届高三第一轮复习——电磁场和电磁波 教案18
高三物理第一轮复习安排(表格式)

期末考试
寒假
第十三讲:碰撞与动量守恒
1.动量及其改变(3课时) 2.动量守恒定律的应用(4课时) 3.自然
界中的守恒定律(3课时)
第十四讲:1.原子结构(3课时)2.原子核及核反应方程(3课时)
第二学期1
第十七讲:科学探究及物理实验
1力学实验(4课时)
2
2.电学实验(6课时)
3
1两种常见的力(3课时)
7
2.力的计算(2课时) 3.物体的平衡(3课时)
4.习题课(1课课时)
试卷讲评
9
2.用牛顿定律解决问题(4课时)
3.习题课(1课时)
10
第四讲:机械能和能源
1.功动能势能(3课时) 2.动能定理(3课时)
11
3.机械能守恒定律(3课时) 4.习题课(3课时)
12
第五讲:抛体运动.圆周运动.万有引力定律及应用
1抛体运动(3课时)
月考、试卷讲评
13
2.圆周运动(2课时)3万有引力定律(1课时)4.万有引力定律的
应用(3课时)5.相对论(1课时)
14
第六讲:电场
1.电场力的性质(3课时)2.电场能的性质(3课时)
15
3.带电粒子在电场中的运动.电容器(3课时)
高三物理第一轮复习安排(表格式)
高中物理是高中理科(自然科学)基础科目之一,小编准备了高三物理第
一轮复习安排,具体请看以下内容。
周次
复习内容
备注
3、4
第一讲:直线运动
1.关于运动的描述(1课时)2.匀变速运动的规律(5课时)
4、5
3.用图象描述直线运动(1课时) 4习题课(2课时)
第二讲:研究物体间的相互作用
高考物理一轮复习课件

03
电磁场理论
静电场基本性质与规律
01
电场强度
描述电场的力的性质,反映电 场对放入其中的电荷的作用力
。
02
电势与电势差
描述电场的能的性质,反映电 荷在电场中移动时电势能的变
化。
03
电场线与等势面
形象地描述电场强度和电势的 分布情况。
恒定电流电路分析
欧姆定律
描述导体中电流与电压、电阻之间的 关系。
游标卡尺和螺旋测微器
掌握正确读数方法和使用注意事项,理解其 测量原理。
电火花计时器
熟悉电火花计时器的工作原理和使用方法, 理解其与电磁打点计时器的区别。
打点计时器
了解打点计时器的工作原理,掌握其使用方 法及纸带的处理。
示波器
了解示波器的基本结构和工作原理,掌握其 使用方法和在物理实验中的应用。
实验数据处理方法总结
熵增加原理
孤立系统的熵永不减少,即自然界中的一切自发过程总是向着熵增加的方向进 行。
气体性质与状态方程
气体性质
气体具有可压缩性、扩散性、粘性等 特性。同时,气体分子间的作用力非 常微弱,因此气体的很多性质可以用 理想气体模型来描述。
状态方程
描述气体状态变化的方程,如理想气 体状态方程pV=nRT,其中p为压强, V为体积,n为物质的量,R为气体常 数,T为热力学温度。
01
光的直线传播
光在同种均匀介质中沿直线传 播,形成影、日食、月食等现
象。
02
光的反射
光在两种介质分界面上改变传 播方向又返回原来介质中的现
象,遵循反射定律。
03
光的折射
光从一种介质斜射入另一种介 质时,传播方向发生改变的现
象,遵循折射定律。
高中电磁物理教案

高中电磁物理教案教学目标:1. 了解电磁波的波动特性和传播特性2. 掌握电磁波与物质相互作用的基本原理3. 理解电磁波在通信、医疗和遥感等领域的应用教学内容:1. 电磁波的波动特性:电场和磁场的振荡、波长、频率等2. 电磁波的传播特性:电磁波的传播速度、折射、衍射等3. 电磁波与物质相互作用:电磁波的吸收、反射、折射、透射等4. 电磁波的应用:电磁波在通信、医疗、遥感等领域的应用及原理教学方法:1. 理论讲解:通过PPT、视频等形式介绍电磁波的特性及应用2. 实验演示:进行电磁波传播、干涉等实验,让学生亲自感受电磁波的特性3. 讨论交流:组织学生讨论电磁波与物质相互作用的机理,促进学生思考和交流4. 小组合作:分组完成电磁波应用案例分析,培养学生团队协作能力教学过程:1. 导入:通过展示电磁波的应用场景引发学生兴趣,激发学生学习积极性2. 理论讲解:介绍电磁波的特性及传播原理,引导学生理解电磁波的基本概念3. 实验演示:进行电磁波传播实验,让学生观察和分析电磁波的传播规律4. 讨论交流:组织学生讨论电磁波与物质相互作用的机理,加深学生对电磁波的理解5. 小组合作:分组完成电磁波应用案例分析,展示并分享成果,促进学生交流讨论教学评价:1. 实验报告:评价学生在实验中观察、记录和分析能力2. 课堂表现:评价学生在讨论和合作中的积极参与程度3. 课后作业:布置相关练习和问题,检验学生对电磁波的理解和应用能力教学反思:1. 总结课堂教学效果,反馈学生对电磁波的理解程度和学习态度2. 调整教学方法和内容,根据学生实际情况进一步优化教学过程3. 持续关注学生学习情况,不断提高教学质量,促进学生成长发展以上是一份关于高中电磁物理教案范本,可根据实际教学情况和学生需求进行调整和完善。
愿您的教学工作顺利成功!。
电磁场与电磁波电子教案

