八年级数学《18.1.1勾股定理》导学案

合集下载

18.1 第1课时 勾股定理(沪科版八年级数学下册教案)

18.1 第1课时 勾股定理(沪科版八年级数学下册教案)

第1课时 勾股定理1.经历探索勾股定理及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题.(重点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理的证明作8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,将它们像下图所示拼成两个正方形.求证:a 2+b 2=c 2.解析:从整体上看,这两个正方形的边长都是a +b ,因此它们的面积相等.我们再用不同的方法来表示这两个正方形的面积,即可证明勾股定理.证明:由图易知,这两个正方形的边长都是a +b ,∴它们的面积相等.左边的正方形面积可表示为a 2+b 2+12ab ×4,右边的正方形面积可表示为c 2+12ab ×4.∵a 2+b 2+12ab ×4=c 2+12ab ×4,∴a 2+b 2=c 2.方法总结:根据拼图,通过对拼接图形的面积的不同表示方法,建立相等关系,从而验证勾股定理.探究点二:勾股定理【类型一】 直接利用勾股定理求长度如图,已知在△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,CD ⊥AB 交AB于点D ,求CD 的长.解析:先运用勾股定理求出AC 的长,再根据S △ABC =12AB ·CD =12AC ·BC ,求出CD 的长.解:∵在△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,∴由勾股定理得AC 2=AB 2-BC 2=52-32=42,∴AC =4cm.又∵S △ABC =12AB ·CD =12AC ·BC ,∴CD =A C ·B C A B =4×35=125(cm),故CD 的长是125cm.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【类型二】 利用勾股定理求面积如图,以Rt △ABC 的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中△ABE 的面积为________,阴影部分的面积为________.解析:因为AE =BE ,∠E =90°,所以S △ABE =12AE ·BE =12AE 2.又因为AE 2+BE 2=AB 2,所以2AE 2=AB 2,所以S △ABE =14AB 2=14×32=94;同理可得S △AHC +S △BCF =14AC 2+14BC 2.又因为AC 2+BC 2=AB 2,所以阴影部分的面积为14AB 2+14AB 2=12AB 2=12×32=92.故分别填94,92.方法总结:求解与直角三角形三边有关的图形面积时,要结合图形想办法把图形的面积与直角三角形三边的平方联系起来,再利用勾股定理找到图形面积之间的等量关系.【类型三】 勾股定理与数轴如图所示,数轴上点A 所表示的数为a ,则a 的值是( )A.5+1 B .-5+1 C.5-1 D.5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A 的距离是5.那么点A 所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的符号后,点A 所表示的数是距离原点的距离.【类型四】 利用勾股定理证明等式如图,已知AD 是△ABC 的中线.求证:AB 2+AC 2=2(AD 2+CD 2).解析:结论中涉及线段的平方,因此可以考虑作AE⊥BC交BC于点E.在△ABC中构造直角三角形,利用勾股定理进行证明.证明:如图,过点A作AE⊥BC交BC于点E.在Rt△ABE、Rt△ACE和Rt△ADE中,AB2=AE2+BE2,AC2=AE2+CE2,AE2=AD2-ED2,∴AB2+AC2=(AE2+BE2)+(AE2+CE2)=2(AD2-ED2)+(DB-DE)2+(DC+DE)2=2AD2-2ED2+DB2-2DB·DE+DE2+DC2+2DC·DE+DE2=2AD2+DB2+DC2+2DE(DC-DB).又∵AD是△ABC的中线,∴BD=CD,∴AB2+AC2=2AD2+2DC2=2(AD2+CD2).方法总结:构造直角三角形,利用勾股定理把需要证明的线段联系起来.一般地,涉及线段之间的平方关系问题时,通常沿着这个思路去分析问题.【类型五】运用勾股定理解决折叠中的有关计算如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是( )A.1.5 B.2 C.2.25 D.2.5解析:连接BM,MB′.设AM=x,在Rt△ABM中,AB2+AM2=BM2.在Rt△MDB′中,B′M2=MD2+DB′2.∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2.故选B.方法总结:解题的关键是设出适当的线段的长度为x,然后用含有x的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型六】分类讨论思想在勾股定理中的应用在△ABC中,AB=20,AC=15,AD为BC边上的高,且AD=12,求△ABC的周长.解析:应考虑高AD在△ABC内和△ABC外的两种情形.解:当高AD在△ABC内部时,如图①.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16.在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周长为25+20+15=60;当高AD在△ABC外部时,如图②.同理可得BD=16,CD=9.∴BC=BD-CD=7,∴△ABC的周长为7+20+15=42.综上所述,△ABC的周长为42或60.方法总结:题中未给出图形,作高构造直角三角形时,易漏掉原三角形为钝角三角形的情况.如在本例题中,易只考虑高AD在△ABC内的情形,忽视高AD在△ABC外的情形.三、板书设计让学生体会数形结合和由特殊到一般的思想方法,进一步提升学生的说理和简单推理的能力;进一步体会数学与现实生活的紧密联系.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激励学生发奋学习.。

