2012年广东省初中毕业生学业考试数学模拟试卷(含参考答案)
2012年广东省中考数学试卷-答案

广东省2012年初中毕业生学业考试数学答案解析 一、选择题1.【答案】A【解析】根据负数的绝对值等于它的相反数,得|5|5-=故选A【提示】根据绝对值的性质求解.【考点】绝对值2.【答案】B【解析】66400000 6.410=⨯【提示】科学记数法的形式为10n a ⨯,其中110a ≤<,n 为整数.【考点】科学记数法—表示较大的数3.【答案】C【解析】6出现的次数最多,故众数是6【提示】众数指一组数据中出现次数最多的数据,根据众数的定义即可求解.【考点】众数4.【答案】B【解析】从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:131, , ,故选:B . 【提示】主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.【考点】简单组合体的三视图5.【答案】C【解析】设此三角形第三边的长为x ,则104104x -<<+,即614x <<,四个选项中只有11符合条件.【提示】设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可.【考点】三角形三边关系二、填空题6.【答案】2(5)x x -【解析】原式2(5)x x =-【提示】首先确定公因式是2x ,然后提公因式即可.【考点】因式分解——提公因式法7.【答案】3x >【解析】移项得,39x >,系数化为1得:3x >.【提示】先移项,再将x 的系数化为1即可.【考点】解一元一次不等式8.【答案】50︒【解析】圆心角AOC ∠与圆周角ABC ∠都对AC ,2AOC ABC ∴∠=∠,又25ABC ∠=︒,则50AOC ∠=︒【提示】根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.【考点】圆周角定理9.【答案】1【解析】根据题意得:3030x y -=⎧⎨-=⎩,解得:33x y =⎧⎨=⎩.则20122012313x y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.【提示】根据非负数的性质列出方程求出x 、y 的值,代入所求代数式计算即可.【考点】非负数的性质:算术平方根,非负数的性质:绝对值10.【答案】13π-2430sin301AD AB A DF AD EB AB AE ==∠=︒∴=︒==-=,,,,36033【提示】过D 点作DF AB ⊥于点F ,可ABCD 和BCE △的高,观察图形可知阴影部分的面积为ABCD 的面积-扇形ADE 的面积-BCE △的面积,计算即可求解.【考点】扇形面积的计算,平行四边形的性质三、解答题(一)11.【答案】1-【提示】本题涉及零指数幂、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值12.【答案】1-【解析】解,原式222299x x x x -+=-=-,当4x =时,原式2491=⨯-=-.【提示】先把整式进行化简,再把4x =代入进行计算即可. 【考点】整式的混合运算——化简求值13.【答案】51x y =⎧⎨=⎩ 【解析】解:①+②得,420x =,解得5x =,把5x =代入①得,54y -=,解得1y =,故此不等式组的解为:51x y =⎧⎨=⎩【提示】先用加减消元法求出x 的值,再用代入法求出y 的值即可. 2AD ABC ∠是BDC ∠是【提示】((2)先根据等腰三角形的性质及三角形内角和定理求出【答案】证明:AB CD ∥ABO ∠=ABO CDO ∴△≌△,AB CD ∴=,∴四边形ABCD 是平行四边形.【提示】先根据AB CD ∥可知ABO CDO ∠=∠,再由BO DO AOB DOC =∠=∠,,即可得出ABO CDO △≌△,故可得出AB CD =,进而可得出结论.【考点】平行四边形的判定,全等三角形的判定与性质四、解答题(二)16.【答案】(1)20%(2)8640【解析】(1)设这两年我国公民出境旅游总人数的年平均增长率为x .根据题意得25000(1)7200x +=. 解得120.220% 2.2x x ===-,(不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果2012年仍保持相同的年平均增长率,则2012年我国公民出境旅游总人数为7200(1)7200120%8640x +=⨯=万人次.答:预测2012年我国公民出境旅游总人数约8640万人次.【提示】(1)设年平均增长率为x ,根据题意2010年公民出境旅游总人数为25000(1)x +万人次,2011年公民出境旅游总人数25000(1)x +万人次.根据题意得方程求解.(2)2012年我国公民出境旅游总人数约7200(1)x +万人次.【考点】一元二次方程的应用 ,AB AC =(此点与B 重合,舍去)【提示】(1)先把(4,2)代入反比例函数解析式,易求k ,再把0y =代入一次函数解析式可求B 点坐.(2)假设存在,然后设C 点坐标是(,0)a ,=,借此无理方程,易得3a =或5a =,其中3a =和B 点重合,舍去,故C 点坐标可求. 【解析】在直角三角形在直角三角形BD BC -解得:300AB =米,答:小山岗的高度为300米.【提示】首先在直角三角形ABC 中根据坡角的正切值用AB 表示出BC ,然后在直角三角形DBA 中用BA 表示出BD ,根据BD 与BC 之间的关系列出方程求解即可.【考点】解直角三角形的应用——仰角俯角问题,解直角三角形的应用——坡度坡角问题19.【答案】(1)1911⨯ 1112911⎛⎫⨯- ⎪⎝⎭ (2)1(21)(21)n n -+ 11122121n n ⎛⎫⨯- ⎪-+⎝⎭【解析】(1)根据观察知答案分别为1911⨯和1112911⎛⎫⨯- ⎪⎝⎭.(2)根据观察知答案分别为1(21)(21)n n -+和11122121n n ⎛⎫⨯- ⎪-+⎝⎭. (3)1234100a a a a a +++++1111111111111112323525727921992011111111111123355779199201111220112002201100201⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫=-+-+-+-++- ⎪⎝⎭⎛⎫=- ⎪⎝⎭=⨯=【提示】(1)观察知,找第一个等号后面的式子规律是关键:分子不变,为1.(2)分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1.(3)运用变化规律计算. )求使分式)2223x xy x y --使分式的值为整数的使分式的值为整数的【考点】列表法与树状图法,分式有意义的条件,分式的化简求值21.【答案】(1)证明:BDC '△由BDC △翻折而成,90C BAG C D AB CD AGB DGC ABG ADE ∠=∠=︒'==∠=∠'∴∠=∠,,,,在:ABG C DG '△≌△中,BAD C AB C D ABG ADC '∠=∠⎧⎪'=⎨⎪'∠=∠⎩,ABG C DG ∴'△≌△.(2)724(3)256【解析】(2)由(1)可知ABG C DG ∴'△≌△,GD GB AG GB AD ∴=∴+=,,设AG x =,则8GB x =-,在22Rt ABG AB AG BG +=△中,2,即2226(8)x x +=-,解得74x =, 747tan 624AG ABG AB ∴∠=== (3)AEF △是DEF △翻折而成,EF ∴垂直平分AD ,142HD AD ∴==, 7tan tan 24ABG ADE ∴∠=∠=, 777=424246EH HD ∴=⨯⨯=, EF 垂直平分AD ,AB AD ⊥,HF 是ABD △的中位线,116322HF AB ∴==⨯=,725366EF EH HF =+=+=. 【提示】(1)根据翻折变换的性质可知90C BAG ∠=∠=︒,C D AB CD '==,AGB DGC '∠=∠,故可得出结论.(2)由(1)可知GD GB =,故A G G B A D +=,设A G x =,则8G B x =-,在Rt ABG △中利用勾股定理即可求出AG 的长,进而得出tan ABG ∠的值.(3)由AEF △是DEF △翻折而成可知EF 垂直平分AD ,故142HD AD ==,再根据tan ABG ∠即可得出EF 的长,同理可得HF 是ABD △的中位线,故可得出HF 的长,由EF EH HF =+即可得出结论.【考点】翻折变换(折叠问题),全等三角形的判定与性质,矩形的性质,解直角三角形22.【答案】(1)99AB OC ==,(2)21092s m m =<<() (3)118 729π )ED BC ∥ABC AB = ⎝192S AE OC m ==,212m =-+2729π52E S EF ==【提示】(1)已知抛物线的解析式,当0x =,可确定C 点坐标;当0y =时,可确定A B 、点的坐标,进而确定AB OC 、的长.(2)直线l BC ∥,可得出AED ABC △、△相似,它们的面积比等于相似比的平方,由此得到关于s m 、的函数关系式;根据题干条件:点E 与点A B 、不重合,可确定m 的取值范围.(3)第一小问、首先用m 列出AEC △的面积表达式,AEC AED △、△的面积差即为CDE △的面积,由此可的关于CDE S △、m 的函数关系式,根据函数的性质可得到CDE S △的最大面积以及此时m 的值.第二小问、过E 做BC 的垂线EF ,这个垂线段的长即为与BC 相切的E 的半径,可根据相似三角形BEF △、BCO △得到的相关比例线段求得该半径的值,由此得解.【考点】二次函数综合题。
