q表示以点A内的点为定点,1为定长的“圆”及其内部.面积.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa+b45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa+ba45°ABE挖掘图形特征:a+bb x-aa 45°D Ba+b45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。

福建师大附中2016-2017学年高二上学期期末数学试卷(理科) Word版含解析

福建师大附中2016-2017学年高二上学期期末数学试卷(理科) Word版含解析

福建师大附中2016-2017学年高二(上)期末数学试卷(理科)(解析版)一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.已知抛物线y=ax 2(a >0)的焦点到准线距离为1,则a=( )A .4B .2C .D .2.双曲线的焦点到渐近线的距离为( )A .B .2C .D .13.方程(t 为参数)表示的曲线是( )A .双曲线B .双曲线的上支C .双曲线的下支D .圆4.已知0<θ<,则双曲线与C 2:﹣=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等5.若正数x ,y 满足xy 2=4,则x +2y 的最小值是( )A .3B .C .4D .6.下列命题:其中正确命题的个数是( ) (1)“若a ≤b ,则am 2≤bm 2”的逆命题; (2)“全等三角形面积相等”的否命题;(3)“若a >1,则关于x 的不等式ax 2≥0的解集为R”的逆否命题; (4)“命题“p ∨q 为假”是命题“p ∧q 为假”的充分不必要条件” A .1B .2C .3D .47.设F1、F2是椭圆C: +=1(a>b>0)的左、右焦点,P为直线x=﹣上一点,△F1PF2是底角为30°的等腰三角形,则C的离心率为()A.B.C.D.8.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.29.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.10.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.11.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.812.已知椭圆C1: +=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是()A.(0,)B.(0,)C.[,1)D.[,1)二、填空题:本大题有6小题,每小题5分,共30分,把答案填在答卷的相应位置.13.设x∈Z,集合A是奇数集,集B是偶数集.若命题p:∀x∈A,2x∈B;则命题p的否定是.14.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=.15.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.16.已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为.17.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为米.18.△ABC的顶点A(﹣5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是.三、解答题:本大题有5题,共60分,解答应写出文字说明、证明过程或演算步骤.19.(12分)已知命题p:方程=1表示焦点在y轴上的椭圆;命题q:双曲线=1的离心率e∈().若p或q为真命题,p且q为假命题,求实数m的取值范围.20.(10分)在平面直角坐标系xOy中,已知点Q(1,2),P是动点,且△POQ的三边所在直线的斜率满足+=.(1)求点P的轨迹C的方程;(2)过点F(1,0)作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB 的面积.21.(14分)已知椭圆C:=1(a>b>0)的顶点B到左焦点F1的距离为2,离心率e=.(1)求椭圆C的方程;(2)若点A为椭圆C的右頂点,过点A作互相垂直的两条射线,与椭圆C分別交于不同的两点M,N(M,N不与左、右顶点重合),试判断直线MN是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.[选修4-4:坐标系与参数方程]22.(12分)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),M为C1上的动点,P点满足=2,点P的轨迹为曲线C2.(Ⅰ)求C2的普通方程;(Ⅱ)设点(x,y)在曲线C2上,求x+2y的取值范围.[选修4-5:不等式选讲]23.(12分)已知函数f(x)=|x+1|.(I)求不等式f(x)<|2x+1|﹣1的解集M;(Ⅱ)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).2016-2017学年福建师大附中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.已知抛物线y=ax 2(a >0)的焦点到准线距离为1,则a=( )A .4B .2C .D .【考点】抛物线的简单性质.【分析】抛物线y=ax 2(a >0)化为,可得.再利用抛物线y=ax 2(a >0)的焦点到准线的距离为1,即可得出结论.【解答】解:抛物线方程化为,∴,∴焦点到准线距离为,∴,故选D .【点评】本题考查了抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.2.双曲线的焦点到渐近线的距离为( )A .B .2C .D .1【考点】双曲线的简单性质.【分析】先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式即可求出结论.【解答】解:由题得:其焦点坐标为(﹣4,0),(4,0),渐近线方程为y=±x所以焦点到其渐近线的距离d==2.故选:A【点评】本题考查双曲线的标准方程,以及双曲线的简单性质,点到直线的距离公式的应用,属于基础题.3.方程(t为参数)表示的曲线是()A.双曲线B.双曲线的上支C.双曲线的下支D.圆【考点】参数方程化成普通方程.【分析】方程(t为参数),消去参数,即可得出表示的曲线.【解答】解:(t为参数),可得x+y=2•2t,y﹣x=2•2﹣t,∴(x+y)(y﹣x)=4(y>x>0),即y2﹣x2=4(y>x>0),∴方程(t为参数)表示的曲线是双曲线的上支,故选B.【点评】本题考查参数方程与普通方程的互化,考查学生的计算能力,比较基础.4.已知0<θ<,则双曲线与C2:﹣=1的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【考点】双曲线的简单性质.【分析】根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.【解答】解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.【点评】本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.5.若正数x,y满足xy2=4,则x+2y的最小值是()A.3B.C.4D.【考点】基本不等式.【分析】变形利用基本不等式的性质即可得出.【解答】解:∵正数x,y满足xy2=4,∴x=.则x+2y=+2y=+y+y=,当且仅当y=,x=2时取等号.∴x+2y的最小值是,故选:A.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.6.下列命题:其中正确命题的个数是()(1)“若a≤b,则am2≤bm2”的逆命题;(2)“全等三角形面积相等”的否命题;(3)“若a>1,则关于x的不等式ax2≥0的解集为R”的逆否命题;(4)“命题“p∨q为假”是命题“p∧q为假”的充分不必要条件”A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】(1)原命题的逆命题为:“若am2≤bm2,则a≤b”,当m=0时不正确;(2)原命题的否命题为:“不全等三角形面积不相等”,即可判断出正误;(3)由于原命题正确,因此其逆否命题也正确;(4)“命题“p∨q为假”⇒命题“p∧q为假”,反之可能不成立,例如p与q中有一个为真,则p∨q为真,即可判断出正误.【解答】解:(1)“若a≤b,则am2≤bm2”的逆命题为:“若am2≤bm2,则a≤b”,当m=0时不正确;(2)“全等三角形面积相等”的否命题为:“不全等三角形面积不相等”,不正确;(3)“若a>1,则关于x的不等式ax2≥0的解集为R”正确,因此其逆否命题也正确;(4)“命题“p∨q为假”⇒命题“p∧q为假”,反之可能不成立,例如p与q中有一个为真,则p∨q为真.∴“命题“p∨q为假”是命题“p∧q为假”的充分不必要条件”,正确.综上可知:正确的命题只有(3)(4).故选:B.【点评】本题考查了简易逻辑的判定,考查了推理能力与计算能力,属于中档题.7.设F1、F2是椭圆C: +=1(a>b>0)的左、右焦点,P为直线x=﹣上一点,△F1PF2是底角为30°的等腰三角形,则C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】由△F1PF2是底角为30°的等腰三角形,得|PF1|=|F1F2|且∠PF1F2=120°,设交x轴于点M,可得|PF1|=2|F1M|,由此建立关于a、c的等式,解之即可求得椭圆E的离心率.【解答】解:设交x轴于点M,∵△F1PF2是底角为30°的等腰三角形∴∠PF1F2=120°,|PF1|=|F2F1|,且|PF1|=2|F1M|.∵P为直线上一点,∴2(﹣c+)=2c,解之得3a=4c∴椭圆E的离心率为e==故选:C【点评】本题给出与椭圆有关的等腰三角形,在已知三角形形状的情况下求椭圆的离心率.着重考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.8.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.2【考点】抛物线的简单性质.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.9.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】椭圆的标准方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.10.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.【考点】双曲线的简单性质.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣x0,﹣y0)•(﹣﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.11.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】圆与圆锥曲线的综合;抛物线的简单性质.