八年级数学下_勾股定理导学案(全)

八年级数学下_勾股定理导学案(全)

18.1 勾股定理(1)学习目标:1、了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2、培养在实际生活中发现问题总结规律的意识和能力。

3、介绍我国古代在勾股定理研究方面所取得的成就,激发爱国热情,勤奋学习。

重点:勾股定理的内容及证明。

难点:勾股定理的证明。

学习过程:一、预习新知1、正方形边长和面积有什么数量关系?2、以等腰直角三角形两直角边为边长的小正方形的面积和以斜边为边长的大正方形的面积之间有什么关系?归纳:等腰直角三角形三边之间的特殊关系。

(1)那么一般的直角三角形是否也有这样的特点呢?(2)组织学生小组学习,在方格纸上画出一个直角边分别为3和4的直角三角形,并以其三边为边长向外作三个正方形,并分别计算其面积。

(3)通过三个正方形的面积关系,你能说明直角三角形是否具有上述结论吗?(4)对于更一般的情形将如何验证呢?二、课堂展示方法一;如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。

S正方形=_______________=____________________方法二;已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。

求证:a2+b2=c2。

以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90o,∴ ∠AED + ∠BEC = 90o.∴ ∠DEC = 180o―90o= 90o.∴ ΔDEC是一个等腰直角三角形,它的面积等于c2.又∵ ∠DAE = 90o, ∠EBC = 90o,∴ AD∥BC.∴ ABCD是一个直角梯形,它的面积等于_________________归纳:勾股定理的具体内容是。

三、随堂练习1、如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系:;(2)若∠B=30°,则∠B的对边和斜边:;(3)三边之间的关系:四、课堂检测1、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC =________。