2012年广东省广州市中数学考试题(WORD版 答案扫描版)

2012年广州市初中毕业生学业考试数 学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的4个选项中只有一项是符合题目要求的) 1.实数3的倒数是( )。
(A )、31-(B )、31(C )、3- (D )、32.将二次函数2x y =的图象向下平移1个单位,则平移后的二次函数的解析式为( )。
(A )、12-=x y(B )、 12+=x y (C )、2)1(-=x y(D )、2)1(+=x y3.一个几何体的三视图如图1所示,则这个几何体是( )。
(A )、四棱锥 (B )、 四棱柱 (C )、三棱锥 (D )、三棱柱4.下面的计算正确的是( ) 。
(A )、156=-a a (B )、 223a a a =+(C )、b a b a +-=--)((D )、b a b a +=+2)(25.如图2,在等腰梯形ABCD 中,BC ∥AD ,AD =5,DC =4,DE ∥AB 交BC 于点E ,且EC =3,则梯形ABCD 的周长是( ) (A )、26 (B )、25 (C )、21(D )、206..已知,071=++-b a 则=+b a ( ) 。
(A )、-8 (B )、 -6 (C )、6(D )、87. Rt ABC △中,∠C=900,AC =9,BC =12,则点C 到AB 的距离是( )。
(A )、536 (B )、2512 (C )、49 (D )、433 8.已知a >b .若c 是任意实数,则下列不等式中总是成立的是( )。
(A )、a+c <b+c (B )、 a-c >b-c (C )、ac <bc (D )、ac >bc9.在平面中,下列命题为真命题的是( )。
(A )、四边相等的四边形是正方形 (B )、对角线相等的四边形是菱形 (C )、四个角相等的四边形是矩形(D )、对角线互相垂直的四边形是平行四边形 10.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。
2012年广东省中考数学模拟试卷1

2012年广东省中考数学模拟试卷(七)一.选择题(本大题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母写在答题卷相应的答题位置上.C3.(3分)(2009•金华)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是().C D.4.(3分)玉树地震后,各界爱心如潮,4月20日搜索“玉树捐款”获得约7945000条结果,其中7945000用科学记二、填空题(4×5=20分)6.(4分)(2011•昭通)分解因式:3a2﹣27=_________.7.(4分)(2007•义乌市)如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC=_________ cm.8.(4分)(2009•湛江)一件衬衣标价是132元,若以9折降价出售,仍可获利10%,则这件衬衣的进价是_________元.9.(4分)(2011•南漳县模拟)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是_________cm.10.(4分)(2009•金华)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tanα的值等于_________.三、解答题(本大题5小题,每小题6分,共30分)11.(6分)(2009•张家界)计算:.12.(6分)(2009•兰州)如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).13.(6分)如图,在▱ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?说明理由.14.(6分)(2009•庆阳)如图1,一扇窗户打开后用窗钩AB可将其固定.(1)这里所运用的几何原理是()(A)三角形的稳定性(B)两点之间线段最短;(C)两点确定一条直线(D)垂线段最短;(2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(≈1.7,结果精确到整数)15.(6分)(2011•鼎湖区模拟)如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.四.解答题(本大题4小题,每小题7分,共28分)16.(7分)某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.(1)每摸一次球所获购物卷金额的平均值是多少?(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?17.(7分)(2010•海门市二模)某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?18.(7分)(2013•武侯区一模)已知二次函数y=x2﹣kx+k﹣5(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式.19.(7分)如图,过点P(2,)作x轴的平行线交y轴于点A,交双曲线(x>0)于点N,作PM⊥AN交双曲线(x>0)于点M,连接AM.已知PN=4.(1)求k的值;(2)设直线MN解析式为y=ax+b,求不等式≥ax+b的解集.五.解答题(本大题3小题,每小题9分,共27分)20.(9分)(2012•陵县二模)在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?21.(9分)(2009•黑河)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?22.(9分)(2009•湘潭)如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q.(1)当点P在线段AB上运动(不与A,B重合)时,求证:OA•BQ=AP•BP;(2)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m的函数解析式,并判断l 是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;(3)直线AB上是否存在点P,使△POQ为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2012年广东省中考数学模拟试卷(七)参考答案与试题解析一.选择题(本大题共5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母写在答题卷相应的答题位置上.C3.(3分)(2009•金华)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是().C D.4.(3分)玉树地震后,各界爱心如潮,4月20日搜索“玉树捐款”获得约7945000条结果,其中7945000用科学记二、填空题(4×5=20分)6.(4分)(2011•昭通)分解因式:3a2﹣27=3(a+3)(a﹣3).7.(4分)(2007•义乌市)如图,在△ABC中,点D、E分别是边AB、AC的中点,已知DE=6cm,则BC=12 cm.8.(4分)(2009•湛江)一件衬衣标价是132元,若以9折降价出售,仍可获利10%,则这件衬衣的进价是108元.9.(4分)(2011•南漳县模拟)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是5cm.=510.(4分)(2009•金华)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为α,则tanα的值等于.8=三、解答题(本大题5小题,每小题6分,共30分)11.(6分)(2009•张家界)计算:.12.(6分)(2009•兰州)如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).13.(6分)如图,在▱ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,则四边形KLMN为平行四边形吗?说明理由.14.(6分)(2009•庆阳)如图1,一扇窗户打开后用窗钩AB可将其固定.(1)这里所运用的几何原理是()(A)三角形的稳定性(B)两点之间线段最短;(C)两点确定一条直线(D)垂线段最短;(2)图2是图1中窗子开到一定位置时的平面图,若∠AOB=45°,∠OAB=30°,OA=60cm,求点B到OA边的距离.(≈1.7,结果精确到整数)x=3015.(6分)(2011•鼎湖区模拟)如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.=5(四.