电磁场与电磁波电子教案第一章:电磁场的基本概念1.1 电荷和电场介绍电荷的性质和分类解释电场的概念和电场线电场强度的定义和计算电场的叠加原理1.2 磁场和磁力介绍磁铁和磁性的概念解释磁场的概念和磁感线磁感应强度的定义和计算磁场的叠加原理1.3 电磁感应介绍法拉第电磁感应定律解释感应电动势和感应电流的产生电磁感应的实验现象和应用第二章:电磁波的基本性质2.1 电磁波的产生和传播介绍麦克斯韦方程组和电磁波的理论基础解释电磁波的产生和传播过程电磁波的波动方程和波长、频率、速度的关系2.2 电磁波的能量和动量介绍电磁波的能量密度和能量传递解释电磁波的动量和动量传递电磁波的辐射压和辐射阻力的概念2.3 电磁波的偏振和反射、折射介绍电磁波的偏振现象和偏振光的性质解释电磁波在介质中的反射和折射现象反射定律和折射定律的原理及应用第三章:电磁波的传播和辐射3.1 电磁波在自由空间中的传播介绍自由空间中电磁波的传播特性解释电磁波的辐射和天线原理电磁波的辐射强度和辐射功率的概念3.2 电磁波在介质中的传播介绍电磁波在介质中的传播规律解释介质的折射率和介电常数的概念电磁波在介质中的衰减和色散现象3.3 电磁波的辐射和天线原理介绍天线的分类和基本原理解释天线的辐射特性和发展电磁波的辐射模式和天线的设计方法第四章:电磁波的应用4.1 电磁波在通信技术中的应用介绍电磁波在无线通信中的应用解释无线电波的传播和传播损耗电磁波在移动通信和卫星通信中的应用4.2 电磁波在雷达技术中的应用介绍雷达技术的基本原理和组成解释雷达方程和雷达的探测距离电磁波在雷达系统和雷达导航中的应用4.3 电磁波在医疗技术中的应用介绍电磁波在医学影像诊断中的应用解释磁共振成像(MRI)的原理和应用电磁波在放射治疗和电磁热疗中的应用第五章:电磁波的防护和辐射安全5.1 电磁波的辐射和防护原理介绍电磁波的辐射对人体健康的影响解释电磁波的防护原理和防护措施电磁屏蔽和电磁兼容的概念5.2 电磁波的辐射标准和法规介绍国际和国内电磁波辐射的标准和法规解释电磁波辐射的限制和测量方法电磁波辐射管理的政策和监管措施5.3 电磁波的辐射安全和防护措施介绍电磁波辐射的安全距离和防护措施解释电磁波辐射的个人防护和公共场所的防护措施电磁波辐射的环保意识和公众宣传的重要性第六章:电磁波在电力系统中的应用6.1 电磁波在电力传输中的应用介绍高压输电线路中的电磁干扰问题解释输电线路的屏蔽和接地措施电磁波在特高压输电技术中的应用6.2 电磁波在电力系统监测与控制中的应用介绍电力系统中的电磁场监测和测量技术解释电磁波在电力系统状态监测和故障诊断中的应用电磁波在智能电网和分布式发电系统中的应用6.3 电磁波在电力设备中的影响及防护分析电磁波对电力设备的干扰和影响解释电磁兼容性设计在电力设备中的应用电磁波防护措施在电力设备中的实施方法第七章:电磁波在交通领域的应用7.1 电磁波在铁路交通中的应用介绍铁路信号系统和电磁波在信号传输中的应用解释铁路通信和列车无线通信系统中电磁波的应用电磁波在铁路自动控制系统中的应用7.2 电磁波在汽车交通中的应用介绍汽车电子设备和电磁波的应用解释车载通信系统和电磁波在车辆导航中的应用电磁波在智能交通系统中的应用7.3 电磁波在航空和航天领域的应用介绍电磁波在航空通信和导航中的应用解释电磁波在卫星通信和航天器通信中的应用电磁波在航空航天器中的其他应用,如雷达和遥感技术第八章:电磁波在工科领域的应用8.1 电磁波在电子工程中的应用介绍电磁波在无线电发射和接收中的应用解释电磁波在微波器件和天线技术中的应用电磁波在射频识别(RFID)技术中的应用8.2 电磁波在光电子学中的应用介绍电磁波在光纤通信中的应用解释电磁波在激光器和光电器件中的应用电磁波在光电探测和成像技术中的应用8.3 电磁波在生物医学领域的应用介绍电磁波在医学诊断和治疗中的应用解释电磁波在磁共振成像(MRI)和微波热疗中的应用电磁波在其他生物医学技术中的应用,如电疗和电磁屏蔽第九章:电磁波的环境影响和政策法规9.1 电磁波的环境影响分析电磁波对环境和生物的影响,如电磁辐射污染解释电磁波的环境监测和评估方法电磁波环境保护措施和可持续发展策略9.2 电磁波的政策法规介绍国际和国内关于电磁波辐射的政策法规解释电磁波辐射的标准和限制条件电磁波辐射管理的政策和监管措施9.3 电磁波的公众宣传和教育分析电磁波辐射的公众认知和误解解释电磁波辐射的安全性和健康影响电磁波辐射的公众宣传和教育方法第十章:电磁波的未来发展趋势10.1 新型电磁波技术和材料的研究介绍新型电磁波发射和接收技术的研究解释新型电磁波传输材料和超材料的研究进展电磁波技术在未来的应用前景10.2 电磁波在新型能源领域的应用介绍电磁波在太阳能和风能等新型能源领域的应用解释电磁波在智能电网和能源互联网中的应用电磁波在未来能源系统中的作用和挑战10.3 电磁波与物联网和大数据的结合分析电磁波在物联网通信中的应用解释电磁波在大数据传输和处理中的作用电磁波在未来物联网和大数据技术中的挑战和发展趋势重点和难点解析一、电磁场的基本概念:理解电荷、电场、磁场和磁力的基本性质,以及电磁感应的原理。
高中物理电磁学教案

高中物理电磁学教案
教学目标:
1. 了解电磁学的基本概念和原理。
2. 掌握电磁学中的重要公式。
3. 能够应用电磁学知识解决问题。
教学重点:
1. 电磁学的基本概念。
2. 电场和磁场的相互作用。
3. 麦克斯韦方程组。
教学难点:
1. 应用电磁学知识解决实际问题。
2. 理解麦克斯韦方程组的意义。
教学过程:
一、导入(5分钟)
老师通过提问或讲解引入电磁学的基本概念,激发学生学习的兴趣。
二、授课(30分钟)
1. 电场和磁场的基本概念和特性。
2. 应用库仑定律和洛伦兹力定律解释电场和磁场的相互作用。
3. 麦克斯韦方程组的含义和应用。
三、示范实验(15分钟)
老师进行电磁学的实验演示,让学生观察电场和磁场的产生与相互作用,并引导学生做实验记录。
四、讨论与深化(10分钟)
学生就实验中观察到的现象展开讨论,深化对电磁学知识的理解。
五、作业布置(5分钟)
布置相关习题,加深学生对电磁学知识的掌握和理解。
六、课堂小结(5分钟)
对本节课学习的重点和难点进行总结,引导学生复习和巩固教学内容。
教学评价:
1. 学生对电磁学的基本概念和原理有所了解。
2. 学生能够熟练应用电磁学知识解决问题。
3. 学生对麦克斯韦方程组的理解达到一定水平。
注意事项:
1. 教师要注重引导学生主动学习,激发学生的学习兴趣。
2. 学生要积极参与课堂教学活动,主动思考和提问。
3. 课堂教学要注重实践操作,增强学生的动手能力。