第十八章勾股定理全章导学案

第十八章勾股定理全章导学案

第十八章勾股定理勾股定理(1)主备人:初审人:终审人:【导学目标】1.能用几何图形的性质和代数的计算方法探索勾股定理.2.知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.3.能运用勾股定理理解用关直角三角形的问题.【导学重点】知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.【导学难点】用拼图的方法验证勾股定理.【学法指导】探究、发现.【课前准备】查阅有关勾股定理的文化背景资料.【导学流程】一、呈现目标、明确任务1.了解勾股定理的文化背景,体验勾股定理的探索过程.2.了解利用拼图验证勾股定理的方法.3.利用勾股定理,已知直角三角形的两边求第三边的长.二、检查预习、自主学习1.动手画画、动手算算、动脑想想.在纸上作出边长分别为:(1)3、4、5(2)6、8、10的直角三角形,且动笔算一下,三条边长的平方有什么样的关系,你能猜想一下吗?2.借图说明(1)观察课本P64页图,思考:等腰直角三角形有什么性质吗?你是怎样得到的?它们满足上面的结论吗?(2)在P65页图中的三个直角三角形中,是否仍满足这样的关系?若能,试说明你是如何求出正方形的面积?3.有什么结论?三、问题导学、展示交流阅读P65页用拼图法证明勾股定理的内容,弄懂面积关系.四、点拨升华、当堂达标1.探究P66页“探究1”.在Rt△ABC中,根据勾股定理AC2 = 2+ 2因为AC=5≈2.236,因此AC木板宽,所以木板从门框内通过.2.讨论《配套练习》P24页选择填空题.五、布置预习预习“探究2”,完成P68页的练习.【教后反思】勾股定理(2)主备人:初审人:终审人:【导学目标】1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数轴的知识【导学流程】一、呈现目标、明确任务1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.二、检查预习、自主学习1.展示P66页“探究2”,完成填空.2.探究P68页“探究3”.提示:两直角边为1的等腰直角三角形,斜边长为多少?三、问题导学、展示交流1.展示上面的探究成果.2.研究P68页的课文,弄懂无理数在数轴上的表示方法.四、点拨升华、当堂达标1.完成练习题.2.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= .⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= .⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 .3.完成《配套练习》P25页选择填空题.六、布置预习预习习题18.1中1—5题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.继续运用勾股定理的数学模型解决实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数的开方运算.【导学流程】一、呈现目标、明确任务继续运用勾股定理的数学模型解决实际问题.二、检查预习、自主学习分小组展示预习成果.三、教师引导讲解习题18.1中10题.1.一个剖面图,怎样抽象成一个几何图形?2.直角三角形在什么地方?3.在直角三角形中,已知哪些边长?4.若设芦苇的长为x,还可以表示哪些线段?5.在这个直角三角形中利用勾股定理可以列一个怎样的式子?四、问题导学、展示交流1.展示上面的讨论结果.2.讨论完成7,8题.五、点拨升华、当堂达标讨论9题.六、布置预习预习下一节,阅读例1前面的课文,完成练习1.【教后反思】勾股定理的逆定理(1)主备人:初审人:终审人:【导学目标】1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系.【导学重点】掌握勾股定理的逆定理及证明.【导学难点】勾股定理的逆定理的证明.【学法指导】发现法、练习法、合作法【课前准备】三角形全等.【导学流程】一、呈现目标、明确任务1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系. 二、检查预习、自主学习下面的三组数分别是一个三角形的三边长a ,b ,c .5、12、13 7、24、25 8、15、17 (1)这三组数满足222c b a =+吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形.问题二:命题1: ,命题2: .命题1和命题2的 和 正好相反,把像这样的两个命题叫做 命题,如果把其中一个叫做 ,那么另一个叫做 .三、教师引导1.说出下列命题的逆命题,这些命题的逆命题成立吗? ⑴同旁内角互补,两条直线平行.⑵如果两个实数的平方相等,那么两个实数平方相等. ⑶线段垂直平分线上的点到线段两端点的距离相等. ⑷直角三角形中30°角所对的直角边等于斜边的一半. 四、问题导学、展示交流 自学P74页例1.五、点拨升华、当堂达标 1.完成习题18.2中1—3题.2.下列三条线段不能组成直角三角形的是( )A . 8, 15, 17B . 9, 12,15C .5,3,2 D .a :b :c =2:3:43.完成练习2. 六、布置预习1.完成《配套练习》P29页选择填空题.2.预习下一节,弄懂方位角的表示.3.完成练习3. 【教后反思】勾股定理的逆定理(2)主备人: 初审人: 终审人:【导学目标】1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识.【导学重点】灵活应用勾股定理及逆定理解决实际问题. 【导学难点】灵活应用勾股定理及逆定理解决实际问题. 【学法指导】抽象、迁移. 【课前准备】勾股定理的逆定理. 【导学流程】一、呈现目标、明确任务1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识. 二、检查预习、自主学习2.边长分别是c b a ,,的△ABC ,下列命题是假命题的是( ).A 、在△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形; B 、若()()c b c b a -+=2,则△ABC 是直角三角形;C 、若∠A ︰∠B ︰∠C =5︰4︰3,则△ABC 是直角三角形;D 、若3:4:5::=c b a ,则△ABC 是直角三角形.3.在△ABC 中,∠C =90°,已知4:3:=b a , 15=c ,求b 的值.4.展示练习3. 三、教师引导 例1(P75例2) 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形;⑶依题意可得PR =12×1.5=18,PQ =16×1.5=24,QR =30;⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR =90°; ⑸∠PRS =∠QPR -∠QPS =45°. 四、问题导学、展示交流一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形. 五、点拨升华、当堂达标1.如图,AB ⊥BC 于点B ,DC ⊥BC 于点C ,点E 是BC 上的点,∠BAE =∠CED =60o,AB =3,CE =4.求:①AE 的长. ②DE 的长. ③AD 的长(提示:先证△____是直角三角形).2.完成《配套练习》P30页选择填空题. 六、布置预习预习这两节的《配套练习》中大题.AB D C【教后反思】练习课主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】抽象、迁移.【课前准备】勾股定理的逆定理.【导学流程】一、呈现目标、明确任务1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.二、检查预习、自主学习分小组展示预习成果.三、教师引导如图,在四边形ABCD中,∠D=90°,AB=12,CD=3,DA=4,BC=13, 求S四边形ABCD.分析:因为∠D=90°,可连接AC构成直角形,由勾股定理求出AC,这样在△ABC中,三边均知道大小,利用勾股定理可以判断三角形的形状,再用两个三角形的面积求出S四边形ABCD.四、问题导学、展示交流讨论上面的问题,再展示交流.五、点拨升华、当堂达标讨论《配套练习》P29页5—7题和P31页6,7题.六、布置预习DB1.讨论《配套练习》剩余题目.2.预习复习题十八,1—3题.【教后反思】小结(1)主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并能解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】转化和数形结合.【课前准备】复习本章内容.【导学流程】一、呈现目标、明确任务1.用勾股定理及其逆定理解决简单问题;2.了解逆命题、逆定理的概念.二、检查预习、自主学习展示预习成果.三、教师引导本章知识结构:四、问题导学、展示交流1.直角三角形三边的长有什么关系?2.已知一个三角形的三边,能否判定它是直角三角形?举例说明.3.如果一个命题成立,那么它的逆命题一定成立吗?举例说明.4.如图,已知P是等边三角形ABC内上点,PA=5,PB=4,PC=3,求∠PBC.四、问题导学、展示交流提示:如果三角形的三条边分别是三、四、五,那么这个三角形一定是直角三角形.但本题长为3,4,5的三条线段不在同一个三角形中,联想到等边三角形的性质,可以将△APC绕点C旋转得到△BCP′.五、点拨升华、当堂达标1.讨论完成“复习题18”中4—7题.4题,可先设每份为k,再用勾股定理的逆定理.5题,不成立的需举反例.6题,可以数单位面积的正方形个数.7题,直接用勾股定理.2.讨论8,9题.六、布置预习预习下一章.B CP'。