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.12.已知椭圆C1: +=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是()A.(0,)B.(0,)C.[,1)D.[,1)【考点】椭圆的简单性质.【分析】作出简图,则>,则e=.【解答】解:由题意,如图若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,由∠APO>45°,即sin∠APO>sin45°,即>,则e=,故选A.【点评】本题考查了椭圆的基本性质应用,属于基础题.二、填空题:本大题有6小题,每小题5分,共30分,把答案填在答卷的相应位置.13.设x∈Z,集合A是奇数集,集B是偶数集.若命题p:∀x∈A,2x∈B;则命题p的否定是¬p:∃x∈A,2x∉B.【考点】命题的否定.【分析】“全称命题”的否定一定是“存在性命题”据此可解决问题.【解答】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:∀x∈A,2x∈B 的否定是:¬p:∃x∈A,2x∉B;故答案为:¬p:∃x∈A,2x∉B;【点评】本小题主要考查命题的否定、命题的否定的应用等基础知识.属于基础题.命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.14.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=12.【考点】抛物线的简单性质.【分析】求出抛物线的焦点坐标,利用线段AB中点M的纵坐标为4,通过y1+y2+p 求解即可.【解答】解:抛物线x2=8y焦点F(0,2),过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,可得y1+y2=8.则|AB|=y1+y2+p=8+4=12,故答案为:12;【点评】本题考查抛物线的简单性质的应用,考查计算能力.15.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.【考点】双曲线的简单性质.【分析】根据双曲线方程为x2﹣y2=1,可得焦距F1F2=2,因为PF1⊥PF2,所以|PF1|2+|PF2|2=|F1F2|2.再结合双曲线的定义,得到|PF1|﹣|PF2|=±2,最后联解、配方,可得(|PF1|+|PF2|)2=12,从而得到|PF1|+|PF2|的值为.【解答】解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.16.已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为9.【考点】双曲线的定义;双曲线的简单性质;双曲线的应用.【分析】根据A点在双曲线的两支之间,根据双曲线的定义求得a,进而根据PA|+|PF′|≥|AF′|=5两式相加求得答案.【解答】解:∵A点在双曲线的两支之间,且双曲线右焦点为F′(4,0),∴由双曲线性质|PF|﹣|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5两式相加得|PF|+|PA|≥9,当且仅当A、P、F′三点共线时等号成立.故答案为9.【点评】本题主要考查了双曲线的定义,考查了学生对双曲线定义的灵活运用.17.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.【考点】抛物线的应用.【分析】先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.【解答】解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故水面宽为2m.故答案为:2.【点评】本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.18.△ABC的顶点A(﹣5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是﹣=1(x>3).【考点】轨迹方程.【分析】根据图可得:|CA|﹣|CB|为定值,利用根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,从而写出其方程即得.【解答】解:如图,△ABC与圆的切点分别为E、F、G,则有|AE|=|AG|=8,|BF|=|BG|=2,|CE|=|CF|,所以|CA|﹣|CB|=8﹣2=6.根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为﹣=1(x>3).故答案为:﹣=1(x>3).【点评】本题考查轨迹方程,利用的是定义法,定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.三、解答题:本大题有5题,共60分,解答应写出文字说明、证明过程或演算步骤.19.(12分)(2008秋•泰州期末)已知命题p:方程=1表示焦点在y轴上的椭圆;命题q:双曲线=1的离心率e∈().若p或q 为真命题,p且q为假命题,求实数m的取值范围.【考点】椭圆的简单性质;复合命题的真假;双曲线的简单性质.【分析】由p真与q真分别求得m的范围,利用复合命题的真假判断即可求得符合题意的实数m的取值范围.【解答】解:p真,则有9﹣m>2m>0,即0<m<3…2分q真,则有m>0,且e2=1+=1+∈(,2),即<m<5…4分若p或q为真命题,p且q为假命题,则p、q一真一假.①若p真、q假,则0<m<3,且m≥5或m≤,即0<m≤;…6分②若p假、q真,则m≥3或m≤0,且<m<5,即3≤m<5…8分故实数m的取值范围为0<m≤或3≤m<5…10分【点评】本题考查椭圆与双曲线的简单性质,考查复合命题的真假判断,考查集合的交补运算,属于中档题.20.(10分)(2016秋•马尾区校级期末)在平面直角坐标系xOy中,已知点Q(1,2),P是动点,且△POQ的三边所在直线的斜率满足+=.(1)求点P的轨迹C的方程;(2)过点F(1,0)作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB 的面积.【考点】轨迹方程.【分析】(1)由+=,得,即可求点P的轨迹C的方程;(2)设A(x1,y1),B(x2,y2),过F倾斜角为60°的直线L:y=(x﹣1),与抛物线方程联立得:y2﹣y﹣4=0,利用韦达定理,即可求△AOB的面积.【解答】解:(1)设点P的坐标为P(x,y),则k OP=,k OQ=2,k PQ=,由+=,得.整理得点P的轨迹的方程为:y2=4x(y≠0,y≠2);(2)设A(x1,y1),B(x2,y2),过F倾斜角为60°的直线L:y=(x﹣1),与抛物线方程联立得:y2﹣y﹣4=0,则y1+y2=,y1y2=﹣4,∴S==.【点评】本题考查斜率的计算,考查直线与抛物线的位置关系,考查三角形面积的计算,属于中档题.21.(14分)(2016秋•马尾区校级期末)已知椭圆C:=1(a>b>0)的顶点B到左焦点F1的距离为2,离心率e=.(1)求椭圆C的方程;(2)若点A为椭圆C的右頂点,过点A作互相垂直的两条射线,与椭圆C分別交于不同的两点M,N(M,N不与左、右顶点重合),试判断直线MN是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)由已知列出关于a,b,c的方程组,求解方程组得到a,b的值,则椭圆方程可求;(2)设M(x1,y1),N(x2,y2),当直线MN的斜率不存在时,△MNA为等腰直角三角形,求出M的坐标,可得直线MN过点;当直线的斜率存在时,设直线MN的方程为y=kx+m,联立直线方程和椭圆方程,得(1+k2)x2+8kmx+4m2﹣4=0,由判别式大于0可得4k2﹣m2+1>0,再由AM⊥AN,且椭圆的右顶点A为(2,0),由向量数量积为0解得m=﹣2k或,然后分类求得直线MN的方程得答案.【解答】解:(1)由题意可知:,解得:,故椭圆的标准方程为;(2)设M(x1,y1),N(x2,y2),当直线MN的斜率不存在时,MN⊥x轴,△MNA为等腰直角三角形,∴|y1|=|2﹣x1|,又,M,N不与左、右顶点重合,解得,此时,直线MN过点;当直线的斜率存在时,设直线MN的方程为y=kx+m,由方程组,得(1+k2)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(1+k2)(4m2﹣4)>0,整理得4k2﹣m2+1>0,.由已知AM⊥AN,且椭圆的右顶点A为(2,0),∴,,即,整理得5m2+16km+12k2=0,解得m=﹣2k或,均满足△=4k2﹣m2+1>0成立.当m=﹣2k时,直线l的方程y=kx﹣2k过顶点(2,0),与题意矛盾舍去.当时,直线l的方程,过定点,故直线过定点,且定点是.【点评】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,考查计算能力,是中档题.[选修4-4:坐标系与参数方程]22.(12分)(2016秋•马尾区校级期末)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),M为C1上的动点,P点满足=2,点P的轨迹为曲线C2.(Ⅰ)求C2的普通方程;(Ⅱ)设点(x,y)在曲线C2上,求x+2y的取值范围.【考点】参数方程化成普通方程;轨迹方程.【分析】(Ⅰ)设点的坐标为p(x,y),根据题意,用x、y表示出点M的坐标,然后根据M是C1上的动点,代入求出C2的参数方程即可;(Ⅱ)令x=3cosθ,y=2sinθ,则x+2y=3cosθ+4sinθ=5()=5sin (θ+φ)即可,【解答】解:(Ⅰ)设P(x,y),则由条件知M().由于M点在C1上,所以,即,消去参数α得即C2的普通方程为(Ⅱ)由椭圆的参数方程可得x=3cosθ,y=2sinθ,则x+2y=3cosθ+4sinθ=5()=5sin(θ+φ),其中tanφ=.∴x+2y的取值范围是[﹣5,5].【点评】本题考查轨迹方程的求解,及参数方程的应用,属于基础题.[选修4-5:不等式选讲]23.(12分)(2016•福建模拟)已知函数f(x)=|x+1|.(I)求不等式f(x)<|2x+1|﹣1的解集M;(Ⅱ)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(I)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得|a+1|>0,|b|﹣1>0,化简f(ab)﹣[f(a)﹣f(﹣b)]为|a+1|•(|b|﹣1|)>0,从而证得不等式成立.【解答】解:(I)不等式f(x)<|2x+1|﹣1,即|x+1|<|2x+1|﹣1,∴①,或②,或③.解①求得x<﹣1;解②求得x∈∅;解③求得x>1.故要求的不等式的解集M={x|x<﹣1或x>1}.(Ⅱ)证明:设a,b∈M,∴|a+1|>0,|b|﹣1>0,则f(ab)=|ab+1|,f(a)﹣f(﹣b)=|a+1|﹣|﹣b+1|.∴f(ab)﹣[f(a)﹣f(﹣b)]=f(ab)+f(﹣b)﹣f(a)=|ab+1|+|1﹣b|﹣|a+1| =|ab+1|+|b﹣1|﹣|a+1|≥|ab+1+b﹣1|﹣|a+1|=|b(a+1)|﹣|a+1|=|b|•|a+1|﹣|a+1|=|a+1|•(|b|﹣1|)>0,故f(ab)>f(a)﹣f(﹣b)成立.【点评】本题主要考查绝对值不等式的解法,绝对值三角不等式,属于中档题.。