高三一轮复习教案

高三一轮复习教案(全套68个)第一部分力学§1. 力一、力重力和弹力二、摩擦力三、共点力的合成与分解四、物体的受力分析五、物体的平衡六、解答平衡问题时常用的数学方法七、利用整体法和隔离法求解平衡问题八、平衡中的临界、极值问题§2. 物体的运动一、直线运动的基本概念二、匀变速直线运动规律三、自由落体与竖直上抛运动四、直线运动的图象五、追及与相遇问题§3. 牛顿运动定律一、牛顿第一运动定律二、牛顿第二定律三、牛顿第二定律应用(已知受力求运动)四、牛顿第二定律应用(已知运动求力)五、牛顿第二定律应用(超重和失重问题)§4. 曲线运动万有引力定律一、曲线运动二、平抛运动三、平抛运动实验与应用四、匀速圆周运动五、圆周运动动力学六、万有引力定律§5. 动量一、冲量和动量二、动量定理三、动量守恒定律四、动量守恒定律的应用§6. 机械能一、功和功率二、动能定理三、机械能守恒定律四、功能关系五、综合复习(2课时)§7. 机械振动和机械波一、简谐运动二、典型的简谐运动三、受迫振动与共振四、机械波五、振动图象和波的图象声波第二部分热学§1. 分子动理论热和功一、分子动理论二、物体的内能热和功§2.气体、固体和液体的性质一、气体的体积、压强、温度间的关系二、固体和液体的性质第三部分电磁学§1. 电场一、库仑定律二、电场的性质三、带电粒子在电场中的运动四、电容器§2. 恒定电流一、基本概念二、串、并联与混联电路三、闭合电路欧姆定律§3.磁场一、基本概念二、安培力(磁场对电流的作用力)三、洛伦兹力四、带电粒子在混合场中的运动§4.电磁感应一、电磁感应现象二、楞次定律(2课时)三、法拉第电磁感应定律(2课时)§5.交变电流电磁场和电磁波一、正弦交变电流(2课时)二、电磁场和电磁波第四部分光学§1.几何光学一、光的直线传播二、反射平面镜成像三、折射与全反射§2.光的本性一、光的波动性二、光的粒子性三、光的波粒二象性第五部分原子物理学§1.原子和原子核一、原子模型二、天然放射现象三、核反应四、核能第一部分力学§1. 力一、力重力和弹力目的要求:理解力的概念、弄清重力、弹力,会利用胡克定律进行计算知识要点:1、力:是物体对物体的作用(1)施力物体与受力物体是同时存在、同时消失的;(2)力的大小、方向、作用点称为力的三要素;(3)力的分类:根据产生力的原因即根据力的性质命名有重力、弹力、分子力、电场力、磁场力等;根据力的作用效果命名即效果力如拉力、压力、向心力、回复力等。
2024届高考一轮复习物理教案(新教材鲁科版):电磁振荡与电磁波

第3讲电磁振荡与电磁波目标要求 1.了解LC振荡电路中振荡电流的产生过程及电磁振荡过程中能量转化情况.2.掌握电磁振荡的周期公式和频率公式.3.理解麦克斯韦电磁场理论,了解电磁波的产生、发射、传播和接收过程.考点一电磁振荡1.振荡电路:产生大小和方向都做周期性迅速变化的电流(即振荡电流)的电路.由电感线圈L和电容C组成最简单的振荡电路,称为LC振荡电路.2.电磁振荡:在LC振荡电路中,电容器不断地充电和放电,就会使电容器极板上的电荷量q、电路中的电流i、电容器内的电场强度E、线圈内的磁感应强度B发生周期性的变化,这种现象就是电磁振荡.3.电磁振荡中的能量变化(1)放电过程中电容器储存的电场能逐渐转化为线圈的磁场能.(2)充电过程中线圈中的磁场能逐渐转化为电容器的电场能.(3)在电磁振荡过程中,电场能和磁场能会发生周期性的转化.4.电磁振荡的周期和频率(1)周期T=2πLC.(2)频率f=12πLC.1.LC振荡电路中,电容器放电完毕时,回路中电流最小.(×) 2.LC振荡电路中,回路中的电流最大时回路中的磁场能最大.(√) 3.电磁振荡的固有周期与电流的变化快慢有关.(×)1.振荡电流、极板带电荷量随时间的变化图像2.LC振荡电路充、放电过程的判断方法根据电流流向判断当电流流向带正电的极板时,电容器的电荷量增加,磁场能向电场能转化,处于充电过程;反之,当电流流出带正电的极板时,电荷量减少,电场能向磁场能转化,处于放电过程根据物理量的变化趋势判断当电容器的带电荷量q(电压U、电场强度E)增大或电流i(磁感应强度B)减小时,处于充电过程;反之,处于放电过程根据能量判断电场能增加时充电,磁场能增加时放电例1(2023·北京八十中模拟)如图甲所示为某一LC振荡电路,图乙i-t图像为LC振荡电路的电流随时间变化的关系图像.在t=0时刻,回路中电容器的M板带正电,下列说法中正确的是()A.O~a阶段,电容器正在充电,电场能正在向磁场能转化B.a~b阶段,电容器正在放电,磁场能正在向电场能转化C.b~c阶段,电容器正在放电,回路中电流沿顺时针方向D.c~d阶段,电容器正在充电,回路中电流沿逆时针方向答案 C解析O~a阶段,电容器正在放电,电流不断增加,电场能正在向磁场能转化,选项A错误;a~b阶段,电容器正在充电,电流逐渐减小,磁场能正在向电场能转化,选项B错误;b~c阶段,电容器正在放电,回路中电流沿顺时针方向,选项C正确;c~d阶段,电容器正在充电,回路中电流沿顺时针方向,选项D错误.例2(多选)(2023·福建省龙岩第一中学月考)LC振荡电路在某一时刻的电场和磁场方向如图所示.下列说法中正确的是()A.电容器正在充电B.电路中电场能在增大C.电路中电流在增大D.电路中电流沿逆时针方向答案CD解析由题图可知,电容器上极板带正电,因为磁场方向向上,所以电容器正在放电,A错误;由题图可知电路中电流方向为逆时针,电容器在放电,电流在增大,电场能在向磁场能转化,则电路中电场能在减小,B错误,C、D正确.例3(2020·浙江1月选考·8)如图所示,单刀双掷开关S先打到a端让电容器充满电.t=0时开关S打到b端,t=0.02 s时LC回路中电容器下极板带正电荷且电荷量第一次达到最大值.