18.1.1 《勾股定理》第一课时导学案

18.1.1  《勾股定理》第一课时导学案

118.1.1 《勾股定理》第一课时导学案班别_______________姓名_______________学号__________学习目标:1、了解多种方法验证勾股定理,感受解决同一个问题方法的多样性。

2、通过实例进一步了解勾股定理,应用勾股定理进行简单的计算。

学习过程:活动一 动手做一做1、在右边空白处画出Rt△A B C 令∠C = 90°, 直角边A C = 3cm ,B C = 4cm , (1)用刻度尺量出斜边A B = ________ (2)计算:__________,_____,222===AB BC AC2、探究:222,,AB BC AC 之间的关系:活动二 毕达哥拉斯的发现1、 图中两个小正方形分别为A 、B ,大正方形为则三个正方形面积之间的关系:2、 斜边为c ,则图中等腰直角三角形三边长度 之间的关系:_____________________活动三 探索与猜想观察下面两幅图:(每个小正方形的面积为单位1)2A B是怎样得到正方形C 的面积的?与同伴交流一下。

(2)猜想命题:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么_______________活动四 认识赵爽弦图活动五 证明猜想已知:如图,在边长为c 的正方形中,有四个 两直角边分别为a 、b ,斜边为c 全等的直角三角形, 求证: (提示:大正小正=S S S Rt +∆4) 证明:勾股定理:直角三角形两条_______的平方和等于_____的平方如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么_________________归纳直角三角形的主要性质:222a b c += AB C3在Rt △A B C 中,∠C = 90°,(1)两锐角的关系:∠ A + ∠ B = _____°(2)斜边与直角边的关系:若∠A = 30°,则 ________________ (3)三边之间的关系:______________________ 活动六 活学活用1、如右图,在直角三角形中, x =______,y =______2、下列各图中所示的正方形的面积为多少。

初中数学教学设计.18.1.勾股定理

初中数学教学设计.18.1.勾股定理

18.1 勾股定理一、教学目标知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程;运用勾股定理进行简单的计算;运用勾股定理解释生活中的实际问题.数学思考:1.在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.2.通过从实际问题中抽象出直角三角形这一几何模型,初步掌握转化和数形结合的思想方法.问题解决:1.通过拼图活动,体验数学思维的严谨性,发展形象思维.2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果.3.能运用勾股定理解决直角三角形相关的问题.情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学习热情.2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.3.通过研究一系列富有探究性的问题,培养学生与他人交流、合作的意识和品质.二、重难点分析教学重点:探索和证明勾股定理;勾股定理的应用.根据教材的特点,本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.本节课运用的教学方法是“启发探索”式,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.使学生以一个创造者或发明者的身份去探究知识,从而形成自觉实践的氛围,达到收获的目的.教学难点:用拼图的方法证明勾股定理;勾股定理在实际生活中的应用.本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程.三、学习者学习特征分析学生对几何图形的观察,几何图形的分析能力已初步形成。