解答题(本大题4小题,每小题7分,共28分)16.(7分)某商场为了吸引顾客,设计了一个摸球获奖的箱子,箱子中共有20个球,其中红球2个,兰球3个,黄球5个,白球10个,并规定购买100元的商品,就有一次摸球的机会,摸到红、兰、黄、白球的(一次只能摸一个),顾客就可以分别得到80元、30元、10元、0元购物卷,凭购物卷仍然可以在商场购买,如果顾客不愿意摸球,那么可以直接获得购物卷10元.(1)每摸一次球所获购物卷金额的平均值是多少?(2)你若在此商场购买100元的货物,两种方式中你应选择哪种方式?为什么?,,,×××=1517.(7分)(2010•海门市二模)某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?18.(7分)(2013•武侯区一模)已知二次函数y=x2﹣kx+k﹣5(1)求证:无论k取何实数,此二次函数的图象与x轴都有两个交点;(2)若此二次函数图象的对称轴为x=1,求它的解析式.,19.(7分)如图,过点P(2,)作x轴的平行线交y轴于点A,交双曲线(x>0)于点N,作PM⊥AN交双曲线(x>0)于点M,连接AM.已知PN=4.(1)求k的值;(2)设直线MN解析式为y=ax+b,求不等式≥ax+b的解集.))代入y=,))∴由图象知,不等式五.解答题(本大题3小题,每小题9分,共27分)20.(9分)(2012•陵县二模)在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图1);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图2).请解答以下问题:(1)如图2,若延长MN交BC于P,△BMP是什么三角形?请证明你的结论;(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP?BP=.b21.(9分)(2009•黑河)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?22.(9分)(2009•湘潭)如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q.(1)当点P在线段AB上运动(不与A,B重合)时,求证:OA•BQ=AP•BP;(2)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m的函数解析式,并判断l 是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;(3)直线AB上是否存在点P,使△POQ为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.有最小值;,则,有最小值.。
2012年广东省汕头市初中毕业生学业考试数学

2012年广东省汕头市初中毕业生学业考试数学模拟试题(满分150分,考试时间100分钟)一、选择题:(本大题共8小题,每小题4分,共32分)1.21-的相反数是( ) A .2 B .-2 C .21D .21-2.下列等式一定成立的是( )A .532a a a =+ B .222)(b a b a +=+C .3336)2(b a ab =D .ab x b a x b x a x ++-=--)())((23. 如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30°B .40°C .60°D .70° 4. “天上星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( ).A .700×1020B .7×1022C .7×1023D .0.7×10235. 函数1+=x y 的自变量x 的取值范围是( )A .x >1B .x >-1C .x ≥1D .x ≥-1 6. 如图所示零件的左视图是( )7.已知样本数据l ,0,6,l ,2,下列说法不正确...的是( ) A .平均数是2 B .中位数是6 C .众数是l D .极差是68.如图,用数学的眼光欣赏这只蝴蝶图案,它的一种数学美体现 在蝴蝶图案的( ).A.轴对称性B.用字母表示数C.随机性D.数形结合二、填空题:请把下列各题的正确答案填写在题后的横线上(本大题共 5小题,每小题4分,共20分). 9.若2,3=-=+n m n m ,则22n m -的值为__________.10.不等式组13210x <x >-⎧⎨+⎩的整数解是_____________.(第6题)C . A . B .D . AC BD E(第3题)11.如图:点A 在双曲线ky x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k =______.12.已知圆锥的母线长5㎝,底面直径为6㎝,则其侧面积是___________.13.如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为____________.三、解答题:(本大题共5小题,每小题7分,共35分) 14.计算:12)31(60sin 421++︒---15.先化简、再求值:21111x x x ⎛⎫-÷ ⎪+⎝⎭-,其中x 是方程0122=--x x 的正根.16.今年“春节”期间,某市消费者委员会切实加强节日值班工作,认真做好受理消费者投诉咨询等工作,切实保护消费者合法权益。
2012年广东省中考数学模拟试题(四)及答案

2012年广东省中考全真模拟试题(四)数学试卷学校:__________班别:__________姓名:__________分数:____________说明:全卷共4页,考试用时100分钟,满分120分.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的. 1. 下列各式中与2是同类二次根式是()ABCD2.已知点(,3)A a -是点(2,)B b -关于原点O 的对称点,则a +b 的值为( )A 、6B 、5-C 、5D 、6±3.下列汽车标志中,是中心对称图形的是( )A.B.C D4.用配方法解一元二次方程2430x x -+=时可配方得( )A.2(2)7x -= B.2(2)1x -= C.2(2)1x += D.2(2)2x +=5.如图,O ⊙是ABC △的外接圆,已知50ABO ∠=°,则ACB ∠的大小为( ) A .40°B .30°C .45°D .50°二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填在答题卡相应的位置上.6的平方根是 .7.方程x (x -1)=2(x -1)的解为 .8.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB的长是 。
9.已知点P 到⊙O 的最近距离是3cm 、最远距离是7cm ,则此圆的半径是 。
(第5题)图210.如图,PA 、PB 分别切⊙O 于A 、B ,PA=10cm ,C 是劣弧AB 是的点(不与点A 、B 重合),过点C 的切线分别交PA 、PB 于点E 、F 。
则△PEF 的周长为 .三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:20100(1)|(2-+-12.解方程: x(x-2)+x-2=013.如图:在平面直角坐标系中,网格中每一个小 正方形的边长为1个单位长度;已知△ABC① 将△ABC 向x 轴正方向平移5个单位得△A 1B 1C 1, ② 再以O 为旋转中心,将△A 1B 1C 1旋转180°得△A 2B 2C 2画出平移和旋转后的图形,并标明对应字母.14.求值:()x x x x x 224422+÷+++,其中x =2.15.关于x 的一元二次方程230x x k --=有两个不相等的实数根.(1)求k 的取值范围. (2)请选择一个k 的负整数值,并求出方程的根.16. 2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署,为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2010年当年用于城市基础设施维护与建设资金达到8.45亿元。
2012-2013年广东省莲下初中毕业生学业考试数学模拟试题(附答案)

2012学年第二学期九年级第二次模拟考试数学参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案CBADBDABCD二、填空题11.(x+3)(x-3) 12.答案不唯一 13.2114.30° 15.12 16.⑴右、3,⑵①③﹒(第一个小题2分,第二个小题3分) 三、解答题17.解:(1)原式=3333232+-⨯……3分 =3 ……1分(2)x 1,2=32±-……4分(配方正确给2分,其他方法给相应步骤分数) 18.(1)画图正确.……2分 (2)画图正确.……2分 (3)2212222BB =+=……1分弧12B B 的长90π22π1802==.……1分 点B 所走的路径总长2π222=+.……2分 19.解:(1)P (两数相同)=13. (2)P (两数和大于10)=49. (画树形图或列表正确4分,结果正确各2分)20. 解:在ACD Rt ∆中,035tan CDAD =……2分在BCD Rt ∆中,045tan CDBD =……2分而5.4=-BD AD 即5.445tan 35tan 00=-CDCD ……1分 解得:5.10=CD ……2分答:大树的高为CD 为10.5米……1分 21.解:(1)∵直径AB ⊥DE ∴321==DE CE ……2分∵DE 平分AOA BCA 1B 1C 1 B 2 C 2∴OE AO CO 2121==又∵︒=∠90OCE ∴︒=∠30CEO在Rt △COE 中,223330cos ==︒=CEOE∴⊙O 的半径为2。
