练习4 2.4 绝对值与相反数(2)
七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。
苏科版七年级上册第二章2.4相反数、绝对值专题训练(含解析答案)

相反数、绝对值专题训练注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷(选择题)一、选择题(本大题共7小题,共21.0分)1.若m•n≠0,则+的取值不可能是()A. 0B. 1C. 2D.2.若a、b都是不为零的数,则的结果为A. 3或B. 3或C. 或1D. 3或或13.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A. 0B. 1或C. 2或D. 0或4.有理数abc<0,则++的值是()A. 1B. 3C. 0D. 1或5.实数a、b在数轴上的位置如图,则|a+b|-|a-b|等于()A. 2aB. 2bC.D.6.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A. B. C. D.7.如图,a,b为数轴上的两点表示的有理数,在a+b,b-a,|a-b|,|b|-|a|中,负数的个数有()A. 1B. 2C. 3D. 4第II卷(非选择题)二、填空题(本大题共7小题,共21.0分)8.已知|a|=3,|b|=4,且a<b,则的值为______ .9.如果n<0,那么= ______ .10.若a,b都是不为零的有理数,那么+的值是______.11.有理数a、b、c在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|=______.12.若a、b、c在数轴上的位置如图,则|a|-|b-c|+|c|= ______ .13.若,则的取值范围是________.14.若有理数在数轴上的位置如图所示,则化简:______.三、计算题(本大题共1小题,共6.0分)15.已知有理数a、b、c在数轴上的对应点如图所示,化简:|a-b|-|a+b|+|a|+|a-c|.四、解答题(本大题共5小题,共40.0分)16.有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;(2)化简:|c-a|-|c-b|+|a+b|.17.阅读下列材料并解决有关问题:我们知道,所以当x>0时,==1;当x<0时,==-1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+= ______ ;(2)已知a,b是有理数,当abc≠0时,++= ______ ;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++= ______ .18.已知a、b、c均为非零的有理数,且=-1,求++的值.19.实数a,b,c在数轴上的位置如图,化简|b+c|-|b+a|+|a+c|.20.设a为有理数.(1)若b=(a+2)2+3,则b是否有最小值?若有,请求出这个最小值,并求此时a的值;若没有,请说明理由.(2)试比较a2与|a|的大小.答案和解析1.【答案】B【解析】【分析】此题主要考查了绝对值的定义及有理数的加法法则.由于m、n为非零的有理数,则有3种情况要考虑到,用到了分类讨论的思想.由于m、n为非零的有理数,根据有理数的分类,m、n的值可以是正数,也可以是负数.那么分三种情况分别讨论:①两个数都是正数;②两个数都是负数;③其中一个数是正数另一个是负数,针对每一种情况,根据绝对值的定义,先去掉绝对值的符号,再计算即可.【解答】解:分3种情况:①两个数都是正数;∴+=1+1=2,②两个数都是负数;∴+=-1-1=-2,③其中一个数是正数另一个是负数,所以,原式=-1+1=0.∴+的取值不可能是1.故选B.2.【答案】B【解析】【分析】本题考查了绝对值的意义及分式的化简.正数和0的绝对值是它本身,负数和0的绝对值是它的相反数.当x>0时,=1;当x<0时,=-1.互为相反数(0除外)的两个数的商为-1,相同两个数(0除外)的商为1.可从a、b同号,a、b异号,分类讨论得出结论.【解答】解:①当a>0,b>0时则++=1+1+1=3;②当a<0,b<0时=-1-1+1=-1;③当a>0,b<0时=1-1-1=-1;④当a<0,b>0时=-1+1-1=-1;故选B.3.【答案】A【解析】【分析】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:,所以;②当a,b,c为两负一正时:,所以.由①②知所有可能的值为0.应选A.4.【答案】D【解析】解:∵abc<0,∴a,b,c中有一个负数或三个负数,当有一个负数时,原式=-1+1+1=1;当有三个负数时,-1-1-1=-3,故选D.利用有理数的乘法法则判断得到a,b,c中负数的个数,利用绝对值的代数意义化简即可得到结果.此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.5.