部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路.现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望.学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.四、教学过程(一)创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)(多媒体素材图片6)意图:紧扣课题,自然引入,同时渗透爱国主义教育.效果:激发起学生的求知欲和爱国热情.(二)合作交流,探索新知1.探究活动一:内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望.2.探究活动二:内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(多媒体素材图片1)(2)填表:(多媒体素材动画推导勾股定理)(3)你是怎样得到正方形C的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)学生的方法可能有:方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452=⨯⨯⨯-=C S . 方法三:如图3,正方形C 中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542=+⨯=C S . (4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议:内容:(1)你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗? (2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理(gou-gu theorem ):如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+ .即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的 直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名. (在西方称为毕达哥拉斯定理)弦股勾意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力.(三)应用新知,体验成功内容:例1如图所示,一棵大树在一次强烈台风中于离地面10m处折断倒下,树顶落在离树根24m处. 大树在折断之前高多少?(教师板演解题过程)例2在△ABC中,∠C=90°(1)若a=8,b=6,则c=_________;(2)若c=20,b=12,则a=_________;(3)若a∶b=3∶4,c=10,则a=_________,b=_________.[师生共析]分析:在△ABC中,∠C=90°,所以有关系:a2+b2=c2.在此关系式中,涉及到三个量,利用方程的思想,可“知二求一”.解:根据题意可得a2+b2=c2 .(1)若a=8,b=6,所以82+62=c2.即c2=100,c>0,所以c=10;(2)若c=20,b=12,所以a2+122=202,即a2=202-122=(20+12)(20-12)=32×8=162,a>0,所以a=16;(3)若a∶b=3∶4,可设a=3x,b=4x,所以(3x)2+(4x)2=102.化简,得9x2+16x2=100,25x2=100,x2=4,x=2(x>0),所以a=3x=6;b=4x=8.评注:综合上述解法可以发现,形(即△ABC为直角三角形)与数(a2+b2=c2)的统一,所以我们说勾股定理是形与数的结合.例3有一根70 cm的木棒,要放在长、宽、高分别是50 cm、40 cm、30 cm的木箱中,能放进去吗?过程:在实际生活中,往往工程设计方案比较多,应用所学的知识进行计算方可解决,而此题正是需要我们大胆实践和创新,用我们学过的勾股定理和丰富的空间想像力来解决.我们可注意到木棒虽比木箱的各边都长,按各边的大小放不进去,但木箱是立体图形,可以利用空间的最长长度.如AC ′.结果:由下图可得,AA ′=30 cm ,A ′B ′=50 cm ,B ′C ′=40 cm.△A ′B ′C ′, △AA ′C ′都为直角三角形.由勾股定理,得A ′C ′2=A ′B ′2+B ′C ′2. 在Rt △AA ′C ′中 .AC ′最长,则 AC ′2=AA ′2+A ′B ′2+B ′C ′2=302+402+502=5000>702.故70 cm 的棒能放入长、宽、高分别为50 cm ,40 cm ,30 cm 的大箱中.练习:1、基础巩固练习:(口答)求下列图形中未知正方形的面积或未知边的长度:2、生活中的应用:小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?(多媒体素材图片3)意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.?225100x1517(四)课堂小结,体验收获 内容:教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+. 2.方法:① 观察—探索—猜想—验证—归纳—应用; ② 面积法;③ “割、补、拼、接”法.3.思想:① 特殊—一般—特殊; ② 数形结合思想.意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动.效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.(五)拓展延伸,布置作业 一、必做题: 1.填空题⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= . ⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= .⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= . ⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 . ⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 . ⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 .2.已知:如图,在△ABC 中,∠C=60°,AB= 34 ,AC=4,AD 是BC 边上的高,求BC 的长.3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.参考答案1.(1)17;(2)7 ;(3) 6,8; (4)6,8,10;(5) 4或 34 ;(6) 3 ,3;2.8; 3.48。