则()A.LC回路的周期为0.02 sB.LC回路的电流最大时电容器中电场能最大C.t=1.01 s时线圈中磁场能最大D.t=1.01 s时回路中电流沿顺时针方向答案 C解析以顺时针电流为正方向,LC电路中电流和电荷量变化的图像如下:t =0.02 s 时电容器下极板带正电荷且最大,根据图像可知周期为T =0.04 s ,故A 错误;根据图像可知电流最大时,电容器中电荷量为0,电场能最小为0,故B 错误;1.01 s 时,经过2514T ,根据图像可知此时电流最大,电流沿逆时针方向,说明电容器放电完毕,电能全部转化为磁场能,此时磁场能最大,故C 正确,D 错误.例4 某LC 电路的振荡频率为520 kHz ,为能提高到1 040 kHz ,以下说法正确的是( ) A .调节可变电容,使电容增大为原来的4倍 B .调节可变电容,使电容减小为原来的14C .调节电感线圈,使线圈匝数增加到原来的4倍D .调节电感线圈,使线圈电感变为原来的12答案 B解析 由振荡频率公式f =12πLC 可知,要使频率提高到原来的2倍,则可以减小电容使之变为原来的14,或减小电感使之变为原来的14,故B 正确,A 、C 、D 错误.考点二 电磁波的特点及应用1.麦克斯韦电磁场理论2.电磁波(1)电磁场在空间由近及远地向周围传播,形成电磁波.(2)电磁波的传播不需要介质,可在真空中传播,在真空中不同频率的电磁波传播速度相同(都等于光速).(3)不同频率的电磁波,在同一介质中传播,其速度是不同的,频率越高,波速越小.(4)v=λf,f是电磁波的频率.3.电磁波的发射(1)发射条件:开放电路和高频振荡信号,所以要对传输信号进行调制.(2)调制方式①调幅:使高频电磁波的振幅随信号的强弱而改变.②调频:使高频电磁波的频率随信号的强弱而改变.4.无线电波的接收(1)当接收电路的固有频率跟收到的无线电波的频率相同时,接收电路中产生的振荡电流最强,这就是电谐振现象.(2)使接收电路产生电谐振的过程叫作调谐,能够调谐的接收电路叫作调谐电路.(3)从经过调制的高频振荡信号中“检”出调制信号的过程,叫作检波.检波是调制的逆过程,也叫作解调.5.电磁波谱:按照电磁波的波长大小或频率高低的顺序把它们排列成谱叫作电磁波谱.按波长由长到短排列的电磁波谱为:无线电波、红外线、可见光、紫外线、X射线、γ射线.1.振荡电路的频率越高,发射电磁波的本领越大.(√)2.要将传递的声音信号向远距离发射,必须以高频电磁波作为载波.(√)3.只有接收电路发生电谐振时,接收电路中才有振荡电流.(×)4.解调是调制的逆过程.(√)1.电磁波谱分析及应用电磁波谱频率/ Hz 真空中波长/m特性应用递变规律无线电波<3×1011>10-3波动性强,易发生衍射无线电技术衍射能力减弱,直线传播能力增强红外线1011~101510-7~10-3热效应红外遥感可见光101510-7引起视觉照明、摄影紫外线1015~101610-8~10-7化学效应、荧光效应、灭菌消毒医用消毒、防伪X射线1016~101910-11~10-8穿透本领强检查、医用透视γ射线>1019<10-11穿透本领更强工业探伤、医用治疗2.各种电磁波产生机理无线电波振荡电路中电子周期性运动产生红外线、可见光和紫外线原子的外层电子受激发后产生X射线原子的内层电子受激发后产生γ射线原子核受激发后产生3.对电磁波的两点说明(1)不同电磁波的频率或波长不同,表现出不同的特性,波长越长,越容易产生干涉、衍射现象,波长越短,穿透能力越强.(2)同频率的电磁波在不同介质中传播速度不同,不同频率的电磁波在同一种介质中传播时,频率越高,折射率越大,速度越小.例5某电路中电场强度随时间变化的关系图像如图所示,能发射电磁波的是()答案 D解析由麦克斯韦电磁场理论知,当空间出现恒定的电场时(如题图A),由于它不激发磁场,故无电磁波产生;当出现均匀变化的电场时(如题图B、C),会激发出磁场,但磁场恒定,不会在较远处激发出电场,故也不会产生电磁波;周期性变化的电场(如题图D),会激发出周期性变化的磁场,它又激发出周期性变化的电场……如此交替的产生磁场和电场,便会形成电磁波,故D正确.例6(2023·上海市模拟)以下关于电磁场和电磁波的说法中正确的是()A.电场和磁场总是同时存在的,统称为电磁场B.电磁波是机械波,传播需要介质C.电磁波的传播速度是3×108 m/sD.电磁波是一种物质,可在真空中传播答案 D解析变化的电场与变化的磁场相互联系,它们统称为电磁场,选项A错误;电磁波不是机械波,传播不需要介质,选项B错误;电磁波在真空中的传播速度是3×108 m/s,选项C错误;电磁波是一种物质,可在真空中传播,选项D正确.例7(多选)关于电磁波谱,下列说法正确的是()A.在真空中各种电磁波的传播速度都相同B.γ射线是波长最短的电磁波,它比X射线的频率还要高C.紫外线比紫光更容易发生干涉和衍射D.在电磁波谱中,最容易发生衍射现象的是γ射线答案AB解析电磁波在真空中的传播速度都为3.0×108 m/s,故A正确;γ射线是波长最短的电磁波,它比X射线的频率还要高,故B正确;在电磁波谱中从无线电波到γ射线,波长逐渐变短,频率逐渐升高,而波长越长,波动性越强,越容易发生干涉、衍射现象,因此紫光比紫外线更容易发生干涉和衍射现象,电磁波谱中无线电波最容易发生衍射现象,故C、D错误.例8(多选)(2020·江苏卷·13B(1))电磁波广泛应用在现代医疗中.下列属于电磁波应用的医用器械有()A.杀菌用的紫外灯B.拍胸片的X光机C.治疗咽喉炎的超声波雾化器D.检查血流情况的“彩超”机答案AB课时精练1.(2023·北京市模拟)使用蓝牙耳机可以接听手机来电,蓝牙通信的电磁波波段为(2.4~2.48)×109 Hz.已知可见光的波段为(3.9~7.5)×1014 Hz,则蓝牙通信的电磁波()A.