【答案】A【解析】【分析】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a+b>0,a-b<0,则原式=a+b+a-b=2a.故选A.6.【答案】C【解析】【分析】本题考查数轴,解题的关键是明确数轴的特点,能举出错误选项的反例.根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=-2,b=0,c=2,则b+c>0,故选项A错误;如果a=-2,b=-1,c=0.9,则|b|>|c|,故选项B错误;如果a=-2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选:C.7.【答案】B【解析】解:有数轴可得:a<0,b>0,且|a|>|b|,∴a+b<0,b-a>0,|a-b|>0,|b|-|a|<0,∴负数的个数有2个.故选:B.由数轴的性质可知a<0,b>0,且|a|>|b|,由此判断每个式子的符号.本题考查了数轴.关键是利用数轴判断a、b的符号,a、b的关系式.8.【答案】-7或-【解析】【分析】本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.【解答】解:∵|a|=3,|b|=4,∴a=±3,b=±4,∵a<b,∴当a=3时,b=4,∴=-,当a=-3时,b=4,∴=-7,故答案为-7或-.9.【答案】-1【解析】解:∵n<0,∴|n|=-n,∴==-1.故答案为:-1.根据负数的绝对值等于它的相反数去掉绝对值号,再根据有理数的除法运算法则进行计算即可得解.本题考查了有理数的除法,绝对值的性质,是基础题,正确去掉绝对值号是解题的关键.10.【答案】2,0或-2【解析】解:①a>0,b>0;则+=1+1=2,②a>0,b<0或a<0,b>0,则+=1-1=0或+=-1+1=0③a<0,b<0,则+=-1-1=-2.所以+的值是2,0或-2.故答案为:2,0或-2.分情况讨论①a>0,b>0;②a>0,b<0或a<0,b>0,③a<0,b<0,然后根据范围去掉绝对值可得出+可能的值.本题考查有理数的除法及绝对值的知识,难度不大,关键是分类讨论a和b的范围.11.【答案】b+2c【解析】解:从数轴可知:c<0<a<b,|c|>|a|,∴c-a<0,∴-|c-a|+|b|+|a|-|c|=c-a+b+a+c=b+2c,故答案为:b+2c.根据数轴得出c<0<a<b,|c|>|a|,求出c-a<0,再去掉绝对值符号合并同类项即可.本题考查了整式的加减,数轴的应用,注意:整式的加法实质就是合并同类项.12.【答案】b-a【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握去括号法则与合并同类项法则是解本题的关键.【解答】解:根据数轴上点的位置得:a<b<0<c,∴b-c<0,则原式=-a+b-c+c=b-a,故答案为:b-a13.【答案】【解析】【分析】本题考查了绝对值的性质,依据绝对值的性质得到,即可求得x的取值范围.【解答】解:∵ ,∴ ,∴ ,故答案为.14.【答案】a【解析】【分析】此题主要考查了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、2a+b、c-b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c<b<0<a,|b|<|a|<|c|,∴a+c<0、2a+b>0、c-b<0,原式=-(a+c)+2a+b-(b-c)=-a-c+2a+b-b+c=a.故答案为a.15.【答案】解:根据数轴上点的位置得:b<a<0<c,∴a-b>0,a+b<0,a-c<0,则原式=a-b+a+b-a-a+c=c.【解析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.16.【答案】(1)<= ><(2)由数轴可得,b<c<0<a,∵|a|=|b|,∴|c-a|-|c-b|+|a+b|=a-c-(c-b)+0=a-c-c+b=a+b-2c.【解析】解:(1)由数轴可得,b<c<0<a,∵|a|=|b|,∴b<0,a+b=0,a-c>0,b-c<0,故答案为:<,=,>,<;(2)见答案【分析】(1)根据数轴可以解答本题;(2)根据数轴可以将题目中式子的绝对值去掉,然后化简即可解答本题.本题考查整式的加减、数轴、绝对值、有理数大小的比较,解答本题的关键是明确它们各自的计算方法,利用数形结合的思想解答.17.【答案】(1)±2或0;(2)±1或±3;(3)-1.【解析】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=-1-1=-2,②a>0,b>0,+=1+1=2,③a、b异号,+=0,故答案为:±2或0;(2)已知a,b是有理数,当abc≠0时,①a<0,b<0,c<0,++=-1-1-1=-3,②a>0,b>0,c>0,++=1+1+1=3,③a、b、c两负一正,++=-1-1+1=-1,④a、b、c两正一负,++=-1+1+1=1,故答案为:±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,则++═---=1-1-1=-1,故答案为:-1.