沪科版数学八年级下册18.1《勾股定理》教学设计

沪科版数学八年级下册18.1《勾股定理》教学设计

沪科版数学八年级下册18.1《勾股定理》教学设计一. 教材分析《勾股定理》是沪科版数学八年级下册第18章第1节的内容。

本节主要介绍勾股定理的证明和应用。

学生通过学习本节内容,能够理解和掌握勾股定理,并能够运用勾股定理解决一些实际问题。

二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。

但是,对于证明勾股定理的理解可能会存在一定的困难,因此需要教师在教学过程中进行引导和解释。

三. 教学目标1.理解勾股定理的内容和证明方法。

2.能够运用勾股定理解决一些实际问题。

3.培养学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.勾股定理的证明方法的理解和应用。

2.解决实际问题时,如何运用勾股定理。

五. 教学方法1.讲授法:教师讲解勾股定理的证明方法和应用。

2.案例分析法:通过具体案例,让学生学会如何运用勾股定理解决实际问题。

3.讨论法:学生分组讨论,分享各自的解题方法和思路。

六. 教学准备1.PPT课件:包括勾股定理的证明过程和应用案例。

2.练习题:包括不同难度的练习题,用于巩固所学知识。

3.板书:勾股定理的公式和关键点。

七. 教学过程1.导入(5分钟)教师通过PPT展示勾股定理的历史背景和古希腊数学家毕达哥拉斯的故事,激发学生的学习兴趣。

2.呈现(10分钟)教师讲解勾股定理的证明方法,包括几何画图法和代数法。

同时,通过PPT展示勾股定理的证明过程,让学生理解和掌握证明方法。

3.操练(10分钟)学生根据PPT上的练习题,独立完成勾股定理的证明和应用。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生分组讨论,分享各自的解题方法和思路。

教师选取一些学生的解题过程,进行讲解和分析,巩固所学知识。

5.拓展(10分钟)教师通过PPT展示一些勾股定理的实际应用案例,让学生学会如何运用勾股定理解决实际问题。

同时,教师提出一些拓展问题,引导学生思考。

6.小结(5分钟)教师对本节课的主要内容进行总结,强调勾股定理的证明方法和应用。

沪科版八年级下册学案18.1勾股定理导学案

沪科版八年级下册学案18.1勾股定理导学案

ACBcab第18章 勾股定理 18.1勾股定理教学目标:1、经历探索勾股定理的过程,掌握勾股定理,并能运用它解简单的计算题和实际问题。

发展合情推理的能力,体会数形结合的思想。

进一步提高分析问题和解决问题的能力。

2、经历多种拼图方法验证勾股定理的过程,增强用数学的眼光观察现实世界和有条理地思考与表达的能力,感受勾股定理的文化价值。

知识点1:勾股定理 一、自主学习1、阅读课本第64页----66页,并完成下列填空:(1)等腰直角三角形的三边之间的特殊关系: 。

(2)一般的直角三角形三边有什么关系: 。

(3)命题1:题设 ;结论 。

(4)了解命题1的古代证法:(5)勾股定理: 。

(6) 被选为2002年在北京召开的国际数学家大会的会徽。

2、勾股定理的运用--------求边(1)在Rt △ABC 中,90=∠C ,已知a ,b ,求c= 。

(2)在Rt △ABC 中, 90=∠C ,已知a ,c ,求b= 。

(3)在Rt △ABC 中, 90=∠C ,已知b ,c ,求a= 。

3、在Rt △ABC 中,90=∠C (1)已知a=b=5,求c ; (2)已知a=1,c=2,求b ; (3)已知c=17,b=8,求a ; (4)已知a :b=1:2,c=5,求a ; (5)已知b=15, 30=∠A ,求a ,c 。

A BDCCOAB DBCABA二、教材解读探究1:一个门框的尺寸如图所示,一块长3m ,宽2.2m 的薄木板能否从门框内通过,为什么?探究2:如图,一个3m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时AO 的距离为2.5m ,如果梯子的顶端A 沿墙下海0.5m ,那么梯子底端B 也外移0.5m 吗? 分析:OB OD BD -=,求BD ,可以先求OB ,OD 。