是蓝光B.波长比可见光短C.比可见光更容易发生衍射现象D.在真空中的传播速度比可见光小答案 C解析根据题意可知,蓝牙通信的电磁波频率低于可见光频率,所以蓝牙通信的电磁波不可能是蓝光,故A错误;因为蓝牙通信的电磁波频率低于可见光频率,根据c=λf可知,波长比可见光长,故B错误;因为波长比可见光长,所以更容易发生衍射现象,故C正确;所有电磁波在真空中传播速度都为光速,是一样的,故D错误.2.(2023·辽宁锦州市模拟)5G是“第五代移动通信技术”的简称,其最显著的特点之一为具有超高速的数据传播速率,5G信号一般采用3.3×109~6×109Hz频段的无线电波,而第四代移动通信技术4G采用的是1.88×109~2.64×109Hz频段的无线电波,则下列说法正确的是()A.空间中的5G信号和4G信号相遇会产生干涉现象B.5G信号比4G信号所用的无线电波在真空中传播得更快C.5G信号相比于4G信号更不容易绕过障碍物,所以5G通信需要搭建更密集的基站D.5G信号比4G信号波长长答案 C解析空间中的5G信号和4G信号的频率不同,不会产生干涉现象,故A错误;5G信号与4G信号所用的无线电波在真空中传播速度一样,均等于光速,故B错误;根据c=λv可知5G信号相比于4G信号的波长短,更不容易发生衍射,所以5G信号相比于4G信号更不容易绕过障碍物,所以5G通信需要搭建更密集的基站,故C正确,D错误.3.(2023·上海市杨浦高级中学模拟)下列关于电磁波的特性和应用的说法正确的是() A.电磁波能传输能量B.γ射线最容易用来观察衍射现象C.紫外线常用在医学上做人体透视D.体温超过周围空气温度时,人体才对外辐射红外线答案 A解析电场和磁场中有电能和磁场能,变化的电场和磁场在空间中交替出现,传播出去的过程形成电磁波,所以电磁波能传输能量,故A正确;γ射线的频率很高,波长很短,不容易产生衍射现象,故B错误;X射线有很高的穿透本领,常用于医学上透视人体,紫外线可以消毒杀菌,故C错误;自然界中的一切物体,只要它的温度高于绝对零度(-273 ℃)就存在分子或原子无规则的运动,其表面就不断地辐射红外线,故D错误.4.(2023·福建龙岩市第一中学模拟)麦克斯韦在前人研究的基础上,创造性地建立了经典电磁场理论,进一步揭示了电现象与磁现象之间的联系.他大胆地假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场.以平行板电容器为例:圆形平行板电容器在充、放电的过程中,板间电场发生变化,产生的磁场相当于一连接两板的板间直导线通以充、放电电流时所产生的磁场.如图所示,若某时刻连接电容器的导线具有向上的电流,则下列说法中正确的是()A.电容器正在充电B.两平行板间的电场强度E在减小C.该变化电场产生顺时针方向(俯视)的磁场D.两极板间电场最强时,板间电场产生的磁场达到最大值答案 A解析电容器内电场强度方向向上,下极板带正电,根据电流的方向,正电荷正在流向下极板,因此电容器正处于充电过程,A正确;电容器的带电荷量越来越多,内部电场强度越来越大,B错误;该变化电场产生磁场方向等效成向上的电流产生磁场的方向,根据右手螺旋定则可知,电场产生逆时针方向(俯视)的磁场,C错误;当两极板间电场最强时,电容器充电完毕,回路的电流最小,因此产生的磁场最小,D错误.5.(多选)下列关于无线电广播要对电磁波进行调制的原因的说法中正确的是()A.经过调制后的高频电磁波向外辐射能量的本领更强B.经过调制后的电磁波在空间传播得更快C.经过调制后的电磁波在空间传播的波长不变D.经过调制后的电磁波在空间传播的波长改变答案AD解析调制是把要发射的信号“加”到高频振荡电流上去,频率越高,传播信息能力越强,A正确;电磁波在空气中的传播速度接近光速且恒定不变,B错误;由v=λf,知波长与波速和传播频率有关,C错误,D正确.6.(多选)下列关于无线电波的叙述中,正确的是( ) A .无线电波是波长从几十千米到一毫米的电磁波 B .无线电波在任何介质中的传播速度均为3.0×108 m/s C .无线电波不能产生干涉和衍射现象D .无线电波由真空进入介质传播时,波长变短 答案 AD解析 无线电波中长波波长有几十千米,微波中的毫米波只有几毫米,A 正确;无线电波在介质中的传播速度小于在真空中的传播速度3.0×108 m/s ,B 错误;无线电波也能产生干涉和衍射现象,C 错误;无线电波由真空进入介质传播时,传播速度减小,由λ=vf 可知波长变短,D 正确.7.(2023·山东泰安市模拟)关于电磁波谱,下列说法中正确的是( )A .红外体温计的工作原理是人的体温越高,发射的红外线越强,有时物体温度较低,不发射红外线,导致无法使用B .紫外线的频率比可见光低,医学中常用于杀菌消毒,长时间照射人体可能损害健康C .X 射线、γ射线频率较高,波动性较强,粒子性较弱,较难发生光电效应D .手机通信使用的是无线电波,其波长较长,更容易观察到衍射现象 答案 D解析 有温度的物体都会发射红外线,A 错误;紫外线的频率比可见光高,B 错误;X 射线、γ射线频率较高,波动性较弱,粒子性较强,较易发生光电效应,C 错误;手机通信使用的是无线电波,其波长较长,更容易观察到衍射现象,D 正确.8.在LC 振荡电路中,电容器上的带电荷量从最大值变化到零所需的最短时间是( ) A.π4LC B.π2LC C .πLC D .2πLC答案 B解析 LC 振荡电路的周期T =2πLC ,其电容器上的带电荷量从最大值变化到零的最短时间t =T 4,故t =π2LC ,故选B. 9.如图甲所示,“救命神器”——自动体外除颤仪(AED)现在已经走入了每个校园,它是一种便携式的医疗设备,可以诊断特定的心律失常,并且给予电击除颤,是可被非专业人员使用的用于抢救心脏骤停患者的医疗设备.