【分析】(1)分3种情况讨论即可求解;(2)分4种情况讨论即可求解;(3)根据已知得到b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,进一步计算即可求解.此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.18.【答案】解:∵a、b、c是非零实数,且=-1,∴可知a,b,c为两正一负或三负.①当a,b,c为两正一负时:++=1+1-1=1;②当a,b,c为三负时:++=-1-1-1=-3.故++的值可能为1和-3.【解析】本题考查了代数式求值有关知识,根据a、b、c均为非零的有理数,且=-1,可知a,b,c为两正一负或三负,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.19.【答案】解:|b+c|-|b+a|+|a+c|=-(b+c)-(-b-a)+(a+c)=-b-c+b+a+a+c=2a.【解析】先由数轴上点的关系,可得a,、c互为相反数,再根据负数的绝对值是它的相反数,可化简去掉绝对值,再合并同类项,得答案.本题考查了整式的加减,先根据数轴上点的位置关系,化简掉绝对值,再合并同类项.20.【答案】解:(1)∵(a+2)2≥0,∴(a+2)2+3>0,∴b是否有最小值是3,此时a的值为-2;(2)当a<-1时,a2<|a|,当-1<a<0时,a2>|a|,当0≤a<1时,a2<|a|,当a>1时,a2>|a|.【解析】(1)根据非负数的性质解答即可;(2)利用分情况讨论思想解答.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.。
初中数学苏科版七年级上册第二章 有理数2.4 绝对值与相反数-章节测试习题(40)

章节测试题1.【答题】-5的绝对值是()A. 5B. -5C.D.【答案】A【分析】本题考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.根据绝对值的性质求解.【解答】根据负数的绝对值等于它的相反数,得|-5|=5.选A.2.【答题】|-2013|的值是()A. B. C. 2013 D. -2013【答案】C【分析】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.计算绝对值要根据绝对值定义去掉这个绝对值的符号.【解答】|-2013|=2013.选C.3.【答题】下列四个数中,小于0的数是()A. -1B. 0C. 1D. π【答案】A【分析】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】如图所示,∵-1在0的左边,∴-1<0.选A.4.【答题】下列各数中,小于-3的数是()A. 2B. 1C. -2D. -4【答案】D【分析】本题考查了有理数的大小比较法则的应用,注意:有理数的大小比较法则是:正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小.根据有理数的大小比较法则(正数都大于0,负数都小于0,正数都大于负数,两个负数,其绝对值大的反而小)比较即可.【解答】A.2>-3,故本选项错误;B.1>-3,故本选项错误;C.∵|-2|=2,|-3|=3,∴-2>-3,故本选项错误;D.∵|-4|=4,|-3|=3,∴-4<-3,故本选项正确;选D.5.【答题】在-2,1,5,0这四个数中,最大的数是()A. -2B. 1C. 5D. 0【答案】C【分析】本题考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则.根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.【解答】在-2,1,5,0这四个数中,大小顺序为:-2<0<1<5,∴最大的数是5.选C.6.【答题】|-2|的值等于()A. 2B.C.D. -2【答案】A【分析】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.直接根据绝对值的意义求解.【解答】|-2|=2.选A.7.【答题】-6的绝对值是()A. -6B. 6C. ±6D.【答案】B【分析】本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数-a,解答即可;【解答】根据绝对值的性质,|-6|=6.选B.8.【答题】–2019的绝对值是()A. 2019B. –2019C.D. –【答案】A【分析】本题考查绝对值的定义.绝对值的定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|,读作“a的绝对值”.