在Rt △ABC 中, =2OB , =OB 。

Rt △COD 中,=2OD , =OD , =BD , 梯子的顶端沿墙下滑0.5m ,梯子底端外移 。

十八章勾股定理全章教案

十八章勾股定理全章教案

第十八章勾股定理18.1 勾股定理课时安排: 4课时第1课时 18.1 .1 勾股定理(1)三维目标一、知识与技能让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论.二、过程与方法1.在学生充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想.2.在探索上述结论的过程中,发展学生归纳、概括和有条理地表达活动的过程和结论.三、情感态度与价值观1.培养学生积极参与、合作交流的意识,2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论。

从而发现勾股定理.教学难点以直角三角形的边为边的正方形面积的计算.教具准备学生准备若干张方格纸。

教学过程一、创设问题情境,引入新课活动1问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么童义?为什么选定它作为2002年在北京召开的国际数学家大会的会徽?二.实际操作,探索直角三角形的三边关系活动2问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:(1)观察图1正方形A中含有________个小方格,即A的面积是________个单位面积;正方形B中含有________个小方格,即B的面积是________个单位面积;正方形C中含有________个小方格,即C的面积是________个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)?活动3问题1:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A'、B'、C'的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于虚线标出的正方形的面积减去四个直角三角形的面积.)问题2:给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,也满足上述结论吗?我们通过对A、B、C,A'、B'、C'几个正方形面积关系的分析可知:一般的以整数为边长的直角三角形两直角边的平方和也等于斜边的平方,一个边长为小数的直角三角形是否也有此结论?我们不妨设小方格的边长为0.1,我们不妨在你准备好的方格纸上画出一个两直角边为0,5,1.2的直角三角形来进行验证.生:也有上述结论.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.而活动1中的问题1提到的“勾三,股四,弦五”正是直角三角形三边关系的重要体现.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,不仅如此,我们汉代的赵爽曾用2002年在北京召开的国际数学家大会的徽标的图案证明了此结论,也正因为为了纪念这一伟大的发现而采用了此图案作徽标.下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.三、例题剖析活动4问题:(1)如下图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?(2)求斜边长17cm,一条直角边长15cm的直角三角形的面积.解:(1)解:由勾股定理可求得旗杆断裂处到杆顶的长度是:92+122=15(m);15+9=24(m),所以旗杆折断之前高为24m.(2)解:另一直角边的长为172-152=8(cm),所以此直角三角形的面积为12×8×15=60(cm2).师:你能用直角三角形的三边关系解答活动1中的问题2.请同学们在小组内讨论完成.四、课时小结1.掌握勾股定理及其应用;2.会构造直角三角形,利用勾股定理解简单应用题.五.布置作业六.板书设计18.1.1勾股定理(1)第2课时勾股定理(2)三维目标一、知识与技能1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.运用勾股定理解决一些实际问题.二、过程与方法1.经历用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力.2.在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识.三、情感态度与价值观1.利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,借助此过程对学生进行爱国主义的教育.2.经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣.教学重点经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值.教学难点经历用不同的拼图方法证明勾股定理.教具准备每个学生准备一张硬纸板.教学过程一、创设问题情境,引入新课活动1问题:我们曾学习过整式的运算,其中平方差公式(a+b(a-b)=a2-b2,完全平方公式(a±b)2=a2±2ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的?生:这两个公式都可以用多项式乘以多项式的乘法法则推导.如下:(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以(a+b)(a-b)=a2-b2;(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2;(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2;所以(a±b)2=a2±2ab+b2;生:还可以用拼图的方法说明上面的公式成立.例如:图(1)中,阴影部分的面积为a2-b2,用剪刀将(1)中的长和宽分别为(a-b)和b的长方形剪下来拼接成图(2)的形式便可得图(2)中阴影部分的面积为(a+b)(a-b).而这两部分面积是相等的,因此(a+b)(a-b)=a2-b2成立.生:(a+b)2=a2+2ab+b2也可以用拼图的方法,通过计算面积证明,如图(3)我们用两个边长分别a和b的正方形,两个长和宽分别a和b的长方形拼成一个边长为(a+b)的正方形,因此这个正方形的面积为(a+b)2,也可以表示为a2+2ab+b2,所以可得(a+b)2=a2+2ab+b2.师:你能用类似的方法证明上一节猜想出的命题吗?二、探索研究活动2我们已用数格子的方法发现了直角三角形三边关系,拼一拼,完成下列问题:(1)在一张纸上画4个与图(4)全等的直角三角形,并把它们剪下来.(2)用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以斜边c为边长的正方形,你能利用拼图的方法,面积之间的关系说明上节课关于直角三角形三边关系的猜想吗?(3)有人利用图(4)这4个直角三角形拼出了图(5),你能用两种方法表示大正方形的面积吗?大正方形的面积可以表示为:_______________,又可以表示为________________.对比两种衷示方法,你得到直角三角形的三边关系了吗?生:我也拼出了图(5),而且图(5)用两种方法表示大正方形的面积分别为(a+b)2或4× ab+c2.由此可得(a+b)2=4×12 ab+c2.化简得a2+b2=c2.由于图(4)的直角三角形是任意的,因此a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.1勾股定理(第一课时)
学习目标:
知识与能力:能熟记定理的内容.
过程与方法:能运用勾股定理由直角三角形的已知两边求第三边.
情感态度与价值观:经历勾股定理的探索过程,培养学生的观察思考能力。