其结构如图乙所示,低压直流经高压直流发生器后向储能电容器C 充电.除颤治疗时,开关拨到2,将脉冲电流作用于心脏,使患者心脏恢复正常跳动,其他条件不变时,下列说法正确的是( )A .脉冲电流作用于不同人体时,电流大小相同B .放电过程中,电流大小不变C .电容C 越小,电容器的放电时间越长D .自感系数L 越小,电容器的放电时间越短答案 D解析 脉冲电流作用于不同人体时,不同人体的导电性能不同,故电流大小不同,A 错误;电容器放电过程中,开始时电流较小,随着带电荷量的减小,放电电流逐渐变大,不是恒定的,B 错误;振荡电路的振荡周期为T =2πLC ,电容器在时间t 0内放电至两极板间的电压为0,即t 0=T 4=πLC 2,则线圈的自感系数L 越小,电容器的放电时间越短;电容器的电容C 越大,电容器的放电时间越长,C 错误,D 正确.10.(多选)LC 振荡电路中,某时刻磁场方向如图所示,则下列说法正确的是( )A .若磁场正在减弱,则电容器上极板带正电B .若电容器正在放电,则电容器上极板带负电C .若电容器上极板带正电,则自感电动势正在减小D .若电容器正在充电,则自感电动势正在阻碍电流减小答案 ABD解析若磁场正在减弱,则电容器上极板带正电,处于充电状态,故A正确;若电容器正在放电,由安培定则可得电容器上极板带负电,故B正确;若电容器上极板带正电,说明电容器在充电,电流减小得越来越快,自感电动势增大,故C错误;若电容器正在充电,则线圈自感作用阻碍电流的减小,故D正确.11.如图所示为LC振荡电路中电容器上的带电荷量q随时间t的变化曲线,则下列判断正确的是()A.在b和d时刻,电路中电流为零B.在O→a时间内,电场能转化为磁场能C.在a和c时刻,电路里的能量全部储存在电容器的电场中D.在O→a和c→d时间内,电容器被充电答案 C解析在b和d时刻,q为0,但q随t的变化率最大,则电流最大,不为零,故A错误;在O→a时间内,q从0逐渐增大至最大值,而电流从最大值减小至0,电容器充电,磁场能转化为电场能,故B错误;在a和c时刻,电容器均完成充电过程,电路里的能量全部储存在电容器的电场中,故C正确;在O→a时间内,电容器充电,在c→d时间内,电容器放电,故D错误.12.如图所示为一理想LC电路,已充电的平行板电容器两极板水平放置.电路中开关断开时,极板间有一带电灰尘(图中未画出)恰好静止.若不计带电灰尘对电路的影响,重力加速度为g,灰尘运动时间大于振荡电路周期.当电路中的开关闭合以后,则()A.灰尘将在两极板间做往复运动B.灰尘运动过程中加速度方向可能会向上C.电场能最大时灰尘的加速度一定为零D.磁场能最大时灰尘的加速度一定为g答案 D解析当开关断开时,灰尘静止,则有Eq=mg,此时电场能最大,极板间电场强度最大,若开关闭合,电场能减小,极板间电场强度减小,则灰尘会向下极板运动,振荡回路磁场和电场周期性改变,根据对称性可知当电场方向和初始状态相反且电场能最大时,电场力方向竖直向下,和重力方向相同,此时灰尘的加速度为2g,所以灰尘的加速度不可能向上,灰尘的加速度大于等于0,且一直向下,所以灰尘不会在两极板间做往复运动,故A、B、C错误;当磁场能最大时,电场能为0,极板间电场强度为0,灰尘只受重力,加速度一定为g,故D 正确.13.如图所示,电源电动势为3 V,单刀双掷开关S先置于a端使电路稳定.在t=0时刻开关S置于b端,若经检测发现,t=0.02 s时刻,自感线圈两端的电势差第一次为1.5 V.如果不计振荡过程的能量损失,下列说法正确的是()A.t=0.04 s时回路中的电流为零B.t=0.08 s时电感线圈中的自感电动势达到最大值,为3 VC.0.07~0.08 s时间内,电容器极板间电场方向竖直向上且逐渐减小D.0.04~0.05 s时间内,线圈中的磁场能逐渐增大答案 C解析由题意知S置于b端后,自感线圈两端的电势差呈余弦规律变化,由于t=0时刻电容器电压为3 V,故此时自感线圈两端的电势差也为3 V,然后开始减小,当第一次为1.5 V时,则可知经历时间为六分之一周期,故振荡周期为0.12 s.所以0.04 s时回路中的电流不为零,0.03 s时回路中的电流才为零,0.06 s时电感线圈中的自感电动势值达到最大,为3 V,故A、B错误;经分析,0.07~0.08 s时间内,电容器极板间电场方向竖直向上且逐渐减小,故C 正确;0.04~0.05 s时间内,线圈两端的电势差增大,即电容器极板间电场增大,电场能增大,则磁场能逐渐减小,故D错误.。
电磁场与电磁波教案

电磁场与电磁波教案教案:电磁场与电磁波一、教学目标1.理解电磁场和电磁波的基本概念和特性;2.能够运用电磁场和电磁波的知识,解释常见现象和应用;3.发展科学探究能力和实验设计能力;4.培养学生的分析和解决问题的能力。
二、教学内容1.电磁场的概念和基本特性;2.麦克斯韦方程组;3.电磁波的概念和基本特性;4.电磁波的应用。
三、教学过程第一课时:电磁场1.引入(5分钟)通过展示图片或视频,引发学生对电磁现象的思考,了解学生对电磁现象的了解程度。
2.知识讲解(20分钟)-介绍电磁场的概念和基本特性;-通过实例解释电磁场的产生、传播和作用机制;-分析电磁场与电磁感应的关系。
3.实验演示(20分钟)进行实验,用螺线管和直流电流源组成的实验装置,演示电磁场的感应现象。
要求学生记录实验现象和结果,并进行分析和解释。
4.课堂练习(15分钟)出示相关练习题,让学生自主解答,然后进行讲解和讨论。
5.总结归纳(10分钟)总结本节课的重点内容,强调电磁场的重要性和应用价值。
第二课时:电磁波1.引入(5分钟)回顾上节课的内容,通过复习提问,检查学生对电磁场的掌握程度。
2.知识讲解(20分钟)-介绍电磁波的概念和基本特性;-解释电磁波的传播原理和性质;-探讨电磁波与电磁场的关系。