福建师大附中2016-2017学年高二上学期期末数学试卷(理科) Word版含答案

福建师大附中2016-2017学年高二上学期期末数学试卷(理科) Word版含答案

福建师大附中2016-2017学年高二(上)期末数学试卷(理科)(解+析版)一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.已知抛物线y=ax 2(a >0)的焦点到准线距离为1,则a=( )A .4B .2C .D .2.双曲线的焦点到渐近线的距离为( )A .B .2C .D .13.方程(t 为参数)表示的曲线是( )A .双曲线B .双曲线的上支C .双曲线的下支D .圆4.已知0<θ<,则双曲线与C 2:﹣=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等5.若正数x ,y 满足xy 2=4,则x +2y 的最小值是( )A .3B .C .4D .6.下列命题:其中正确命题的个数是( ) (1)“若a ≤b ,则am 2≤bm 2”的逆命题; (2)“全等三角形面积相等”的否命题;(3)“若a >1,则关于x 的不等式ax 2≥0的解集为R”的逆否命题; (4)“命题“p ∨q 为假”是命题“p ∧q 为假”的充分不必要条件” A .1B .2C .3D .47.设F1、F2是椭圆C: +=1(a>b>0)的左、右焦点,P为直线x=﹣上一点,△F1PF2是底角为30°的等腰三角形,则C的离心率为()A.B.C.D.8.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.29.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.10.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.11.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.812.已知椭圆C1: +=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是()A.(0,)B.(0,)C.[,1)D.[,1)二、填空题:本大题有6小题,每小题5分,共30分,把答案填在答卷的相应位置.13.设x∈Z,集合A是奇数集,集B是偶数集.若命题p:∀x∈A,2x∈B;则命题p的否定是.14.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=.15.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.16.已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为.17.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为米.18.△ABC的顶点A(﹣5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是.三、解答题:本大题有5题,共60分,解答应写出文字说明、证明过程或演算步骤.19.(12分)已知命题p:方程=1表示焦点在y轴上的椭圆;命题q:双曲线=1的离心率e ∈().若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.20.(10分)在平面直角坐标系xOy 中,已知点Q (1,2),P 是动点,且△POQ的三边所在直线的斜率满足+=.(1)求点P 的轨迹C 的方程;(2)过点F (1,0)作倾斜角为60°的直线L ,交曲线C 于A ,B 两点,求△AOB 的面积.21.(14分)已知椭圆C : =1(a >b >0)的顶点B 到左焦点F 1的距离为2,离心率e=.(1)求椭圆C 的方程;(2)若点A 为椭圆C 的右頂点,过点A 作互相垂直的两条射线,与椭圆C 分別交于不同的两点M ,N (M ,N 不与左、右顶点重合),试判断直线MN 是否过定点,若过定点,求出该定点的坐标; 若不过定点,请说明理由.[选修4-4:坐标系与参数方程]22.(12分)在直角坐标系xOy 中,曲线C 1的参数方程为(α为参数),M 为C 1上的动点,P 点满足=2,点P 的轨迹为曲线C 2.(Ⅰ)求C 2的普通方程;(Ⅱ) 设点(x ,y )在曲线C 2上,求x +2y 的取值范围.[选修4-5:不等式选讲]23.(12分)已知函数f(x)=|x+1|.(I)求不等式f(x)<|2x+1|﹣1的解集M;(Ⅱ)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).2016-2017学年福建师大附中高二(上)期末数学试卷(理科)参考答案与试题解+析一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.已知抛物线y=ax2(a>0)的焦点到准线距离为1,则a=()A.4 B.2 C.D.【考点】抛物线的简单性质.【分析】抛物线y=ax2(a>0)化为,可得.再利用抛物线y=ax2(a>0)的焦点到准线的距离为1,即可得出结论.【解答】解:抛物线方程化为,∴,∴焦点到准线距离为,∴,故选D.【点评】本题考查了抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.2.双曲线的焦点到渐近线的距离为()A .B .2C .D .1【考点】双曲线的简单性质.【分析】先由题中条件求出焦点坐标和渐近线方程,再代入点到直线的距离公式即可求出结论.【解答】解:由题得:其焦点坐标为(﹣4,0),(4,0),渐近线方程为y=±x所以焦点到其渐近线的距离d==2.故选:A【点评】本题考查双曲线的标准方程,以及双曲线的简单性质,点到直线的距离公式的应用,属于基础题.3.方程(t 为参数)表示的曲线是( )A .双曲线B .双曲线的上支C .双曲线的下支D .圆 【考点】参数方程化成普通方程.【分析】方程(t 为参数),消去参数,即可得出表示的曲线.【解答】解:(t 为参数),可得x +y=2•2t ,y ﹣x=2•2﹣t ,∴(x +y )(y ﹣x )=4(y >x >0),即y 2﹣x 2=4(y >x >0),∴方程(t 为参数)表示的曲线是双曲线的上支,故选B .【点评】本题考查参数方程与普通方程的互化,考查学生的计算能力,比较基础.4.已知0<θ<,则双曲线与C 2:﹣=1的( )A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【考点】双曲线的简单性质.【分析】根据双曲线的标准方程求出双曲线的几何性质同,即可得出正确答案.【解答】解:双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同.故选D.【点评】本题主要考查了双曲线的标准方程、双曲线的简单性质等,属于基础题.5.若正数x,y满足xy2=4,则x+2y的最小值是()A.3B.C.4D.【考点】基本不等式.【分析】变形利用基本不等式的性质即可得出.【解答】解:∵正数x,y满足xy2=4,∴x=.则x+2y=+2y=+y+y=,当且仅当y=,x=2时取等号.∴x+2y的最小值是,故选:A.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.6.下列命题:其中正确命题的个数是()(1)“若a≤b,则am2≤bm2”的逆命题;(2)“全等三角形面积相等”的否命题;(3)“若a>1,则关于x的不等式ax2≥0的解集为R”的逆否命题;(4)“命题“p∨q为假”是命题“p∧q为假”的充分不必要条件”A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】(1)原命题的逆命题为:“若am2≤bm2,则a≤b”,当m=0时不正确;(2)原命题的否命题为:“不全等三角形面积不相等”,即可判断出正误;(3)由于原命题正确,因此其逆否命题也正确;(4)“命题“p∨q为假”⇒命题“p∧q为假”,反之可能不成立,例如p与q中有一个为真,则p∨q为真,即可判断出正误.【解答】解:(1)“若a≤b,则am2≤bm2”的逆命题为:“若am2≤bm2,则a≤b”,当m=0时不正确;(2)“全等三角形面积相等”的否命题为:“不全等三角形面积不相等”,不正确;(3)“若a>1,则关于x的不等式ax2≥0的解集为R”正确,因此其逆否命题也正确;(4)“命题“p∨q为假”⇒命题“p∧q为假”,反之可能不成立,例如p与q中有一个为真,则p∨q为真.∴“命题“p∨q为假”是命题“p∧q为假”的充分不必要条件”,正确.综上可知:正确的命题只有(3)(4).故选:B.【点评】本题考查了简易逻辑的判定,考查了推理能力与计算能力,属于中档题.7.设F1、F2是椭圆C: +=1(a>b>0)的左、右焦点,P为直线x=﹣上一点,△F1PF2是底角为30°的等腰三角形,则C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】由△F1PF2是底角为30°的等腰三角形,得|PF1|=|F1F2|且∠PF1F2=120°,设交x轴于点M,可得|PF1|=2|F1M|,由此建立关于a、c的等式,解之即可求得椭圆E的离心率.【解答】解:设交x轴于点M,∵△F1PF2是底角为30°的等腰三角形∴∠PF1F2=120°,|PF1|=|F2F1|,且|PF1|=2|F1M|.∵P为直线上一点,∴2(﹣c+)=2c,解之得3a=4c∴椭圆E的离心率为e==故选:C【点评】本题给出与椭圆有关的等腰三角形,在已知三角形形状的情况下求椭圆的离心率.着重考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.8.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3 C.D.2【考点】抛物线的简单性质.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF 的方程为y=﹣2(x ﹣2),与y 2=8x 联立可得x=1, ∴|QF |=d=1+2=3, 故选:B .【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.9.已知椭圆E :的右焦点为F (3,0),过点F 的直线交椭圆E 于A 、B 两点.若AB 的中点坐标为(1,﹣1),则E 的方程为( )A .B .C .D .【考点】椭圆的标准方程.【分析】设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x 1+x 2=2,y 1+y 2=﹣2,利用斜率计算公式可得==.于是得到,化为a 2=2b 2,再利用c=3=,即可解得a 2,b 2.进而得到椭圆的方程.【解答】解:设A (x 1,y 1),B (x 2,y 2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.10.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()A.B.C.D.【考点】双曲线的简单性质.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣x0,﹣y0)•(﹣﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.11.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】圆与圆锥曲线的综合;抛物线的简单性质.