【解答】–2019的绝对值是2019.选A.9.【答题】如图,点A所表示的数的绝对值是()A. 3B. –3C.D. −【答案】A【分析】本题考查数轴以及绝对值的定义.【解答】|–3|=3,选A.10.【答题】–0.2的绝对值是()A. 0.2B. –C. 5D. –5 【答案】A【分析】本题考查绝对值的定义.【解答】–0.2的绝对值是0.2.选A.11.【答题】一个数的绝对值等于3,则这个数是______.【答案】3或–3【分析】本题考查绝对值的定义.【解答】∵,∴这个数是3或–3.故答案为3或–3.12.【答题】–3的绝对值是______.【答案】3【分析】本题考查绝对值的定义.【解答】根据负数的绝对值是它的相反数,得|–3|=3.13.【题文】已知的相反数等于,,求a,b的值.【答案】,b=±3.【分析】本题考查相反数以及绝对值的定义.【解答】∵的相反数等于,∴.∵,∴b=±3.14.【答题】若|6–x|与|y+9|互为相反数,则x=______,y=______.【答案】6 –9【分析】本题考查绝对值的非负性. 任何数都有绝对值,且只有一个,无论a取何有理数,都有|a|≥0,即任何一个有理数的绝对值都是非负数,绝对值最小的数是0.【解答】由题意得,|6–x|+|y+9|=0,则6–x=0,y+9=0,解得x=6,y=–9.故答案为6,–9.15.【答题】若,则关于x,y的取值,下列说法正确的是()A. ,B. ,C. ,D. ,【答案】A【分析】本题考查绝对值的非负性.【解答】∵,∴x–1=0,y+2=0,∴x=1,y=–2,选A.16.【答题】若(a﹣2)2+|b+4|=0,则a+b=______.【答案】﹣2【分析】本题考查绝对值的非负性.【解答】由题意得,a﹣2=0,b+4=0,解得a=2,b=﹣4,∴a+b=2+(﹣4)=﹣2.故答案为﹣2.17.【答题】的绝对值是()A. 5B. –C. –5D.【答案】D【分析】本题考查绝对值的定义.【解答】的绝对值是.选D.18.【答题】数轴上有A、B、C、D四个点,其中绝对值等于2的点是()A. 点AB. 点BC. 点CD. 点D【答案】A【分析】本题考查数轴以及绝对值的定义.【解答】∵绝对值等于2的数是–2和2,∴在所给的点中绝对值等于2的点是点A.选A.19.【答题】–4的相反数的绝对值是()A. 4B. –4C.D.【答案】A【分析】本题考查相反数以及绝对值的定义.【解答】–4的相反数为4,则4的绝对值是4.选A.20.【答题】已知a,b两数在数轴上的位置如图所示,则化简代数式|a–b|+|a–2|–|b+1|的结果是()A. 3B. 2a–1C. –2b+1D. –1【答案】A【分析】本题考查绝对值的化简.【解答】根据数轴上点的位置得:b<−1<0<1<a<2,∴a–b>0,a−2<0,b+1<0,则原式=a–b−a+2–(–b–1)=3,选A.。
(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题1. 计算以下数的相反数:-12 ______________25 _______________-3 ________________0 ________________2. 计算以下数的绝对值:-10 ______________15 _______________-2 _______________0 ________________3. 求以下数的相反数和绝对值:-8 _______________-18 ______________23 _______________0 _______________4. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。
相反数:______________绝对值:______________5. 如果一个数的相反数比它本身的绝对值大6,求这个数是多少。
这个数是:____________6. 如果一个数的绝对值比它本身的相反数大3,求这个数是多少。
这个数是:____________7. 如果一个数的相反数比它本身的绝对值小4,求这个数是多少。
这个数是:____________8. 如果一个数的绝对值比它本身的相反数小2,求这个数是多少。
这个数是:____________9. 小明的体重是x公斤,小红的体重是x的绝对值的两倍加1公斤。
如果x = -5,请计算小明和小红的体重。
小明的体重:____________小红的体重:____________10. 已知一个数的相反数比它本身大9,求这个数。
这个数是:____________参考答案如下:(完整版)相反数和绝对值经典练题1. 计算以下数的相反数:-12 1225 -25-3 30 02. 计算以下数的绝对值:-10 1015 15-2 20 03. 求以下数的相反数和绝对值:-8 8-18 1823 -230 04. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。
2.3.4绝对值与相反数:绝对值的非负性、绝对值的几何意义与最值问题(同步课件)-七年级数学上册