……3分(2)连结OF, 在Rt △DCP 中,∵︒=∠45DPC ∴︒=︒-︒=∠454590D ∴︒=∠=∠902D EOF ∴ππ=⨯⨯=2236090OEF S 扇形 ……5分 22.解:(1)依题意,设B 点坐标为(x ,2),代入 xy 10= 得x=5……2分滑道BCD 所在抛物线的解析式为2)5(2+--=x y ……3分 (2)甲同学从点A 滑到地面上D 点时,所经过的水平距离为10(2)3+……5分 24.(1) 由已知,CD ⊥BC ,∴ ∠ADC =90°–∠CBD ,又∵ ⊙O 切AY 于点B ,∴ OB ⊥AB ,∴∠OBC =90°–∠CBD ,∴ ∠ADC =∠OBC .又在⊙O 中,OB =OC =R ,∴∠OBC =∠ACB ,∴∠ACB =∠ADC . 又∠A =∠A ,∴△ABC ∽△ACD . ……6分(2) 由已知,sin A =35,又OB =OC =R ,OB ⊥AB ,∴ 在Rt △AOB 中,AO =sin OB A =35R =53R ,AB =225()3R R -=43R ,∴ AC =53R +R =83R .由(1)△ABC ∽△ACD ,∴ AC AD AB AC =,∴834833RAD R R =,因此 AD =163R .① 当点D 与点P 重合时,AD =AP =4,∴163R =4,∴R =34.② 当点D 与点P 不重合时,有以下两种可能:i) 若点D 在线段AP 上(即0<R <34),PD =AP –AD =4–163R ;ii) 若点D 在射线PY 上(即R >34),PD =AD –AP =163R –4.O AEPC DFB综上,当点D 在线段AP 上(即0<R <34)时,PD =4–163R ;当点D 在射线PY 上(即R >34)时,PD =163R –4.又当点D 与点P 重合(即R =34)时,PD =0,故在题设条件下,总有PD =|163R –4|(R >0). ……6分(没分类或缺少绝对值的扣2分)25.(1) 配方,得y =12(x –2)2 –1,∴抛物线的对称轴为直线x =2,顶点为P (2,–1) .取x =0代入y =12x 2 –2x +1,得y =1,∴点A 的坐标是(0,1).由抛物线的对称性知,点A (0,1)与点B 关于直线x =2对称,∴点B 的坐标是(4,1).设直线l 的解析式为y =kx +b (k ≠0),将B 、P 的坐标代入,有 14,12,k b k b =+⎧⎨-=+⎩解得1,3.k b =⎧⎨=-⎩∴直线l 的解析式为y =x –3. ……4分 (2) 连结AD 交O ′C 于点E ,∵ 点D 由点A 沿O ′C 翻折后得到,∴ O ′C 垂直平分AD . 由(1)知,点C 的坐标为(0,–3),∴ 在Rt △AO ′C 中,O ′A =2,AC =4,∴ O ′C =25.据面积关系,有 12×O ′C ×AE =12×O ′A ×CA ,∴ AE =455,AD =2AE =855.作DF ⊥AB 于F ,易证Rt △ADF ∽Rt △CO ′A ,∴AF DF ADAC O A O C=='', ∴ AF =AD O C '·AC =165,DF =AD O C '·O ′A =85,又 ∵OA =1,∴点D 的纵坐标为1–85= –35,∴ 点D 的坐标为(165,–35). ……4分(3) 显然,O ′P ∥AC ,且O ′为AB 的中点,∴ 点P 是线段BC 的中点,∴ S△DPC = S △DPB . 故要使S △DQC = S △DPB ,只需S △DQC =S △DPC .过P 作直线m 与CD 平行,则直线m 上的任意一点与CD 构成的三角形的面积都等于S △DPC ,故m 与抛物线的交点即符合条件的Q 点.容易求得过点C (0,–3)、D (165,–35)的直线的解析式为y =34x –3,据直线m 的作法,可以求得直线m 的解析式为y =34x –52.令12x 2–2x +1=34x –52,解得 x 1=2,x 2=72,代入y =34x –52,得y 1= –1,y 2=18,所以抛物线上存在两点Q 1(2,–1)(即点P )和Q 2(72,18),使得S △DQC = S △DPB .……6分(仅求出一个符合条件的点Q 的坐标,扣2分)。
广东省初中毕业生学业考试数学模拟试卷一及答案

广东省初中毕业生学业考试数学模拟试卷一及答案广东省初中毕业生学业考试数学模拟试卷一及答案中考试题对于每个考生来说都是很重要的,它影响着考生的高中去向,下面是店铺整理的最新中考模拟试题,希望能帮到你。
广东省初中毕业生学业考试数学模拟试卷一一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不成立的是( )A.|-2|=2B.|+2|=|-2|C.-|+2|=±|-2|D.-|-3|=+(-3)2.下列各实数中,最小的是( )A.-πB.(-1)0C.3-1D.|-2|3.如图M11,AB∥CD,∠C=32°,∠E=48°,则∠B的度数为( )A.120°B.128°C.110°D.100°图M11 图M124.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.5.下列计算正确的是( )A.2a+3b=5abB.(a2)4=a8C.a3•a2=a6D.(a-b)2=a2-b26.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为( )A.73×102B.7.3×103C.0.73×104D.7.3×1027.如图M12是根据某班50名一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为( )A.9,8B.8,9C.8,8.5D.19,178.已知x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( )A.m<-1B.m>1C.m<1,且m≠0D.m>-1,且m≠09.如图M13,在矩形ABCD中,AB=1,AD=2,将AD边绕点A 顺时针旋转,使点D恰好落在BC边上的点D′处,则阴影部分的扇形面积为( )A.πB.π2C.π3D.π4图M13 图M1410.如图M14,已知在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是边AC上一动点,过点E作EF∥BC,交AB边于点F,点D为BC 上任一点,连接DE,DF.设EC的长为x,则△DEF的面积y关于x的函数关系大致为( )A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为________.12.分式方程1x=32x+3的解为________.13.如图M15,自行车的链条每节长为2.5 cm,每两节链条相连接部分重叠的圆的直径为0.8 cm,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为________cm.14.如图M16,菱形ABCD的边长为15,sin∠BAC=35,则对角线AC的长为________.15.如图M17,△ABC与△DEF是位似图形,位似比为2∶3,若AB=6,那么DE=________.16.如图M18,已知S△ABC=8 m2,AD平分∠BAC,且AD⊥BD 于点D,则S△ADC=________ m2.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程:x2-2x-4=0.18.先化简,再求值:2xx+1-2x+6x2-1÷x+3x2-2x+1.其中x=3.19.如图M19,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列表法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?21.如图M110,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.(1)求证:①△ABG≌△AFG; ②BG=GC;(2)求△FGC的面积.22.“关注校车,关儿童”成为今年全社会热议的焦点之一.某幼儿园计划购进一批校车.若单独购买35座校车若干辆,现有的需接送儿童刚好坐满;若单独购买55座校车,则可以少买一辆,且余45个空座位.(1)求该幼儿园现有的需接送儿童人数;(2)已知35座校车的单价为每辆32万元,55座校车的单价为每辆40万元.根据购车资金不超过150万元的预算,学校决定同时购进这两种校车共4辆(可以坐不满),请你计算本次购进小车的费用.