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.12.已知椭圆C1: +=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,则椭圆C1的离心率的取值范围是()A.(0,)B.(0,)C.[,1)D.[,1)【考点】椭圆的简单性质.【分析】作出简图,则>,则e=.【解答】解:由题意,如图若在椭圆C1上不存在点P,使得由点P所作的圆C2的两条切线互相垂直,由∠APO>45°,即sin∠APO>sin45°,即>,则e=,故选A.【点评】本题考查了椭圆的基本性质应用,属于基础题.二、填空题:本大题有6小题,每小题5分,共30分,把答案填在答卷的相应位置.13.设x∈Z,集合A是奇数集,集B是偶数集.若命题p:∀x∈A,2x∈B;则命题p的否定是¬p:∃x∈A,2x∉B.【考点】命题的否定.【分析】“全称命题”的否定一定是“存在性命题”据此可解决问题.【解答】解:∵“全称命题”的否定一定是“存在性命题”,∴命题p:∀x∈A,2x∈B 的否定是:¬p:∃x∈A,2x∉B;故答案为:¬p:∃x∈A,2x∉B;【点评】本小题主要考查命题的否定、命题的否定的应用等基础知识.属于基础题.命题的否定即命题的对立面.“全称量词”与“存在量词”正好构成了意义相反的表述.如“对所有的…都成立”与“至少有一个…不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.14.过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,则|AB|=12.【考点】抛物线的简单性质.【分析】求出抛物线的焦点坐标,利用线段AB中点M的纵坐标为4,通过y1+y2+p 求解即可.【解答】解:抛物线x2=8y焦点F(0,2),过抛物线x2=8y焦点F作直线l交抛物线于A、B两点,若线段AB中点M的纵坐标为4,可得y1+y2=8.则|AB|=y1+y2+p=8+4=12,故答案为:12;【点评】本题考查抛物线的简单性质的应用,考查计算能力.15.已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.【考点】双曲线的简单性质.【分析】根据双曲线方程为x2﹣y2=1,可得焦距F1F2=2,因为PF1⊥PF2,所以|PF1|2+|PF2|2=|F1F2|2.再结合双曲线的定义,得到|PF1|﹣|PF2|=±2,最后联解、配方,可得(|PF1|+|PF2|)2=12,从而得到|PF1|+|PF2|的值为.【解答】解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.16.已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为9.【考点】双曲线的定义;双曲线的简单性质;双曲线的应用.【分析】根据A点在双曲线的两支之间,根据双曲线的定义求得a,进而根据PA|+|PF′|≥|AF′|=5两式相加求得答案.【解答】解:∵A点在双曲线的两支之间,且双曲线右焦点为F′(4,0),∴由双曲线性质|PF|﹣|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5两式相加得|PF|+|PA|≥9,当且仅当A、P、F′三点共线时等号成立.故答案为9.【点评】本题主要考查了双曲线的定义,考查了学生对双曲线定义的灵活运用.17.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.【考点】抛物线的应用.【分析】先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.【解答】解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故水面宽为2m.故答案为:2.【点评】本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.18.△ABC的顶点A(﹣5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是﹣=1(x>3).【考点】轨迹方程.【分析】根据图可得:|CA|﹣|CB|为定值,利用根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,从而写出其方程即得.【解答】解:如图,△ABC与圆的切点分别为E、F、G,则有|AE|=|AG|=8,|BF|=|BG|=2,|CE|=|CF|,所以|CA|﹣|CB|=8﹣2=6.根据双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为﹣=1(x>3).故答案为:﹣=1(x>3).【点评】本题考查轨迹方程,利用的是定义法,定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.三、解答题:本大题有5题,共60分,解答应写出文字说明、证明过程或演算步骤.19.(12分)(2008秋•泰州期末)已知命题p:方程=1表示焦点在y轴上的椭圆;命题q:双曲线=1的离心率e∈().若p或q 为真命题,p且q为假命题,求实数m的取值范围.【考点】椭圆的简单性质;复合命题的真假;双曲线的简单性质.【分析】由p真与q真分别求得m的范围,利用复合命题的真假判断即可求得符合题意的实数m的取值范围.【解答】解:p真,则有9﹣m>2m>0,即0<m<3…2分q真,则有m>0,且e2=1+=1+∈(,2),即<m<5…4分若p或q为真命题,p且q为假命题,则p、q一真一假.①若p真、q假,则0<m<3,且m≥5或m≤,即0<m≤;…6分②若p假、q真,则m≥3或m≤0,且<m<5,即3≤m<5…8分故实数m的取值范围为0<m≤或3≤m<5…10分【点评】本题考查椭圆与双曲线的简单性质,考查复合命题的真假判断,考查集合的交补运算,属于中档题.20.(10分)(2016秋•马尾区校级期末)在平面直角坐标系xOy中,已知点Q(1,2),P是动点,且△POQ的三边所在直线的斜率满足+=.(1)求点P的轨迹C的方程;(2)过点F(1,0)作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB 的面积.【考点】轨迹方程.【分析】(1)由+=,得,即可求点P的轨迹C的方程;(2)设A(x1,y1),B(x2,y2),过F倾斜角为60°的直线L:y=(x﹣1),与抛物线方程联立得:y2﹣y﹣4=0,利用韦达定理,即可求△AOB的面积.【解答】解:(1)设点P的坐标为P(x,y),则k OP=,k OQ=2,k PQ=,由+=,得.整理得点P的轨迹的方程为:y2=4x(y≠0,y≠2);(2)设A(x1,y1),B(x2,y2),过F倾斜角为60°的直线L:y=(x﹣1),与抛物线方程联立得:y2﹣y﹣4=0,则y1+y2=,y1y2=﹣4,∴S==.【点评】本题考查斜率的计算,考查直线与抛物线的位置关系,考查三角形面积的计算,属于中档题.21.(14分)(2016秋•马尾区校级期末)已知椭圆C:=1(a>b>0)的顶点B到左焦点F1的距离为2,离心率e=.(1)求椭圆C的方程;(2)若点A为椭圆C的右頂点,过点A作互相垂直的两条射线,与椭圆C分別交于不同的两点M,N(M,N不与左、右顶点重合),试判断直线MN是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)由已知列出关于a,b,c的方程组,求解方程组得到a,b的值,则椭圆方程可求;(2)设M(x1,y1),N(x2,y2),当直线MN的斜率不存在时,△MNA为等腰直角三角形,求出M的坐标,可得直线MN过点;当直线的斜率存在时,设直线MN的方程为y=kx+m,联立直线方程和椭圆方程,得(1+k2)x2+8kmx+4m2﹣4=0,由判别式大于0可得4k2﹣m2+1>0,再由AM⊥AN,且椭圆的右顶点A为(2,0),由向量数量积为0解得m=﹣2k或,然后分类求得直线MN的方程得答案.【解答】解:(1)由题意可知:,解得:,故椭圆的标准方程为;(2)设M(x1,y1),N(x2,y2),当直线MN的斜率不存在时,MN⊥x轴,△MNA为等腰直角三角形,∴|y1|=|2﹣x1|,又,M,N不与左、右顶点重合,解得,此时,直线MN过点;当直线的斜率存在时,设直线MN的方程为y=kx+m,由方程组,得(1+k2)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(1+k2)(4m2﹣4)>0,整理得4k2﹣m2+1>0,.由已知AM⊥AN,且椭圆的右顶点A为(2,0),∴,,即,整理得5m2+16km+12k2=0,解得m=﹣2k或,均满足△=4k2﹣m2+1>0成立.当m=﹣2k时,直线l的方程y=kx﹣2k过顶点(2,0),与题意矛盾舍去.当时,直线l的方程,过定点,故直线过定点,且定点是.【点评】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,考查计算能力,是中档题.[选修4-4:坐标系与参数方程]22.(12分)(2016秋•马尾区校级期末)在直角坐标系xOy 中,曲线C 1的参数方程为(α为参数),M 为C 1上的动点,P 点满足=2,点P 的轨迹为曲线C 2.(Ⅰ)求C 2的普通方程;(Ⅱ) 设点(x ,y )在曲线C 2上,求x +2y 的取值范围.【考点】参数方程化成普通方程;轨迹方程.【分析】(Ⅰ)设点的坐标为p (x ,y ),根据题意,用x 、y 表示出点M 的坐标,然后根据M 是C 1上的动点,代入求出C 2的参数方程即可;(Ⅱ)令x=3cosθ,y=2sinθ,则x +2y=3cosθ+4sinθ=5()=5sin (θ+φ)即可,【解答】解:(Ⅰ)设P (x ,y ),则由条件知M ().由于M 点在C 1上,所以,即,消去参数α得即C 2的普通方程为(Ⅱ) 由椭圆的参数方程可得x=3cosθ,y=2sinθ,则x +2y=3cosθ+4sinθ=5()=5sin (θ+φ),其中tanφ=.∴x +2y 的取值范围是[﹣5,5].【点评】本题考查轨迹方程的求解,及参数方程的应用,属于基础题.[选修4-5:不等式选讲]23.(12分)(2016•福建模拟)已知函数f (x )=|x +1|.(I )求不等式f (x )<|2x +1|﹣1的解集M ;(Ⅱ)设a ,b ∈M ,证明:f (ab )>f (a )﹣f (﹣b ).【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(I)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(Ⅱ)由题意可得|a+1|>0,|b|﹣1>0,化简f(ab)﹣[f(a)﹣f(﹣b)]为|a+1|•(|b|﹣1|)>0,从而证得不等式成立.【解答】解:(I)不等式f(x)<|2x+1|﹣1,即|x+1|<|2x+1|﹣1,∴①,或②,或③.解①求得x<﹣1;解②求得x∈∅;解③求得x>1.故要求的不等式的解集M={x|x<﹣1或x>1}.(Ⅱ)证明:设a,b∈M,∴|a+1|>0,|b|﹣1>0,则f(ab)=|ab+1|,f(a)﹣f(﹣b)=|a+1|﹣|﹣b+1|.∴f(ab)﹣[f(a)﹣f(﹣b)]=f(ab)+f(﹣b)﹣f(a)=|ab+1|+|1﹣b|﹣|a+1| =|ab+1|+|b﹣1|﹣|a+1|≥|ab+1+b﹣1|﹣|a+1|=|b(a+1)|﹣|a+1|=|b|•|a+1|﹣|a+1|=|a+1|•(|b|﹣1|)>0,故f(ab)>f(a)﹣f(﹣b)成立.【点评】本题主要考查绝对值不等式的解法,绝对值三角不等式,属于中档题.。