学习重点:勾股定理的探索和应用. 学习难点:勾股定理的探索. 教学手段:导学案 知识链接:
1.知识回顾(用学过的知识完成下列填空)
(1)含有一个 的三角形叫做直角三角形.
(2)已知Rt △ABC 中的两条直角边长分别为a 、b ,则S △ABC = .
(3)完全平方公式:(a ±b )2
= . (4)在Rt △ABC 中,已知∠A =30°,∠C =90°,直角边BC =1,则斜边AB = . 2.(阅读教材第18章引言,第21至24页,并完成学习内容。


在我国古代,人们将直角三角形中_____________叫做勾,______________叫做股,_______叫做弦.
自学指导:
1.探究1:观察下图,并回答问题:
(1)观察图1 正方形A 中含有________个小方格,即A 的面积是________个单位面积;正方形B 中含有________个小方格,即B 的面积是________个单位面积;正方形C 中含有________个小方格,即C 的面积是________个单位面积.
(2)在图2、图3中,正方形A 、B 、C 中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.
(3)请将上述结果填入下表,你能发现正方形A ,B ,C 的面积之间有何关系吗? 即:如果正方形A 、B 、C
结论1
2.探究2:(1)等腰直角三角形有上述性质,其他的直角三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A 、B 、C ,的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于某个正方形的面积减去四个直角三角形的面积)
(2)观察右边两幅图,填表。

(3)你是怎样得到正方形C 的面积的?与同伴交流.
3.猜想命题1:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么 。

探究3:如图,分别以Rt △ABC 三边为边向外作三个正方形,
其面积分别用S
1、S
2、S 3表示,容易得出S 1、S 2、S 3之间 有的关系式 .
变式:如图在Rt △ABC 中∠C=90°,图中有阴影的三个 半圆的面积有什么关系?
【归纳猜想】直角三角形三边长度之间存在什么关系? . 证明:请用准备好的4个全等的直角三角形,拼成如图的图形,利用面积证明。

(独立思考后可组内交流)
1.已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。

求证: 2
2
2
a b c +=
证明:4S △+S 小正= S 大正=
根据的等量关系: 由此我们
得出: 。

2.归纳定理:直角三角形两条___ ___的平方和等于__ ___的
平方.即:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么_________________ 3.
归纳结论:经过证明被确认正确的命题叫做定理。

命题1称为勾股定理。

---------------------------------------------------------------------------
自学检测:
1.
一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25 C .斜边长为5 D .三角形面积为20
2.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则
S Rt△ABC =________。

3.已知一个Rt △ABC 的两条边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 4.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是 米。

5.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。

6.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。

7.一根32厘米的绳子被折成如图所示的形状钉在P 、Q 两点,PQ=16厘米,且RP ⊥PQ ,则RQ= 厘米。

8.如图所示:在R t △ABC 中,已知∠ACB =90°,
AC =3cm ,AB =5cm ,则Rt △ABC 的面积为 cm 2,
BC = cm ,AB 边上的高CD = cm 。

P Q
A C
课堂小结:
本节课你学会了什么? 你还有什么疑问?
能力提升:
1.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积.
2:已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B=60°,CD=1cm ,求BC 等于多长?
归纳总结:识记常用五组勾股数有:(3,4,5;5,12,13;7,24,25;8,15,17;9,40,41)
板书设计:勾股定理:知识链接,自学指导,自学检测,课堂小结,能力提升。

教学反思:
B。

相关文档
最新文档