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M111,一次函数y=kx+b的图象与反比例函数y=mx(x>0)的图象交于P(n,2),与x轴交于A(-4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D,使得以B,C,P,D为顶点的四边形是菱形,求出点D的坐标.24.⊙O的半径为5,AB是⊙O的直径,点C在⊙O上,点D在直线AB上.(1)如图M112(1),已知∠BCD=∠BAC,求证:CD是⊙O的切线;(2)如图M112(2),CD与⊙O交于另一点E.BD∶DE∶EC=2∶3∶5,求圆心O到直线CD的距离;(3)若图M112(2)中的点D是直线AB上的动点,点D在运动过程中,会出现C,D,E在三点中,其中一点是另外两点连线的中点的情形,问这样的.情况出现几次?25.如图M113(1),矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图M113(2),若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M,N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.广东省初中毕业生学业考试数学模拟试卷一答案一、选择题(本大题共10小题,每小题3分,共30分)1.在12,2,4,-2这四个数中,互为相反数的是( )A.12与2B.2与-2C.-2与12D.-2与42.下列四个几何体中,俯视图是圆的几何体共有( )A.1个B.2个C.3个D.4个3.计算(-1)2+20-|-3|的值等于( )A.-1B.0C.1D.54.若m>n,则下列不等式中成立的是( )A.m+ana2 D.a-m5.植树造林可以净化空气、美化环境.据统计一棵50年树龄的树,以累计计算,除去花、果实与木材价值,总计创值约196 000美元.将196 000用科学记数法表示应为( )A.196×103B.19.6×104C.1.96×105D.0.196×1066.如图M21是某市五月份1至8日的日最高气温随时间变化的折线统计图,则这8天的日最高气温的中位数是( )A.22℃B.22.5℃C.23℃D.23.5℃7.如图M22,a∥b,∠3+∠4=110°,则∠1+∠2的度数为( )A.60°B.70°C.90°D.110°8.如图M23,下列四个图形中,既是轴对称图形又是中心对称图形的有( )图M23A.1个B.2个C.3个D.4个9.不等式组x-1≥1,2x-5<1的解集在数轴上表示为( )A. B. C. D.10.如图M24,已知直线AB与反比例函数y=-2x和y=4x交于A,B两点,与y轴交于点C,若AC=BC,则S△AOB=()A.6B.7C.4D.3二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:a3-4a2b+4ab2=________.12.已知|a-1|+2a+b-5=0,则ab的值为________.13.一个多边形的每个外角都等于72°,则这个多边形的边数为________.14.如图M25,在△ABC中,D,E分别为AB,AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD的周长=________.图M25 图M26 图M2715.如图M26,△ABC的顶点都在正方形网格的格点上,则cosC=________.16.如图M27,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是________(结果保留π).三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解方程组x-2y=8,①2x+y=1.②18.先化简,再求值:2x+1x2+6x+9-13+x÷x-2x2+3x,其中x=3-3.19.如图M28,在△ABC中,AB=AC,点M在BA的延长线上.(1)按下列要求作图,并在图中标明相应的字母.①作∠CAM的平分线AN;②作AC的中点O,连接BO,并延长BO交AN于点D,连接CD.(2)在(1)的条件下,判断四边形ABCD的形状.并证明你的结论.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?21.某市某校在推进体育学科新课改的过程中,开设的选修课有A:篮球;B:排球;C:羽毛球;D:乒乓球.学生可根据自己的爱好选修一门学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图M29).(1)求出该班的总人数,并补全频数分布直方图;(2)求出B,D所在扇形的圆心角的度数和;(3)如果该校共有学生3000名,那么选修乒乓球的学生大约有多少名?22.如图M210,已知矩形ABCD,动点E从点B沿线段BC向点C运动,连接AE,DE,以AE为边作矩形AEFG,使边FG过点D.(1 )求证:△ABE∽△AGD;(2)求证:矩形AEFG与矩形ABCD的面积相等;(3)当AB=2 3,BC=6时,①求BE为何值时,△AED为等腰三角形?②直接写出点E从点B运动到点C时,点G所经过的路径长.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M211,二次函数y=12x2+bx+c的图象交x轴于A,D 两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D点的坐标;(3)二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.24.已知:AD,BC是⊙O的两条互相垂直的弦,垂足为点E,点H是弦BC的中点,AO是∠DAB的平分线,半径OA交弦CB于点M.图M212 图M213 图M214(1)如图M212,延长OH交AB于点N,求证:∠ONB=2∠AON;(2)如图M213,若点M是OA的中点,求证:AD=4OH;(3)如图M214,延长HO交⊙O于点F,连接BF,若CO的延长线交BF于点G,CG⊥BF,CH=3,求⊙O的半径长.25.操作:如图M215,将一把直角三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设A,P两点间的距离为x.探究:(1)当点Q在边CD上时,线段PQ与线段PB之间有的大小关系?试证明你观察到的结论;(2) 当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x 之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.图M215广东省初中毕业生学业考试数学模拟试卷一答案1.C2.A3.D4.C5.B6.B7.B8.D9.C 10.D11.8 12.x=3 13.102.8 14.24 15.9 16.417.解:由原方程移项,得x2-2x=4.等式两边同时加上一次项系数一半的平方,得x2-2x+1=5.配方,得(x-1)2=5.∴x=1±5.∴x1=1+5,x2=1-5.18.解:原式=2xx+1-2x+3x+1x-1•x-12x+3=2xx+1-2x-1x+1=2x+1.当x=3时,原式=23+1=3-1.19.(1)解:如图D160,EF即为所求.图D160(2)证明:如图,∵四边形ABCD为矩形,∴AD∥BC.∴∠ADB=∠CBD.∵EF垂直平分线段BD,∴BO=DO.在△DEO和△BFO中,∵∠ADB=∠CBD,BO=DO,∠DOE=∠BOF,∴△DEO≌△BFO(ASA).∴EO=FO.∴四边形DEBF是平行四边形.又∵EF⊥BD,∴四边形DEBF是菱形.20.解:(1)∵将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上,∴P(抽到奇数)=23.(2)画树状图(如图D161)得图D161∴能组成的两位数是12,13,21,23,31,32.∵共有6种等可能的结果,这个两位数恰好是4的倍数的有2种情况,∴这个两位数恰好是4的倍数的概率为26=13.21.(1)证明:①在正方形ABCD中,AD=AB,∠D=∠B=∠DCB=90°,又∵△ADE沿AE对折至△AFE,延长EF交边BC于点G,∴∠AFG=∠AFE=∠D=90°,AF=AD.即有∠B=∠AFG=90°,AB=AF,AG=AG.在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,∴△ABG≌△AFG.②∵AB=6,点E在边CD上,且CD=3DE,∴DE=FE=2,CE=4.不妨设BG=FG=x,(x>0),则CG=6-x,EG=2+x,在Rt△CEG中,(2+x)2=42+(6-x)2 ,解得x=3,于是BG=GC=3.(2)解:∵GFFE=32,∴GFGE=35.∴S△FGC=35S△EGC=35×12×4×3=185.22.解:(1)设单独租用35座客车需x辆.由题意,得35x=55(x-1)-45.解得x=5.∴35x=35×5=175.答:该幼儿园现有的需接送儿童人数为175人.(2)设租35座客车y辆,则租55座客车(4-y)辆.由题意,得35y+554-y≥175,32y+404-y≤150.解这个不等式组,得114≤y≤214.∵y取正整数,∴y=2.∴4-y=4-2=2.∴购进小车的费用为32×2+40×2=144(万元).答:本次购进小车的费用是144万元.23.