福建高二高中数学期中考试带答案解析

福建高二高中数学期中考试带答案解析

福建高二高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学生共有学生2000名,抽取了一个容量为200的样本,样本中男生103人,则该中学生共有女生A.1030人B.97人C.950人D.970人2.把11化为二进制数为( ).A.1 011(2)B.11 011(2)C.10 110(2)D.0 110(2)3.已知(+)n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于()A.4B.5C.6D.74.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种5.阅读如图所示的程序框图,运行相应的程序,则输出n的值为( )A.7B.6C.5D.46.某同学通过计算机测试的概率为,他连续测试3次,其中恰有1次通过的概率为( )A.B.C.D.7.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( )A.B.C.D.8.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第2次也摸到红球的概率为()A.B.C.D.9.今天为星期四,则今天后的第天是()A.星期二B.星期三C.星期四D.星期五10.在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20 cm2的概率为( )A. B. C. D.11.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为()A.0.59B.0.54C.0.8D.0.15二、填空题1.的展开式中,x4的系数是________.(用数字作答)2.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,敌机被击中的概率为________3.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.观察图形的信息,则[70,80)段有名学生。

福建省莆田八中2016-2017学年高二上学期期中数学试卷(理科) Word版含解析

福建省莆田八中2016-2017学年高二上学期期中数学试卷(理科) Word版含解析

2016-2017学年福建省莆田八中高二(上)期中数学试卷(理科)一.选择题(每小题5分)1.双曲线=1的焦距为()A.2 B.4 C.2 D.42.抛物线y=﹣x2的准线方程是()A.B.y=2 C.D.y=﹣23.“”是“A=30°”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也必要条件4.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0 B.存在x∈R,x3﹣x2+1≤0C.存在x∈R,x3﹣x2+1>0 D.对任意的x∈R,x3﹣x2+1>05.命题“若∠C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0 B.1 C.2 D.36.若=(2,﹣3,1),=(2,0,3),=(0,2,2),则•(+)=()A.4 B.15 C.7 D.37.若椭圆+=1(a>b>0)的离心率e=,则双曲线﹣=1的离心率为()A.B.C.D.8.若不论k为何值,直线y=k(x﹣2)+b与曲线x2﹣y2=1总有公共点,则b的取值范围是()A.B.C.(﹣2,2)D.[﹣2,2]9.若A、B两点的坐标分别是A(3cosa,3sina,1),B(2cosb,2sinb,1),则||的取值范围是()A.[0,5]B.[1,5]C.(1,5) D.[1,25]10.过双曲线的一个焦点F2作垂直于实轴的直线,交双曲线于P、Q,F1是另一焦点,若∠PF1Q=,则双曲线的离心率e等于()A.B.C.D.11.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A.B.C.D.12.已知抛物线x2=y+1上一定点A(﹣1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是()A.(﹣∞,﹣3]B.[1,+∞)C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)二.填空题(每小题5分)13.已知点A(1,1,﹣2),点B(1,1,1),则线段AB的长度是.14.命题“若a、b都是偶数,则a+b是偶数”的逆命题是.15.抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为.16.命题p:若0<a<1,则不等式ax2﹣2ax+1>0在R上恒成立,命题q:a≥1是函数在(0,+∞)上单调递增的充要条件;在命题①“p且q”、②“p或q”、③“非p”、④“非q”中,假命题是.三.解答题(17题10分,其余各题12分)17.在平面直角坐标系xOy中,设不等式组所表示的平面区域是W,从区域W中随机取点M(x,y).(1)若x,y∈Z,求点M位于第一象限的概率;(2)若x,y∈R,求|OM|≥1的概率.18.已知命题p:方程﹣=1表示焦点在y轴上的椭圆;命题q:双曲线﹣=1的离心率e∈(1,2).若命题p、q有且只有一个为真,求m的取值范围.19.已知双曲线经过点M().(1)如果此双曲线的渐近线为,求双曲线的标准方程;(2)如果此双曲线的离心率e=2,求双曲线的标准方程.20.过抛物线y2=4x的顶点O作两条互相垂直的弦OA、OB,求弦AB的中点M 的轨迹方程.21.已知顶点在原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为.(1)求抛物线的方程;(2)若抛物线与直线y=2x﹣5无公共点,试在抛物线上求一点,使这点到直线y=2x﹣5的距离最短.22.已知椭圆C: +=1(a>b>0)过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(﹣a,0),点Q(0,y0)在线段AB的垂直平分线上,且•=4,求y0的值.2016-2017学年福建省莆田八中高二(上)期中数学试卷(理科)参考答案与试题解析一.选择题(每小题5分)1.双曲线=1的焦距为()A.2 B.4 C.2 D.4【考点】双曲线的简单性质.【分析】直接利用双曲线方程,求出c,即可得到双曲线的焦距.【解答】解:双曲线=1,可知a2=10,b2=2,c2=12,∴c=2,2c=4.双曲线=1的焦距为:4.故选:D.2.抛物线y=﹣x2的准线方程是()A.B.y=2 C.D.y=﹣2【考点】抛物线的简单性质.【分析】先把抛物线转换为标准方程x2=﹣8y,然后再求其准线方程.【解答】解:∵,∴x2=﹣8y,∴其准线方程是y=2.故选B.3.“”是“A=30°”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由正弦函数的周期性,满足的A有无数多个.【解答】解:“A=30°”⇒“”,反之不成立.故选B4.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是()A.不存在x∈R,x3﹣x2+1≤0 B.存在x∈R,x3﹣x2+1≤0C.存在x∈R,x3﹣x2+1>0 D.对任意的x∈R,x3﹣x2+1>0【考点】命题的否定.【分析】根据命题“对任意的x∈R,x3﹣x2+1≤0”是全称命题,其否定是对应的特称命题,从而得出答案.【解答】解:∵命题“对任意的x∈R,x3﹣x2+1≤0”是全称命题∴否定命题为:存在x∈R,x3﹣x2+1>0故选C.5.命题“若∠C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0 B.1 C.2 D.3【考点】四种命题的真假关系.【分析】直接判断原命题真假,写出原命题的逆命题,判断其真假,然后结合原命题的逆命题与否命题互为逆否命题,再根据互为逆否命题的两个命题共真假加以判断.【解答】解:命题“若∠C=90°,则△ABC是直角三角形”是真命题,∴其逆否命题也为真命题.原命题的逆命题为:“若△ABC是直角三角形,则∠C=90°”是假命题(△ABC是直角三角形不一定角C为直角),∴原命题的否命题也是假命题.∴真命题的个数是2.故选:C.6.若=(2,﹣3,1),=(2,0,3),=(0,2,2),则•(+)=()A.4 B.15 C.7 D.3【考点】空间向量的数量积运算;空间向量运算的坐标表示.【分析】先求出+,再利用空间向量的数量积公式,求出•(+).【解答】解:∵=(2,0,3),=(0,2,2),∴+=(2,2,5),∴•(+)=2×2+(﹣3)×2+1×5=3,故选D.7.若椭圆+=1(a>b>0)的离心率e=,则双曲线﹣=1的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】利用a与b表示出椭圆的离心率并且结合椭圆离心率的数值求出,接着利用a,b表示出双曲线的离心率,即可求出双曲线的离心率.【解答】解:由题意得椭圆+=1(a>b>0)的离心率e=,所以=.所以.所以双曲线的离心率=.故选B.8.若不论k为何值,直线y=k(x﹣2)+b与曲线x2﹣y2=1总有公共点,则b的取值范围是()A.B.C.(﹣2,2)D.[﹣2,2]【考点】直线与圆锥曲线的关系.【分析】把y=k(x﹣2)+b代入x2﹣y2=1得(1﹣k2)x2﹣2k(b﹣2k)x﹣(b﹣2k)2﹣1=0,不论k取何值,△≥0恒成立可求出b的取值范围.【解答】解:把y=k(x﹣2)+b代入x2﹣y2=1得x2﹣[k(x﹣2)+b]2=1,△=4k2(b﹣2k)2+4(1﹣k2)[(b﹣2k)2+1]=4(1﹣k2)+4(b﹣2k)2=4[3k2﹣4bk+b2+1]=4[3()+1]不论k取何值,△≥0,则1﹣b2≥0∴≤1,∴b2≤3,则故选B9.若A、B两点的坐标分别是A(3cosa,3sina,1),B(2cosb,2sinb,1),则||的取值范围是()A.[0,5]B.[1,5]C.(1,5) D.[1,25]【考点】空间向量的夹角与距离求解公式.【分析】根据两点间的距离公式,结合三角函数的恒等变换,求出||的取值范围.【解答】解:∵A(3cosa,3sina,1),B(2cosb,2sinb,1),∴=(3cosa﹣2cosb)2+(3sina﹣2sinb)2+(1﹣1)2=9+4﹣12(cosacosb +sinasinb ) =13﹣12cos (a ﹣b ); ∵﹣1≤cos (a ﹣b )≤1, ∴1≤13﹣12cos (a ﹣b )≤25, ∴||的取值范围是[1,5].故选:B .10.过双曲线的一个焦点F 2作垂直于实轴的直线,交双曲线于P 、Q ,F 1是另一焦点,若∠PF 1Q=,则双曲线的离心率e 等于( )A .B .C .D .【考点】双曲线的简单性质;双曲线的应用.【分析】根据由题设条件可知,|F 1F 2|=2c ,由此可以求出双曲线的离心率e .【解答】解:由题意可知,|F 1F 2|=2c ,∵∠,∴,∴4a 2c 2=b 4=(c 2﹣a 2)2=c 4﹣2a 2c 2+a 4, 整理得e 4﹣6e 2+1=0,解得或(舍去)故选C .11.