3.实验设计(25分钟)带领学生进行实验设计,验证电磁波的传播特性。
学生自主设计实验方案、记录实验数据、观察实验现象,并进行分析和解释。
4.课堂练习(15分钟)出示相关练习题,让学生自主解答,然后进行讲解和讨论。
5.应用拓展(10分钟)介绍电磁波在通讯、医学等领域的应用,引发学生对电磁波应用的思考和探索。
四、教学评价1.合作实验报告(20分)要求学生根据自己设计的实验方案,填写实验记录、分析实验数据、总结实验结果,并进行合作评价。
2.知识测试(30分)出题形式多样,包括选择题、判断题、应用题等,以考察学生对电磁场和电磁波的掌握程度。
3.课堂表现(20分)评价学生在课堂上的主动参与程度、回答问题的准确性和深度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场和电磁波知识网络:单元切块:按照考纲的要求,本章内容均为Ⅰ级要求,在复习过程中,不再细分为几个单元。
本章重点是了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论。
教学目标:1.了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论.2.了解电磁场和电磁波概念,记住真空中电磁波的传播速度.3.了解我国广播电视事业的发展.教学重点:了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论教学难点:定性理解麦克斯韦的电磁场理论教学方法:讲练结合,计算机辅助教学教学过程:一、电磁振荡1.振荡电路:大小和方向都随时间做周期性变儿的电流叫做振荡电流,能够产生振荡电流的电路叫振荡电路,LC 回路是一种简单的振荡电路。
2.LC 回路的电磁振荡过程:可以用图象来形象分析电容器充、放电过程中各物理量的变化规律,如图所示3.LC 回路的振荡周期和频率LC T π2=LC f π21=注意:(1)LC 回路的T 、f 只与电路本身性质L 、C 有关(2)电磁振荡的周期很小,频率很高,这是振荡电流与普通交变电流的区别。
分析电磁振荡要掌握以下三个要点(突出能量守恒的观点):⑴理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。
⑵回路中电流越大时,L 中的磁场能越大(磁通量越大)。
⑶极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。
LC 回路中的电流图象和电荷图象总是互为余函数(见右图)。
【例1】 某时刻LC 回路中电容器中的电场方向和线圈中的磁场方向如右图所示。
则这时电容器正在_____(充电还是放电),电流大小正在______(增大还是减小)。
解:用安培定则可知回路中的电流方向为逆时针方向,而上极板是正极板,所以这时电容器正在充电;因为充电过程电场能增大,所以磁场能减小,电流在减小。
【例2】右边两图中电容器的电容都是C =4×10-6F ,电感都是L =9×10-4H ,左图中电键K 先接a ,充电结束后将K 扳到b ;右图中电键K 先闭合,稳定后断开。
两图中LC 回路开始电磁振荡t =3.14×10-4s 时刻,C 1的上极板正在____电(充电还是放电),带_____电(正电还是负电);L 2中的电流方向向____(左还是右),磁场能正在_____(增大还是减小)。
t解:先由周期公式求出LC T π2==1.2π×10-4s , t =3.14×10-4s 时刻是开始振荡后的T 65。
再看与左图对应的q-t 图象(以上极板带正电为正)和与右图对应的i-t 图象(以LC 回路中有逆时针方向电流为正),图象都为余弦函数图象。
在T 65时刻,从左图对应的q-t 图象看出,上极板正在充正电;从右图对应的i-t 图象看出,L 2中的电流向左,正在增大,所以磁场能正在增大。
二、电磁场1.麦克斯韦的电磁场理论要深刻理解和应用麦克斯韦电磁场理论的两大支柱:变化的磁场产生电场,变化的电场产生磁场。
(1)变化的磁场(电场)能够在周围空间产生电场(磁场);(2)均匀变化的磁场(电场)能够在周围空间产生稳定的电场(磁场);(3)振荡的磁场(电场)能够在周围空间产生同频率的振荡电场(磁场);可以证明:振荡电场产生同频率的振荡磁场;振荡磁场产生同频率的振荡电场。
点评:变化的磁场在周围空间激发的电场为涡旋电场,涡旋电场与静电场一样,对电荷有力的作用,但涡旋电场又于静电场不同,它不是静电荷产生的,它的电场线是闭合的,在涡旋电场中移动电荷时,电场力做的功与路径有关,因此不能引用“电势”、“电势能”等概念。
另外要用联系的观点认识规律,变化的磁场产生电场是电磁感应现象的本质。
【例3】右图中,内壁光滑、水平放置的玻璃圆环内,有一直径略小于环口径的带正电的小球,正以速率v 0沿逆时针方向匀速转动。
若在此空间突然加上竖直向上、磁感应强度B 随时间成正比例增加的变化磁场,设小球运动过程中的电量不变,那么()A.小球对玻璃环的压力不断增大B.小球受到的磁场力不断增大C.小球先沿逆时针方向做减速运动,过一段时间后,沿顺时针方向做加速运动D.磁场力一直对小球不做功分析:因为玻璃环所处有均匀变化的磁场,在周围产生稳定的涡旋电场,对带正电的小球做功,由楞次定律,判断电场方向为顺时针,在电场力的作用下,小球先沿逆时针方向做减速运动,过一段时间后,沿顺时针方向做加速运动。
小球在水平面内沿轨迹半径方向受两个力:环的弹力N 和磁场的洛仑兹力f ,而且两个力的矢量和始终提供向心力,考虑到小球速度大小的变化和方向的变化以及磁场强弱的变化,弹力和洛仑兹力不一定始终在增大。
洛仑兹力始终和运动方向垂直,所以磁场力不做功。
正确为CD。