解:(1)∵AC=BC,CO⊥AB,A(-4,0),∴O为AB的中点,即OA=OB=4.∴P(4,2),B(4,0).将A(-4,0)与P(4,2)代入y=kx+b,得-4k+b=0,4k+b=2.解得k=14,b=1.∴一次函数解析式为y=14x+1.将P(4,2)代入反比例函数解析式得m=8,即反比例函数解析式为y=8x.(2)如图D162,图D162当PB为菱形的对角线时,∵四边形BCPD为菱形,∴PB垂直且平分CD.∵PB⊥x轴,P(4,2),∴点D(8,1).当PC为菱形的对角线时,PB∥CD,此时点D在y轴上,不可能在反比例函数的图象上,故此种情形不存在.综上所述,点D(8,1).24.(1)证明:如图D163,连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵AB是⊙O的直径,∴∠ACB=90°.又∵∠BCD=∠BAC=∠OCA,∴∠BCD+∠OCB=90°,即OC⊥CD.∴CD是⊙O的切线.图D163 图D164(2)解:∵∠ADE=∠CDB,∠BCD=∠EAD,∴△BCD∽△EAD.∴CDAD=BDED.∴CE+EDAB+BD=BDED.又∵BD∶DE∶EC=2∶3∶5,⊙O的半径为5,∴BD=2,DE=3,EC=5.如图D164,连接OC,OE,则△OEC是等边三角形,作OF⊥CE于F,则EF=12CE=52,∴OF=5 32.∴圆心O到直线CD的距离是5 32.(3)解:这样的情形共有出现三次,当点D在⊙O外时,点E是CD中点,有以下两种情形,如图D165、图D166;当点D在⊙O内时,点D是CE中点,有以下一种情形,如图D167.图D165 图D166 图D16725.(1)证明:由矩形和翻折的性质可知AD=CE,DC=EA.在△ADE与△CED中,AD=CE,DE=ED,DC=EA,∴△DEC≌△EDA(SSS).(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,∴∠ACD=∠CAE.∴AF=CF.设DF=x,则AF=CF=4-x.在Rt△ADF中,AD2+DF2=AF2,即32+x2=(4-x)2.解得x=78,即DF=78.(3)解:如图D168,由矩形PQMN的性质得PQ∥CA,图D168∴PECE=PQCA.又∵CE=3,AC=AB2+BC2=5.设PE=x(0过点E作EG⊥AC于G,则PN∥EG,∴CPCE=PNEG.又∵在Rt△AEC中,EG•AC=AE•CE,解得EG=125,∴3-x3=PN125,即PN=45(3-x).设矩形PQMN的面积为S,则S=PQ•PN=-43x2+4x=-43x-322+3(0所以当x=32,即PE=32时,矩形PQMN的面积最大,最大面积为3.【广东省初中毕业生学业考试数学模拟试卷一及答案】。
2012年广东省初中毕业生学业考试数学模拟试卷(一)及答案

2012年广东省初中毕业生学业考试数学模拟试卷(一)(时间:100分钟,满分120分)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的) 1.-4的倒数是( D )A .4B .-4 C.14 D .-142.一种细菌的半径是0.000 045米,该数字用科学记数法表示正确的是( C )A .4.5×105B .45×106C .4.5×10-5D .4.5×10-4 3.函数y =-x x -1中自变量x 的取值范围是( D )A .x ≥0B .x <0且x ≠1C .x <0D .x ≥0且x ≠14.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解是( A )A.⎩⎪⎨⎪⎧ x =1y =2B.⎩⎪⎨⎪⎧ x =1y =-2C.⎩⎪⎨⎪⎧ x =2y =1D.⎩⎪⎨⎪⎧x =0y =-1 5.下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是( C )A. B. C. D.二、填空题(本大题共5小题,每小题4分,共20分) 6.因式分解:ab 2-2ab +a =a (b -1)2.7.如果点P (4,-5)和点Q (a ,b )关于y 轴对称,则a 的值为-4. 8.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是5. 9.双曲线y =2k -1x 的图象经过第二、四象限,则k 的取值范围是k <12.10.如图1-1,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有100个.图1-1三、解答题(本大题共5小题,每小题6分,共30分) 11.计算:(-2 011)0+⎝⎛⎭⎫22-1+||2-2-2cos60°. 解:原式=1+2+2-2-1=212.先化简,再求值:x -y x ÷⎝⎛⎭⎫x -2xy -y 2x ,其中x =2,y =-1.解:原式=x -y x ·x x 2-2xy +y 2=1x -y , 当x =2,y =-1时,原式=1x -y =13.13.如图1-2,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DFE 关于点O 成中心对称,△ABC 与△DFE 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置;(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1;(3)在网格中画出格点M ,使A 1M 平分∠B 1A 1C 1.图1-2解:(1)如图D58,图中点O 为所求.图D58(2)如图D58,图中△A 1B 1C 1为所求. (3)如图D58,图中点M 为所求.14.如图1-3,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.图1-3解:(1)把A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0c =-6,解得⎩⎪⎨⎪⎧b =4c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6.(2)∵该抛物线对称轴为直线x =-42×⎝⎛⎭⎫-12=4,∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2, ∴S △ABC =12×AC ×OB =12×2×6=6.15.某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB =6 m , ∠ABC =45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC =30°(如图1-4所示).(1)求调整后楼梯AD 的长; (2)求BD 的长(结果保留根号).图1-4解:(1)已知AB =6 m ,∠ABC =45°, ∴AC =BC =AB ·sin45°=6×22=3 2,∵∠ADC =30°,∴AD =2AC =6 2. 答:调整后楼梯AD 的长为6 2m. (2)CD =AD ·cos30°=6 2×32=3 6,∴BD =CD -BC =3 6-3 2. 答:BD 的长为(3 6-3 2)m.四、解答题(本大题共4小题,每小题7分,共28分)16.从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.解:(1)抽取1名,恰好是女生的概率是25.(2)分别用男1、男2、男3、女1、女2表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共10种,它们出现的可能性相同.所有结果中,满足抽取2名,恰好是1名男生和1名女生(记为事件A )的结果共6种,所以P (A )=610=35.17.如图1-5,P 是矩形ABCD 下方一点,将△PCD 绕P 点顺时针旋转60°后恰好D 点与A 点重合,得到△PEA ,连接EB ,问△ABE 是什么特殊三角形?请说明理由.图1-5解:△ABE 是等边三角形,理由如下: △PCD 绕点P 顺时针旋转60°得到△PEA ,PD 的对应边是P A 、CD 的对就边是EA , 线段PD 旋转到P A ,旋转的角度是60°,即∠APD 为60°, ∴△P AD 是等边三角形, ∴∠DAP =∠PDA =60°, ∴∠PDC =∠P AE =30°,∠DAE =30°, ∴∠P AB =30°,即∠BAE =60°, 又∵CD =AB =EA , ∴△ABE 是等边三角形.18.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将水果运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意得⎩⎪⎨⎪⎧4x +2 8-x ≥20x +2 8-x ≥12, 解此不等式组得2≤x ≤4. ∵x 是正整数, ∴x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三4辆4辆(2)方案一所需运费为300×2+240×6=2 040元; 方案二所需运费为300×3+240×5=2 100元; 方案三所需运费为300×4+240×4=2 160元. ∴王灿应选择方案一运费最少,最少运费是2 040元.19.