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于的概率是( )A .B .C .D . 【考点】几何概型.【分析】首先分析题目求△PBC 的面积大于的概率,可借助于画图求解的方法,然后根据图形分析出基本的事件空间与事件的几何度量是线段的长度,再根据几何关系求解出它们的比例即可.【解答】解:记事件A={△PBC的面积大于},基本事件空间是线段AB的长度,(如图)因为,则有;化简记得到:,因为PE平行AD则由三角形的相似性;所以,事件A的几何度量为线段AP的长度,因为AP=,所以△PBC的面积大于的概率=.故选C.12.已知抛物线x2=y+1上一定点A(﹣1,0)和两动点P,Q,当PA⊥PQ时,点Q的横坐标的取值范围是()A.(﹣∞,﹣3]B.[1,+∞)C.[﹣3,1]D.(﹣∞,﹣3]∪[1,+∞)【考点】直线与圆锥曲线的关系.【分析】设出坐标,根据PA⊥PQ建立方程,把P,Q代入抛物线方程,再根据方程有解,使判别式大于0,即可求得x的范围.【解答】解:设P(a,b)、Q(x,y),则=(a+1,b),=(x﹣a,y﹣b)由PA⊥PQ得(a+1)(x﹣a)+b(y﹣b)=0又P、Q在抛物线上即a2=b+1,x2=y+1,故(a+1)(x﹣a)+(a2﹣1)(x2﹣a2)=0整理得(a+1)(x﹣a)[1+(a﹣1)(x+a)]=0而P和Q和A三点不重合即a≠﹣1、x≠a所以式子可化为1+(a﹣1)(x+a)=0整理得a2+(x﹣1)a+1﹣x=0由题意可知,此关于a的方程有实数解,即判别式△≥0得(x﹣1)2﹣4(1﹣x)≥0,解得x≤﹣3或x≥1故选D.二.填空题(每小题5分)13.已知点A(1,1,﹣2),点B(1,1,1),则线段AB的长度是3.【考点】空间两点间的距离公式.【分析】直接运用距离公式,可得结论.【解答】解:由题意,|AB|=1+2=3.故答案为3.14.命题“若a、b都是偶数,则a+b是偶数”的逆命题是若a+b是偶数,则a、b都是偶数.【考点】四种命题.【分析】命题“若p,则q”的逆命题是“若q,则p”.【解答】解:“若a、b都是偶数,则a+b是偶数”的逆命题是:“若a+b是偶数,则a、b都是偶数”故答案为:若a+b是偶数,则a、b都是偶数15.抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为(1,2).【考点】抛物线的简单性质.【分析】由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=﹣1.如图所示,过点A作AM⊥l,垂足为M.由定义可得|AM|=|AF|.因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值.y A,代入抛物线方程可得x A.【解答】解:由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=﹣1.如图所示,过点A作AM⊥l,垂足为M.则|AM|=|AF|.因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值3﹣(﹣1)=4.此时y A=2,代入抛物线方程可得22=4x A,解得x A=1.∴点A(1,2).故答案为:(1,2).16.命题p:若0<a<1,则不等式ax2﹣2ax+1>0在R上恒成立,命题q:a≥1是函数在(0,+∞)上单调递增的充要条件;在命题①“p且q”、②“p或q”、③“非p”、④“非q”中,假命题是①③.【考点】复合命题的真假.【分析】先判断命题p,q的真假,然后根据由“且“,“或“,“非“逻辑连接词构成的命题的真假情况,即可找出这四个命题中的真命题和假命题.【解答】解:命题p:△=4a2﹣4a=4a(a﹣1),∵0<a<1,∴△<0,∴不等式ax2﹣2ax+1>0在R上恒成立,∴该命题为真命题;命题q:f′(x)=a+,若f(x)在(0,+∞)上单调递增,则f′(x)>0,即ax2+1>0,若a≥0,该不等式成立;若a<0,解该不等式得:﹣<x<,即此时函数f(x)在(0,+∞)上不单调递增,∴a≥0是函数f(x)在(0,+∞)上单调递增的充要条件,∴该命题为假命题;∴p且q为假命题,p或q为真命题,非p为假命题,非q为真命题;∴假命题为:①③,故答案为:①③;三.解答题(17题10分,其余各题12分)17.在平面直角坐标系xOy中,设不等式组所表示的平面区域是W,从区域W中随机取点M(x,y).(1)若x,y∈Z,求点M位于第一象限的概率;(2)若x,y∈R,求|OM|≥1的概率.【考点】几何概型;列举法计算基本事件数及事件发生的概率.【分析】(1)①做出所示平面区域②画网格描整点,找出整数点坐标个数,再找出第一象限中的点个数.二者做除法即可算出概率;(2)这是一个几何概率模型.算出图中以(0,0)为圆心,1为半径的半圆的面积,即可求出概率.【解答】解:(1)若x,y∈Z,则点M的个数共有12个,列举如下:(﹣1,0),(﹣1,1),(﹣1,2),(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).当点M的坐标为(1,1),(1,2),(2,1),(2,2)时,点M位于第一象限,故点M位于第一象限的概率为.(2)这是一个几何概率模型,则区域W的面积是3×2=6,|OM|<1的面积是以(0,0)为原点,以1为半径的半圆,面积是,故|OM|<1的概率是=,故满足|OM|≥1的概率是.18.已知命题p:方程﹣=1表示焦点在y轴上的椭圆;命题q:双曲线﹣=1的离心率e∈(1,2).若命题p、q有且只有一个为真,求m的取值范围.【考点】命题的真假判断与应用;椭圆的标准方程;双曲线的简单性质.【分析】根据题意求出命题p、q为真时m的范围分别为0<m<、0<m<15.由p、q有且只有一个为真得p真q假,或p假q真,进而求出答案即可.【解答】解:将方程改写为,只有当1﹣m>2m>0,即时,方程表示的曲线是焦点在y轴上的椭圆,所以命题p等价于;因为双曲线的离心率e∈(1,2),所以m>0,且1,解得0<m<15,所以命题q等价于0<m<15;…若p真q假,则m∈∅;若p假q真,则综上:m的取值范围为[,15)…19.已知双曲线经过点M().(1)如果此双曲线的渐近线为,求双曲线的标准方程;(2)如果此双曲线的离心率e=2,求双曲线的标准方程.【考点】双曲线的标准方程.【分析】(1)由双曲线的渐近线方程设出双曲线的方程是,把已知点代入双曲线的方程可得k值,则双曲线的标准方程可求;(2)由双曲线的离心率e=2,得到a与b的关系,分类设出双曲线方程,代入点的坐标求解.【解答】解:(1)∵双曲线的近线为y=x,∴设双曲线方程为,∵点M()在双曲线上,∴,得k=3.∴双曲线的标准方程为;(2)∵,又∵c2=a2+b2,∴.①当双曲线的焦点在x轴上时,设双曲线标准方程为,∵点M()在双曲线上,∴,解得a2=4,b2=12,则所求双曲线标准方程为.②当双曲线的焦点在y轴上时,设双曲线标准方程为,∵点M()在双曲线上,∴,解得a2=4,b2=12,则所求双曲线标准方程为.故所求双曲线方程为或.20.过抛物线y2=4x的顶点O作两条互相垂直的弦OA、OB,求弦AB的中点M 的轨迹方程.【考点】抛物线的简单性质;轨迹方程.【分析】设直线OA的方程为y=kx(k≠0),代入抛物线方程,求得交点A,再设出直线OB的方程,可得交点B,再由中点坐标公式,运用平方消元,即可得到中点的轨迹方程.【解答】解:设M(x,y),直线OA的斜率为k(k≠0),则直线OB的斜率为.直线OA的方程为y=kx,由解得,即,同理可得B(2pk2,﹣2pk).由中点坐标公式,得,消去k,得y2=p(x﹣2p),此即点M的轨迹方程y2=2(x﹣4),21.已知顶点在原点,焦点在x轴上的抛物线被直线y=2x+1截得的弦长为.(1)求抛物线的方程;(2)若抛物线与直线y=2x﹣5无公共点,试在抛物线上求一点,使这点到直线y=2x﹣5的距离最短.【考点】直线与圆锥曲线的综合问题;抛物线的标准方程.【分析】(1)设抛物线的方程为y2=2px,由,得,由抛物线被直线y=2x+1截得的弦长为能求出抛物线方程.(2)法一、抛物线y2=﹣4x与直线y=2x﹣5无公共点,设点为抛物线y2=﹣4x上的任意一点,点P到直线y=2x﹣5的距离为d,则,故当t=﹣1时,d取得最小值.法二、抛物线y2=﹣4x与直线y=2x﹣5无公共点,设与直线y=2x﹣5平行且与抛物线y2=﹣4x相切的直线方程为y=2x+b,切点为P,则点P即为所求点,由此能求出结果.【解答】解:(1)设抛物线的方程为y2=2px,则,消去y得 (2)=, (4)则,p2﹣4p﹣12=0,∴p=﹣2,或p=6,∴y2=﹣4x,或y2=12x (6)(2)解法一、显然抛物线y2=﹣4x与直线y=2x﹣5无公共点,设点为抛物线y2=﹣4x上的任意一点,点P到直线y=2x﹣5的距离为d,则 (10)当t=﹣1时,d取得最小值,此时为所求的点 (12)解法二、显然抛物线y2=﹣4x与直线y=2x﹣5无公共点,设与直线y=2x﹣5平行且与抛物线y2=﹣4x相切的直线方程为y=2x+b,切点为P,则点P即为所求点. (7)由,消去y并化简得:4x2+4(b+1)x+b2=0, (9)∵直线与抛物线相切,∴△=16(b+1)2﹣16b2=0,解得:把代入方程4x2+4(b+1)x+b2=0并解得:,∴y=﹣1故所求点为. (12)22.已知椭圆C: +=1(a>b>0)过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设直线l与椭圆相交于不同的两点A,B.已知点A的坐标为(﹣a,0),点Q(0,y0)在线段AB的垂直平分线上,且•=4,求y0的值.【考点】椭圆的简单性质.【分析】(1)由题意可知:焦点在x轴上,过点A(2,0),B(0,1)两点,则a=2,b=1.c==,离心率e==;即可求得椭圆C的方程及离心率;(2)设直线l的方程为y=k(x+2),代入椭圆方程,由韦达定理,中点坐标公式,求得中点M的坐标,分类,①当k=0时,点B的坐标为(2,0),由•=4,得y0=±2.②当k≠0时,线段AB的垂直平分线方程为y﹣=﹣(x+).向量的数量积的坐标表示.即可求得求得y0的值.【解答】解:(1)由题意得,椭圆C: +=1(a>b>0)焦点在x轴上,过点A(2,0),B(0,1)两点.∴a=2,b=1.∴椭圆C的方程为;又c==,∴离心率e==;(2)由(1)可知A(﹣2,0).设B点的坐标为(x1,y1),直线l的斜率为k,则直线l的方程为y=k(x+2).于是A,B两点的坐标满足方程组,由方程组消去y并整理,得(1+4k2)x2+16k2x+(16k2﹣4)=0.由﹣2x1=,得x1=.从而y1=.设线段AB的中点为M,则M的坐标为(﹣,).以下分两种情况:①当k=0时,点B的坐标为(2,0),线段AB的垂直平分线为y轴,于是=(﹣2,﹣y0),=(2,﹣y0).由•=4,得y0=±2.②当k≠0时,线段AB的垂直平分线方程为y﹣=﹣(x+).令x=0,解得y0=﹣.由=(﹣2,﹣y0),=(x1,y1﹣y0).•=﹣2x1﹣y0(y1﹣y0)=+(+)==4,整理得7k2=2,故k=±.所以y0=±.综上,y0=±2或y0=±.2017年1月13日。