2.电磁场:按照麦克斯韦的电磁场理论,变化的电场和磁场总是相互联系的,形成一个不可分离的统一场,称为电磁场。
电场和磁场只是这个统一的电磁场的两种具体表现。
理解电磁场是统一的整体:根据麦克斯韦电磁场理论的两个要点:在变化的磁场的周围空间将产生涡漩电场,在变化的电场的周围空间将产生涡漩磁场.当变化的电场增强时,磁感线沿某一方向旋转,则在磁场减弱时,磁感线将沿相反方向旋转,如果电场不改变是静止的,则就不产生磁场.同理,减弱或增强的电场周围也将产生不同旋转方向的磁场.因此,变化的电场在其周围产生磁场,变化的磁场在其周围产生电场,一种场的突然减弱,导致另一种场的产生.这样,周期性变化的电场、磁场相互激发,形成的电磁场链一环套一环,如下图所示.需要注意的是,这里的电场和磁场必须是变化的,形成的电磁场链环不可能是静止的,这种电磁场是无源场(即:不是由电荷激发的电场,也不是由运动电荷-电流激发的磁场.),并非简单地将电场、磁场相加,而是相互联系、不可分割的统一整体.在电磁场示意图中,电场E矢量和磁场B 矢量,在空间相互激发时,相互垂直,以光速c在空间传播.3.电磁波变化的电场和磁场从产生的区域由近及远地向周围空间传播开去,就形成了电磁波。
(1)有效地发射电磁波的条件是:①频率足够高(单位时间内辐射出的能量P∝f4);②形成开放电路(把电场和磁场分散到尽可能大的空间里去)。
(2)电磁波的特点:①电磁波是横波。
在电磁波传播方向上的任一点,场强E和磁感应强度B均与传播方向垂直且随时间变化,因此电磁波是横波。
②电磁波的传播不需要介质,在真空中也能传播。
在真空中的波速为c=3.0×108m/s。
③波速和波长、频率的关系:c=λf注意:麦克斯韦根据他提出的电磁场理论预言了电磁波的存在以及在真空中波速等于光速c,后由赫兹用实验证实了电磁波的存在(3)电磁波和机械波有本质的不同4.无线电波的发射和接收(1)无线电波:无线电技术中使用的电磁波(2)无线电波的发射:如图所示。
①调制:使电磁波随各种信号而改变②调幅和调频(3)无线电波的接收①电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最强,这种现象叫做电谐振。
②调谐:使接收电路产生电谐振的过程。
调谐电路如图所示。
通过改变电容器电容来改变调谐电路的频率。
③检波:从接收到的高频振荡中“检”出所携带的信号。
4.电磁波的应用广播、电视、雷达、无线通信等都是电磁波的具体应用。
雷达:无线电定位的仪器,波位越短的电磁波,传播的直线性越好,反射性能强,多数的雷达工作于微波波段。
缺点,沿地面传播探测距离短。
中、长波雷达沿地面的探测距离较远,但发射设备复杂。
【例4】 一台收音机,把它的调谐电路中的可变电容器的动片从完全旋入到完全旋出,仍然收不到某一较高频率的电台信号。
要想收到该电台信号,应该______(增大还是减小)电感线圈的匝数。
解:调谐电路的频率和被接受电台的频率相同时,发生电谐振,才能收到电台信号。
由公式LC f π21=可知,L 、C 越小,f 越大。
当调节C 达不到目的时,肯定是L 太大,所以应减小L ,因此要减小匝数。
【例5】 某防空雷达发射的电磁波频率为f =3×103MH Z ,屏幕上尖形波显示,从发射到接受经历时间Δt=0.4ms ,那么被监视的目标到雷达的距离为______km 。
该雷达发出的电磁波的波长为______m 。
解:由s = c Δt =1.2×105m=120km 。
这是电磁波往返的路程,所以目标到雷达的距离为60km 。
由c = f λ可得λ= 0.1m【例6】 电子感应加速器是利用变化磁场产生的电场来加速电子的。
如图所示,在圆形磁铁的两极之间有一环形真空室,用交变电流励磁的电磁铁在两极间产生交变磁场,从而在环形室内产生很强的电场,使电子加速.被加速的电子同时在洛伦兹力的作用下沿圆形轨道运动。
设法把高能电子引入靶室,就能进一步进行实验工作。
已知在一个轨道半径为r =0.84m 的电子感应加速器中,电子在被加速的4.2ms 内获得的能量为120MeV .设在这期间电子轨道内的高频交变磁场是线性变化的,磁通量的最小值为零,最大值为1.8Wb ,试求电子在加速器中共绕行了多少周?解:根据法拉第电磁感应定律,环形室内的感应电动势为E =t∆∆Φ= 429V ,设电子在加速器中绕行了N 周,则电场力做功NeE 应该等于电子的动能E K ,所以有N = E K /Ee ,带入数据可得N =2.8×105周。
【例7】 如图所示,半径为 r 且水平放置的光滑绝缘的环形管道内,有一个电荷量为 e ,质量为 m 的电子。
此装置放在匀强磁场中,其磁感应强度随时间变化的关系式为0+kt(k >0)。
根据麦克斯韦电磁场理论,均匀变化的磁场将产生稳定的电场,该感应电场对电子将有沿圆环切线方向的作用力,使其得到加速。
设t =0时刻电子的初速度大小为v 0,方向顺时针,从此开始后运动一周后的磁感应强度为B 1,则此时电子的速度大小为A.m reB 1 B.m ke r v 222π+ C.m re B 0 D.m ke r v 2202π- 解:感应电动势为E =k πr 2,电场方向逆时针,电场力对电子做正功。
在转动一圈过程中对电子用动能定理:k πr 2e =21mv 2-21mv 02,得答案B 。
【例8】 如图所示,平行板电容器和电池组相连。
用绝缘工具将电容器两板间的距离逐渐增大的过程中,关于电容器两极板间的电场和磁场,下列说法中正确的是A.两极板间的电压和场强都将逐渐减小B.两极板间的电压不变,场强逐渐减小C.两极板间将产生顺时针方向的磁场D.两极板间将产生逆时针方向的磁场解:由于极板和电源保持连接,因此两极板间电压不变。
两极板间距离增大,因此场强E =U /d 将减小。