已知:如图1-6,在Rt △ABC 中,∠C =90°,∠BAC 的角平分线AD 交BC 边于D .(1)以AB 边上一点O 为圆心,过A 、D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由; (2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB =6,BD =2 3,求线段BD 、BE 与劣弧DE 所围成的图形面积(结果保留根号和π).图1-6解:(1)如图D59(需保留线段AD 中垂线的痕迹).图D59直线BC 与⊙O 相切.理由如下: 连接OD ,∵OA =OD ,∴∠OAD =∠ODA . ∵AD 平分∠BAC ,∴∠OAD =∠DAC . ∴∠ODA =∠DAC . ∴OD ∥AC . ∵∠C =90°,∴∠ODB =90°,即OD ⊥BC . 又∵直线BC 过半径OD 的外端, ∴BC 为⊙O 的切线. (2)设OA =OD =r ,在Rt △BDO 中,OD 2+BD 2=OB 2, ∴r 2+(2 3)2=(6-r )2,解得r =2. ∵tan ∠BOD =BD OD =3,∴∠BOD =60°.∴S 扇形ODE =60π·22360=23π.∴所求图形面积为S △BOD -S 扇形ODE =2 3-23π.五、解答题(本大题共3小题,每小题9分,共27分)20.对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值; (2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值. 解:(1)⎪⎪⎪ 57⎪⎪⎪68=5×8-6×7=-2.(2)⎪⎪⎪ x +1x -2⎪⎪⎪3x x -1=()x +1()x -1-3x ()x -2 =x 2-1-3x 2+6x =-2x 2+6x -1. 又∵x 2-3x +1=0, ∴x 2-3x =-1,原式=-2(x 2-3x )-1=-2×(-1)-1=1.21.如图1-7(1),将菱形纸片AB (E )CD (F )沿对角线BD (EF )剪开,得到△ABD 和△ECF ,固定△ABD ,并把△ABD 与△ECF 叠放在一起.(1)操作:如图1-7(2),将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,设旋转时FC 交BA 于点H (H 点不与B 点重合),FE 交DA 于点G (G 点不与D 点重合).求证:BH ·GD =BF 2.(2)操作:如图1-7(3),△ECF 的顶点F 在△ABD 的BD 边上滑动(F 点不与B 、D 点重合),且CF 始终经过点A ,过点A 作AG ∥CE ,交FE 于点G ,连接DG .探究:FD +DG =________.请予以证明.图1-7(1)证明:∵将菱形纸片AB (E )CD (F )沿对角线BD (EF )剪开, ∴∠B =∠D , ∵将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,∴BF =DF , ∵∠HFG =∠B , ∴∠GFD =∠BHF , ∴△BFH ∽△DGF ,∴BF DG =BH DF , ∴BH ·GD =BF 2.(2)证明:∵AG∥CE,∴∠F AG=∠C,∵∠CFE=∠CEF,∴∠AGF=∠CFE,∴AF=AG,∵∠BAD=∠C,∴∠BAF=∠DAG,△ABF≌△ADG,∴FB=DG,∴FD+DG=BD.22.如图1-8,已知二次函数y=x2-2mx+4m-8.(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围;(2)以抛物线y=x2-2mx+4m-8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M、N两点在抛物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由;(3)若抛物线y=x2-2mx+4m-8与x轴交点的横坐标均为整数,求整数m的值.图1-8解:(1)∵y=(x-m)2+4m-8-m2,∴由题意得,m≥2.(2)如图D60,根据抛物线和正三角形的对称性,可知MN⊥y轴,设抛物线的对称轴与MN交于点B,则AB=3BN.设N(a,b),∴BN=a-m(m<a),又AB=y B-y A=b-(4m-8-m2)=a2-2ma+4m-8-(4m-8-m2)=a2-2ma+m2=(a-m)2,∴(a-m)2=3(a-m),∴a-m=3,∴BN=3,AB=3,∴S△AMN=12AB·2BN=12×3×2×3=3 3.∴△AMN的面积是与m无关的定值.图D60(3)令y =0,即x 2-2mx +4m -8=0时,有: x =2m ±2m 2-4m +82=m ±m -2 2+4,由题意,(m -2)2+4为完全平方数, 令(m -2)2+4=n 2,即(n +m -2)(n -m +2)=4 ∵m 、n 为整数,∴⎩⎪⎨⎪⎧ n +m -2=2n -m +2=2或⎩⎪⎨⎪⎧n +m -2=-2n -m +2=-2, 解得⎩⎪⎨⎪⎧ m =2n =2或⎩⎪⎨⎪⎧m =2n =-2,综合得m =2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OAB图5 ★机密•启用前2012年广东省初中毕业生学业考试数学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.下列各组数中,互为相反数的是( ) A .2和21B .-2和21-C .-2和2D .2和212.下列运算正确的是( ) A .42)2(-=- B .49232=-⎪⎭⎫ ⎝⎛- C .1836a a a =∙ D .2b a ab b a 222=-3.据东山区劳动保障局统计,到“十一五”末,全区累计参加各类养老保险总人数达到88.2万人,比“十五”末增加37.7万人,参加各类医疗保险总人数达到130.5万人,社会保险加快从制度全覆盖向人员全覆盖迈进。
将数据130.5万用科学记数法(请保留两个有效数字)表示为( )A .1.3×102B .1.305×106C .1.3×106D .1.3×1054.一个正多边形的每个外角都是72°,则这个正多边形的对角线有________条.(原创) A .3 B .4 C .5 D .65.左图所示的物体的俯视图是( )A B C D二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上6.分解因式:-9x 2+4= .7.现有A 、B 两只不透明口袋,每只口袋里装有两个相同的球,A 袋中的两个球上分别写了“细”、“致”的字样,B 袋中的两个球上分别写了“信”、“心”的字样,从每只口袋里各摸出一个球,刚好能组成“细心”字样的概率是 . 8. 若x =3是方程x 2-3mx +6m =0的一个根,则m 的值为 。
9.如图5,在⊙O 中,圆心角∠AOB =120°,弦AB =23cm ,则OA =___________cm 。
10. 如图,在直角坐标系中,射线OA 与x 轴正半轴重合,以O 为旋转中心,将OA 逆时针旋转:OA ⇒OA 1⇒OA 2⇒…⇒OA n …,旋转角∠AOA 1=2°, ∠A 1OA 2=4°, ∠A 2OA 3=8°,… 要求下一个旋转角(不超过360°)是前一个旋转角的2倍.当旋转角大于360°时,又从2°开始旋转,即∠A 8OA 9=2°, ∠A 9OA 10=4°,… 周而复始.则当OA n 与y 轴负半轴第一次重合时,n 的值为 (提示:2+22+23+24+25+26+27+28=510)三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算: 131212sin 458.2o -⎛⎫--++ ⎪⎝⎭12.解方程:)2(3)2(4-=-+x x x x x13.如图:扇形OAB 的圆心角∠AOB =120°,半径OA=6cm ,(1)请你用尺规作图的方法作出扇形的对称轴(不写作法,保留作图痕迹) (2)若将此扇形围成一个圆锥的侧面,求圆锥底面圆的半径.14.如图,在△ABC 中,D 是BC 边上的一点,已知BE ⊥AD ,CF ⊥AD ,且BE =CF . (1)请你判断AD 是△ABC 的中线还是角平分线,请证明你的结论. (2)连接BF 、CE ,若四边形BFCE 是菱形,则△ABC 中应 添加一个条件是 .42246851xOA 8A 9A nyA 7A 6A 5A 4A 3A 2A 1AOAB(第13题图)15.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B 处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取3=1.732,结果精确到1m)四、解答题(二)(本大题4小题,每小题7分,共28分)16.为打造“书香校园”,某学校计划用不超过1 900本科学类书籍和1 620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?17.合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动.将调查结果分析整理后,制成了下面的两个统计图.