ax
b
当a≤x≤b,|x-a|+|x-b|的最小值是b-a
二、求|x-a|+|x-b|+|x-c|的最小值(a<b<c)
a
b
c
x
当x=b,|x-a|+|x-b|+|x-c|的最小值是c-a
03 典例精析
练1、利用数轴,解决下列问题:
(1)|x-3|的最小值是___0___,取得最小值时,x=___3___;
绝对值的几何意义
03 典例精析
例1、两个有理数在数轴上对应的点的距离可以用这两个数的差值的绝对值来
表示:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记为|AB|,
则|AB|=|a-b|=|b-a|。根据以上结论,回答以下问题:
①数轴上表示-7和-2的两个点之间的距离是___5___;
②数轴上表示x和-5的两个点之间的距离用含x的式子表示为_|x_-_(-_5_)_| ;
03 典例精析
练2-1、求当x取何值时,式子|x-1|+|x-2|+|x-3|+…+|x-10|取最小值。 两两配对
当___1_≤_x_≤_1_0__,|x-1|+|x-10|取最小值___9__; 当___2_≤_x_≤_9___,|x-2|+|x-9|取最小值___7__; 当___3_≤_x_≤_8___,|x-3|+|x-8|取最小值___5__; 当___4_≤_x_≤_7___,|x-4|+|x-7|取最小值___3__; 当___5_≤_x_≤_6___,|x-5|+|x-6|取最小值___1__。 综上,当5≤x≤6时,原式取最小值:9+7+5+3+1=25。
2.4 绝对值与相反数(练习)七年级数学上册同步精品课堂(苏教版)(解析版)

第二章有理数2.4绝对值与相反数一、单选题1.(2022广安市模拟)-2022的绝对值是()A.﹣2022B.2022C.−12022D.12022【详解】解:-2022的绝对值是2022,故选:B.2.(2021无锡市一模)|﹣9|的值是()A.9B.﹣9C.19D.±9【详解】∵−9=9,∴−9的值是9,故选:A.3.(2021海安市期中)下列四个实数中,绝对值最小的数是()A.﹣5B.﹣πC.15D.4【详解】解:|−5|=5,|−π|=π,|15|=15,|4|=4,∵5>4>15>π,∴绝对值最小的是−π,故选:B.4.若a≠0,则|U+1的值为()A.2B.0C.±1D.0或2【详解】解:当>0时,|U+1=+1=1+1=2;当<0时,|U+1=+1=−1+1=0;故选:D.5.(2021宜兴市期末)一个数的绝对值是它本身,则这个数是()A.正数B.负数C.正数和0D.0【详解】解:若一个数绝对值是它本身,即=,∵|U≥0,∴a是正数或0.故选:C.6.(2021涟水县期中)如果一个有理数的绝对值是6,那么这个数是()A.6B.6或−6C.−6D.16或−16【详解】解:∵|±6|=6,∴这个数是6或−6.故选:B.7.(2021淮安市洪泽区、金湖县期末)下列说法正确的是()A.任何数的绝对值都是正数B.如果两个数不等,那么这两个数的绝对值也不相等C.任何一个数的绝对值都不是负数D.只有负数的绝对值是它的相反数【详解】解:任何数的绝对值都是非负数,故A不符合题意;如果两个数不等,那么这两个数的绝对值可能相等,也可能不相等,比方4≠−4,但|4|=|−4|,故B不符合题意;任何一个数的绝对值都不是负数,表述正确,故C符合题意;非正数的绝对值是它的相反数,故D不符合题意;故选C8.(2021南通市期中)一实验室检测A,B,C,D四个零件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的零件是()A.B.C.D.【详解】解:∵|+1.3|=1.3,|+0.3|=0.3,|−0.9|=0.9,|−2.9|=2.9,又∵0.3<0.9<1.3<2.9,∴从轻重的角度看,最接近标准的是选项B中的零件.故选:B.9.(2021无锡市月考)绝对值相等的两个数在数轴上对应的两点距离为10,则这两个数为()A.+10或-10B.+5或-5C.-5或+10D.-10或+5【详解】∵绝对值相等的两个数在数轴上对应的两点距离为10,∴这两个数是+5或-5.故选B.10.(2021秦淮区期中)无论x取何值,下列式子的值一定是正数的是()A.|x|B.|x2|C.|x+1|D.x2+1【详解】解:A.|x|≥0,非负数,此选项不符合题意;B.|x2|≥0,非负数,此选项不符合题意;C.|x+1|≥0,非负数,此选项不符合题意;D.x2+1≥1>0,正数,此选项符合题意;故选:D.二、填空题11.(2021无锡市期末)-3.6的绝对值是______.【详解】解:-3.6的绝对值是3.6,故答案为:3.6.12.(2021如皋市月考)若a=3,|b|=6,则a﹣b的值是_____.【详解】解:∵|b|=6,∴b=±6,∴a-b=3-6或3-(-6),即a-b=-3或9,故答案为:-3或9.13.(2021常州市期中)用“>”“<”或“=”填空:(1)﹣|﹣2|___﹣(﹣3);(2)﹣45___﹣34.