福建省高二上学期期中考试数学试题(解析版)

福建省高二上学期期中考试数学试题(解析版)

一、单选题1.数列2,-4,6,-8,…的通项公式可能是( ) A .B .C .D .)(12nn a n =-)(112n n a n +=-)(12nn n a =-)(112n n n a +=-【答案】B【分析】根据题意,分析数列各项变化的规律,即可得答案. 【详解】根据题意,数列2,,6,,,4-8-⋯其中,,,, 11212a =⨯⨯=2(1)224a =-⨯⨯=-31236a =⨯⨯=2(1)248a =-⨯⨯=-其通项公式可以为, 1(1)2n n a n +=-⨯故选:.B 2.在等比数列中,,则 {}n a 24681,4a a a a +=+=2a =A .2 B .4C .D .1213【答案】D【分析】设等比数列{an }的公比为q ,由条件得q 4=4,解得q 2.进而得出结果.【详解】因为,解得. ()42468241,4a a a a a a q +=+=+=22q =因为,所以.选D. ()224211a a a q +=+=213a =【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.3.若直线经过,两点,则该直线的倾斜角为( ) ()1,0A (4,B -A . B .C .D .30︒60︒120︒150︒【答案】C【分析】由斜率公式与斜率的定义求解即可【详解】因为直线经过,两点,()1,0A (4,B -所以直线的斜率为 AB k ==设直线的倾斜角为,则 AB θtan θ=又, 0180θ︒≤<︒所以,120θ=°所以直线的倾斜角为. AB 120︒故选:C4.已知圆的一条直径的端点分别是,,则该圆的方程为( ) ()1,0A -()3,4B -A . B . ()()22128x y ++-=()()22128x y -++=C . D .()()221232x y ++-=()()221232x y -++=【答案】B【分析】利用中点坐标公式求出圆心,由两点间距离公式求出半径,即可得到圆的方程. 【详解】解:由题意可知,,的中点为, ()1,0A -()3,4B -()1,2-又圆的半径为12r AB ===故圆的方程为. ()()22128x y -++=故选:B .5.某直线l 过点,且在x 轴上的截距是在y 轴上截距的2倍,则该直线的斜率是( ) (3,4)B -A .B .C .或D .或43-12-4312-43-12-【答案】D【分析】讨论在x 轴和y 轴上的截距均为0或均不为0,设直线方程并由点在直线上求参数,即可得直线方程,进而写出其斜率.【详解】当直线在x 轴和y 轴上的截距均为0时,设直线的方程为,代入点,则,解得,y kx =(3,4)B -43k =-43k =-当直线在x 轴和y 轴上的截距均不为0时, 设直线的方程为,代入点,则,解得,12x y m m +=(3,4)B -3412m m-+=52m =所以所求直线的方程为,即,1552x y+=250x y +-=综上,该直线的斜率是或.43-12-故选:D6.直线的一个方向向量为( ) 230x y +-=A . B .C .D .()2,1()1,2()2,1-()1,2-【答案】D【分析】先求出直线的一个法向量,再求出它的一个方向向量. 【详解】直线的一个法向量为,230x y +-=()2,1设直线一个方向向量为,则有, (),a b 20a b +=故只有D 满足条件. 故选:D.7.对于任意的实数,直线恒过定点,则点的坐标为( ) k 1y kx k =-+P P A . B .C .D .()1,1--()1,1-()1,1-()1,1【答案】D【分析】令参数的系数等于,即可得的值,即为定点的坐标. k 0,x y P 【详解】由可得, 1y kx k =-+()11y k x -=-令可得,此时, 10x -=1x =1y =所以直线恒过定点, 1y kx k =-+()1,1P 故选:D.8.点为圆上一动点,点到直线的最短距离为( ) P 22(1)2x y -+=P 3y x =+A B .1C D .【答案】C【分析】首先判断直线与圆相离,则点到直线的最短距离为圆心到直线的距离再减去半P 3y x =+径,然后求出最短距离即可.【详解】解:圆的圆心为,半径到直线的距离22(1)2x y -+=(1,0)r =(2,0)30x y -+=为到直线的最短距离为圆心到直线d P 3y x =+的距离再减去半径.所以点到直线的最短距离为. P 20l x y -+=:=故选:C .二、多选题9.下列方程表示的直线中,与直线垂直的是( ) 210x y +-=A . B . 210x y -+=210x y -+=C . D .2410x y -+=4210x y -+=【答案】BC【分析】根据斜率确定正确选项. 【详解】直线的斜率为,210x y +-=2-直线、直线的斜率为,不符合题意. 210x y -+=4210x y -+=2直线、直线的斜率为,符合题意. 210x y -+=2410x y -+=12故选:BC10.下列说法正确的是( )A .直线必过定点 ()2R y ax a a =-∈()2,0B .直线在轴上的截距为1 13y x +=yC .直线的倾斜角为10x +=120 D .过点且垂直于直线的直线方程为 ()2,3-230x y -+=210x y ++=【答案】AD【分析】A 将方程化为点斜式即可知所过定点;B 令求截距;C 由方程确定斜率,根据斜率与0x =倾斜角的关系即可知倾斜角的大小;D 计算两直线斜率的乘积,并将点代入方程验证即可判断正误.【详解】A :由直线方程有,故必过,正确; ()2y a x =-()2,0B :令得,故在轴上的截距为-1,错误;0x =1y =-yC :由直线方程知:斜率为,错误; 150︒D :由,的斜率分别为,则有故相互垂直,将代入210x y ++=230x y -+=12,2-1212-⨯=-()2,3-方程,故正确. 2(2)310⨯-++=故选:AD11.(多选)若直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则直线l 的斜率为( ) A .1 B .-1 C .-2 D .2【答案】BD【分析】对进行分类讨论,结合截距相等求得,进而求得直线的斜率. a a l 【详解】时,,不符合题意. 0a =:2l y =时,直线过, 0a ≠l ()20,2,,0a a a +⎛⎫+ ⎪⎝⎭依题意,22aa a++=解得或.2a =-1a =当时,,直线的斜率为. 2a =-:2l y x =2当时,,直线的斜率为.1a =:3l y x =-+1-故选:BD12.设等差数列的前项和是,已知,,正确的选项有( ) {}n a n n S 120S >130S <A ., B .与均为的最大值 C . D .10a >0d <5S 6S n S 670a a +>70a <【答案】ACD【解析】利用等差数列的性质,,可得 ,()()11267121212=22++=a a a a S 670a a +>可得 ,,再根据等差数列的单调性判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共20页) 2016-2017学年福建省师大附中高二(上)期中数学试卷(理科) 一、选择题(共12小题,每小题5分,满分60分) 1.(5分)若a>b>0,下列不等式成立的是( ) A.a2<b2 B.a2<ab C.<1 D.> 2.(5分)原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( ) A.0≤a≤2 B.0<a<2 C.a=0或a=2 D.a<0或a>2 3.(5分)在△ABC中,AB=1,AC=,∠A=60°,则△ABC的面积为( ) A. B. C.或 D.或 4.(5分)等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…log3a10=( ) A.12 B.10 C.8 D.2+log35 5.(5分)在△ABC内角A,B,C的对边分别是a,b,c,已知a=,c=,∠A=,则∠C的大小为( )