其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类B:能将垃圾放到规定的地方,但不会考虑垃圾的分类C:偶尔会将垃圾放到规定的地方E D CB A1.545︒30︒100D :随手乱扔垃圾根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全上面的条形统计图; (2)如果该校共有师生2 400人,那么随手乱扔垃圾的约有多少人?18.如图,一次函数的图象与反比例函数13y x=-(x <0)的图象相交于A 点,与y 轴、x 轴分别相交于B 、C 两点,点A 的坐标为(-1,3)点C 的坐标为(2,0), (1)求一次函数的解析式; (2)设函数2a y x =(x >0)的图象与13y x =-(x <0)的图象关于y 轴对称,在2a y x=(x >0)的图象上取一点P (P 点的横坐标大于2),过P 点作PQ ⊥x 轴,垂足是Q ,若四边形BCQP 的面积等于2,求P 点的坐标.19.如图,在梯形ABCD 中,AB ∥DC ,∠BCD =90°,且AB =1,BC =2,tan ∠ADC =2. ⑴求证:DC =BC ;⑵E 是梯形内的一点,F 是梯形外的一点,且∠EDC =∠FBC ,DE =BF ,试判断△ECF 的形状,并证明你的结论.五、解答题(三)(本大题3小题,每小题9分,共27分)20.对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值; (2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值.21.如图,将菱形纸片AB (E )CD (F )沿对角线BD (EF )剪开,得到△ABD 和△ECF ,固定△ABD ,并把△ABD 与△ECF 叠放在一起.(1)操作:如图1-7(2),将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,设旋转时FC 交BA 于点H (H 点不与B 点重合),FE 交DA 于点G (G 点不与D 点重合).求证:BH ·GD =BF 2.(2)操作:如图1-7(3),△ECF 的顶点F 在△ABD 的BD 边上滑动(F 点不与B 、D 点重合),且CF 始终经过点A ,过点A 作AG ∥CE ,交FE 于点G ,连接DG .探究:FD +DG =________.请予以证明.22.如图,已知抛物线y=-12x2+x+4交x轴的正半轴于点A,交y轴于点B.(1)求A、B两点的坐标,并求直线AB的解析式;(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.参考答案1.C 2.B 3.C 4. C 5.C 6.)32)(32(x x -+ 7.418.3 9、4 10.36 11.解:42222212=++⨯--=原式-1=3 12.解:方程两边同乘最简公分母x (x -2),得x +4=3x ,解得x =2.经检验:x =2是原方程的增根. ∴原方程没有实数解2. 13.解:(1)如图所示.(2)∵扇形的弧长===4π,圆锥的底面圆的周长=2πR=4π,解得:R=2; 14.解:(1)AD 是△ABC 的中线理由如下:∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°. 又∵BE=CF,∠BDE=∠CFD, ∴△BDE≌△CFD(AAS). ∴BD =CD , AD 是△ABC 的中线.(2)AB=AC(或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC)15.解:设CE =x m ,则由题意可知BE =x m ,AE =(x +100)m . 在Rt △AEC 中,tan ∠CAE =AECE ,即tan30°=100+x x∴33100=+x x ,3x =3(x +100) 解得x =50+503=136.6∴CD =CE +ED =(136.6+1.5)=138.1≈138(m) 答:该建筑物的高度约为138m .16.解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x)个.由题意得⎩⎪⎨⎪⎧80x +3030-x ≤1 90050x +6030-x ≤1 620解这个不等式组得18≤x≤20. -----4分 由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二,组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型图书角10个.(2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用越低,所以方案一费用最低,最低费用是860×18+570×12=22 320(元).方法二:①方案一的费用是:860×18+570×12=22 320(元); ②方案二的费用是:860×19+570×11=22 610(元); ③方案三的费用是:860×20+570×10=22 900(元). 故方案一费用最低,最低费用是22 320元.17.解:(1)由统计图可知B 种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人)D 种情况的人数为300-(150+30+90)=30(人). 补全图形略.(2)因为该校共有师生2 400人,所以随手乱扔垃圾的人约为2 400×30300=240(人)18.解:⑴设一次函数解析式为b kx y +=∵它的图象过A (-1,3)、C (2,0) ∴⎩⎨⎧=+=+-023b k b k解得⎩⎨⎧=-=21b k∴一次函数的解析式为2+-=x y . ⑵∵)0(2>=x x a y 的图象与)0(31<-=x xy 的图象关于y 轴对称, ∴)0(32>=x xy ∵B 点是直线2+-=x y 与y 轴的交点, ∴点B 的坐标为(0,2)设P(n ,n 3),(2>n ),则S 四边形BCQP =S 梯形BOQP -S △BOC =2 即22221)32(21=⨯⨯-+n n , 解得 25=n , ∴P (25,56) 19.(1)过A 作DC 的垂线AM 交DC 于M ,则AM =BC =2.(1分) 又tan ∠ADC =2, 所以212DM ==.因为MC =AB =1,所以DC =DM+MC =2,即DC =BC . (2)等腰直角三角形.证明:因为DE =DF ,∠EDC =∠FBC ,DC =BC . 所以,△DEC ≌△BFC所以,CE =CF ,∠ECD =∠BCF .所以,∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.20.解:(1)⎪⎪⎪ 57⎪⎪⎪68=5×8-6×7=-2. (2)⎪⎪⎪ x +1x -2⎪⎪⎪3x x -1=()x +1()x -1-3x ()x -2 =x 2-1-3x 2+6x =-2x 2+6x -1. 又∵x 2-3x +1=0, ∴x 2-3x =-1,原式=-2(x 2-3x )-1=-2×(-1)-1=1.21.(1)证明:∵将菱形纸片AB (E )CD (F )沿对角线BD (EF )剪开,∴∠B =∠D ,∵将△ECF 的顶点F 固定在△ABD 的BD 边上的中点处,△ECF 绕点F 在BD 边上方左右旋转,∴BF =DF ,∵∠HFG =∠B , ∴∠GFD =∠BHF , ∴△BFH ∽△DGF ,∴BF DG =BH DF, ∴BH ·GD =BF 2.(2)证明:∵AG ∥CE , ∴∠F AG =∠C , ∵∠CFE =∠CEF , ∴∠AGF =∠CFE , ∴AF =AG ,∵∠BAD =∠C ,∴∠BAF =∠DAG , △ABF ≌△ADG , ∴FB =DG , ∴FD +DG =BD . 22.(1)令0=y ,得04212=++-x x ,即0822=--x x , 解得21-=x ,42=x ,所以)0,4(A .令0=x ,得4=y ,所以)4,0(B . 设直线AB 的解析式为b kx y +=,则⎩⎨⎧==+404b b k ,解得⎩⎨⎧=-=41b k ,所以直线AB 的解析式为4+-=x y . (2)当点),(x x P 在直线AB 上时,4+-=x x ,解得2=x ,当点)2,2(x x Q 在直线AB 上时,422+-=xx ,解得4=x .所以,若正方形PEQF 与直线AB 有公共点,则42≤≤x .(3)当点)2,(xx E 在直线AB 上时,(此时点F 也在直线AB 上)42+-=x x ,解得38=x . ①当382<≤x 时,直线AB 分别与PE 、PF 有交点,设交点分别为C 、D , 此时,42)4(-=+--=x x x PC , 又PC PD =, 所以22)2(221-==∆x PC S PCD , 从而,22)2(241--=x x S 88472-+-=x x 78)716(472+--=x .因为387162<≤,所以当716=x 时,78max =S . ②当438≤≤x 时,直线AB 分别与QE 、QF 有交点,设交点分别为M 、N ,OABxyPEQ FM NOABPEQ Fxy (第22题)CD新世纪教育网 精品资料 版权所有@新世纪教育网 新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。