A.或 B.或 C. D. 6.(5分)在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.若sin B•sin C=sin2A,则△ABC的形状是( ) A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形 7.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( ) 第2页(共20页)

A.尺 B.尺 C.尺 D.尺 8.(5分)若{an}是等差数列,首项a1>0,a1007•a1008<0,a1007+a1008>0,则使前n项和Sn>0成立的最大自然数n是( ) A.2 012 B.2 013 C.2 014 D.2 015

9.(5分)若x,y满足且z=2x+y的最大值为6,则k的值为( ) A.﹣1 B.1 C.﹣7 D.7 10.(5分)若两个正实数x,y满足+=1,且不等式x+<m2﹣3m有解,则实数m的取值范围( ) A.(﹣1,4) B.(﹣∞,﹣1)∪(4,+∞) C.(﹣4,1) D.(﹣∞,0)∪(3,+∞) 11.(5分)已知函数f(x)=4x2﹣1,若数列{}前n项和为Sn,则S2015的值为( ) A. B. C. D.

12.(5分)已知数列{an},{bn}满足a1=1,=,anbn=1,则使bn>101的最小的n为( ) A.4 B.5 C.6 D.7

二、填空题(共6小题,每小题5分,满分30分) 13.(5分)在数列{an}中,a1=﹣2,an+1=,则a2016= . 14.(5分)若|x﹣3|+|x+5|>a对于任意x∈R均成立,则实数a的取值范围 . 第3页(共20页)

15.(5分)设a,b∈R+,且a+b=2则ab2的最大值为 . 16.(5分)在数列{an}中,a1=1,an+1﹣an=2n,n∈N+则an= .

17.(5分)已知x,y满足,则的取值范围为 . 18.(5分)如图为了立一块广告牌,要制造一个三角形的支架 三角形支架形状如图,要求∠ACB=60°,BC的长度大于1米,且AC比AB长0.5米,为了广告牌稳固,要求AC的长度越短越好,则AC最短为 米.

三、解答题(共5小题,满分60分) 19.(12分)已知函数f(x)=|x+a|+|x﹣2| ①当a=﹣3时,求不等式f(x)≥3的解集; ②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围. 20.(12分)在△ABC中,A,B,C是三内角,a,b,c分别是A,B,C的对边,已知 2(sin2A﹣sin2C)=(a﹣b)sinB,△ABC的外接圆的半径为. (1)求角C; (2)求△ABC面积的最大值. 21.(12分)已知{an}是单调递增的等差数列,首项a1=3,前n项和为Sn,等比数列{bn}的首项b1=1,且a2b2=12,S3+b2=20. (1)求{an}和{bn}的通项公式; (2)求{anbn}的前n项和Tn. 22.(12分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为多少元,并求出此时生产A,B产品各少件. 第4页(共20页)

23.(12分)已知数列{an}的前n项和为sn,且an=Sn﹣1+2(n≥2),a1=2. (1)求数列{an}的通项公式;

(2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得对于

任意的正整数n,有Tn>恒成立? 若存在,求出k的值;若不存在,说明理由. 第5页(共20页) 2016-2017学年福建省师大附中高二(上)期中数学试卷(理科) 参考答案与试题解析

一、选择题(共12小题,每小题5分,满分60分) 1.(5分)若a>b>0,下列不等式成立的是( ) A.a2<b2 B.a2<ab C.<1 D.> 【解答】解:由题意,取a=2,b=1, 则a2>b2,a2>ab,<1,<, 故选:C.

2.(5分)原点和点(1,1)在直线x+y﹣a=0两侧,则a的取值范围是( ) A.0≤a≤2 B.0<a<2 C.a=0或a=2 D.a<0或a>2 【解答】解:∵原点和点(1,1)在直线x+y﹣a=0两侧, ∴(0+0﹣a)(1+1﹣a)<0, 即a(a﹣2)<0, 解得0<a<2, 故选:B.

3.(5分)在△ABC中,AB=1,AC=,∠A=60°,则△ABC的面积为( ) A. B. C.或 D.或 【解答】解:∵AB=1,AC=,∠A=60°, ∴S△ABC=AB•AC•sinA==. 故选:B.

4.(5分)等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…log3a10=( ) 第6页(共20页)

A.12 B.10 C.8 D.2+log35 【解答】解:∵a5a6=a4a7, ∴a5a6+a4a7=2a5a6=18 ∴a5a6=9 ∴log3a1+log3a2+…log3a10=log3(a5a6)5=5log39=10 故选:B.

5.(5分)在△ABC内角A,B,C的对边分别是a,b,c,已知a=,c=,∠A=,则∠C的大小为( )

A.或 B.或 C. D.

【解答】解:由正弦定理可得:=, 化为:sinC=, ∵c<a, ∴C为锐角, ∴C=. 故选:D.

6.(5分)在△ABC中,角A、B、C所对的边分别为a、b、c,且b2+c2=a2+bc.若sin B•sin C=sin2A,则△ABC的形状是( ) A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形 【解答】解:在△ABC中,∵b2+c2=a2+bc,∴cosA===, ∵A∈(0,π),∴. ∵sin B•sin C=sin2A, ∴bc=a2, 代入b2+c2=a2+bc,∴(b﹣c)2=0,解得b=c. ∴△ABC的形状是等边三角形. 第7页(共20页)

故选:C. 7.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为( )

A.尺 B.尺 C.尺 D.尺 【解答】解:由题意可得:每天织布的量组成了等差数列{an}, a1=5(尺),S30=9×40+30=390(尺),设公差为d(尺), 则30×5+=390,解得d=. 故选:C.

8.(5分)若{an}是等差数列,首项a1>0,a1007•a1008<0,a1007+a1008>0,则使前n项和Sn>0成立的最大自然数n是( ) A.2 012 B.2 013 C.2 014 D.2 015 【解答】解:∵首项a1>0,a1007•a1008<0,a1007+a1008>0, ∴a1007>0,a1008<0, ∴S2014==1007(a1007+a1008)>0, S2015==2015×a1008<0. 则使前n项和Sn>0成立的最大自然数n是2014. 故选:C. 第8页(共20页)

9.(5分)若x,y满足且z=2x+y的最大值为6,则k的值为( ) A.﹣1 B.1 C.﹣7 D.7 【解答】解:画出满足条件的平面区域,如图示:

, 由,解得:A(k,k+3), 由z=2x+y得:y=﹣2x+z, 显然直线y=﹣2x+z过A(k,k+3)时,z最大, 故2k+k+3=6,解得:k=1, 故选:B.

10.(5分)若两个正实数x,y满足+=1,且不等式x+<m2﹣3m有解,则实数m的取值范围( ) A.(﹣1,4) B.(﹣∞,﹣1)∪(4,+∞) C.(﹣4,1) D.(﹣∞,0)∪(3,+∞) 【解答】解:∵不等式有解,

∴(x+)min<m2﹣3m, ∵x>0,y>0,且, ∴x+=(x+)()=+2=4, 当且仅当,即x=2,y=8时取“=”, ∴(x+)min=4,

相关文档
最新文档