【详解】解:(1)因为−−2=−2,−−3=3,所以−−2<−−3,故答案为:<;(2)因为45=1620,34=1520,所以45>34,所以−45<−34,故答案为:<.14.(2021盐城市期中)已知=2,则m=_____.【详解】解:∵=2,∴=2或−2.故答案为:2或-2.三、解答题15.若|x+3|与|y+2|互为相反数,求x+y的值.【详解】解:∵|+3|与|+2|互为相反数,∴|+3|+|+2|=0,∴|+3|=0,|+2|=0,即+3=0,+2=0,∴=−3,=−2.∴+=−3+(−2)=−5,即+的值是−5.一、单选题1.(2021扬州邗江区期中)若|a|=2,|b|=5,且a+b>0,那么a﹣b的值是()A.﹣3B.7C.3或7D.﹣3或﹣7【详解】解:∵|a|=2,|b|=5,且a+b>0,∴a=2,b=5或a=﹣2,b=5;∴a﹣b=2﹣5=﹣3或a﹣b=﹣2﹣5=﹣7.故选:D2.(2021南京市期末)有理数在数轴上的位置如图所示,下列各数中,在0到1之间的是()①−−1;②+1;③2−;A.②③④B.①③④C.①②③D.①②③④【详解】根据数轴可知,−2<<−1,∴1<−<2,∴0<−−1<1,故①符合题意;∵−2<<−1,∴−1<+1<0,∴0<+1<1,故②符合题意;∵−2<<−1,∴1<<2,∴−2<−<−1,∴0<2−<1,故③符合题意;∵1<<2,∴12<1,故④符合题意;符合题意的有①②③④;故选D.二、填空题3.(2021常州市月考)若有理数a,b满足ab>0,则|U+|U+|B|B=___.【详解】解:∵ab>0,∴a、b同号,①当a>0,b>0时,则|U+|U+|B|B=1+1+1=3;②当a<0,b<0时,则|U+|U+|B|B=−1+(−1)+1=−1;故答案为:−1或3.三、解答题4.(1)用“>”或“<”或“=”或“≥”或“≤”填空:①|﹣5|+|4|_____|﹣5+4|;②|﹣6|+|3|_____|﹣6+3|;③|﹣3|+|﹣4|_____|﹣3﹣4|;④|0|+|﹣9|_____|0﹣9|;(2)归纳:|a|+|b|_____|a+b|;(3)根据上题(2)得出的结论,若|m|+|n|=7,|m+n|=1,求m的值.【详解】解:(1)①∵|﹣5|+|4|=9,|﹣5+4|=1,∴|﹣5|+|4|>|﹣5+4|;②∵|﹣6|+|3|=9,|﹣6+3|=3,∴|﹣6|+|3|>|﹣6+3|;③∵|﹣3|+|﹣4|=7,|﹣3﹣4|=7,∴|﹣3|+|﹣4|=|﹣3﹣4|;④|0|+|﹣9|=9,|0﹣9|=9,∴|0|+|﹣9|=|0﹣9|,故答案为:>,>,=,=;(2)通过(1)的比较、分析、归纳:|a|+|b|≥|a+b|,故答案为:≥;(3)由(2)中结论可得:∵|m|+|n|=7,|m+n|=1,∴|m|+|n|≠|m+n|,∴m,n异号,当m为正数,n为负数时,m﹣n=7,则n=m﹣7,|m+n|=|m+m﹣7|=1,解得:m=4或3,当n为正数,m为负数时,﹣m+n=7,则n=m+7,|m+n|=|m+m+7|=1,解得:m=﹣3或﹣4,综上所述,m的值为:±3或±4.。
练习3 2.4绝对值与相反数(1)
班级姓名______考试时间______________装订线内不要答题◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆ 2013-2014学年度七年级数学练习三 2.4 绝对值与相反数(1-A) 命题:朱学范 审题:朱学范 2013-9-2 一、填空题. 1.2011-=_______. 2.23的绝对值是_______,-23的绝对值是_______. 3.实数a 、b 在数轴上位置如图所示,则a 、b 的大小关系是_______. 4.用“<”、“>”或“=”填空. (1) 6.3_______7- (2) 4.6_______ 4.5-- 5.a =2011,则a =_______. 二、选择题. 6.在数轴上,表示-12的点与原点的距离是 ( ) A .-12 B .12 C .-2 D .2 7.-14的绝对值是 ( ) A .14 B .4 C .-14 D .-4 8.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是 ( ) 9.已知在数轴上,0为原点,A 、B 两点的坐标分别为a 、b ,利用下列A 、B 、0三点在数轴上的位置关系,判断哪一个选项中的a <b ? ( )三、解答题.10.求下列各数的绝对值:(1)32011+ (2)-4.2 (3)011.计算:(1)4178--- (2)50.7558-÷+.12.把-512,4--,2,0,-213按从小到大的顺序排列.13.正式的排球比赛对所用排球的重量有严格的规定.检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下(单位:克):+12,-14,+23,-16,-7.请用学过的绝对值的知识来说明哪个排球的质量最好.14.某检修小组乘一辆汽车沿公路检修线路,约定向南为正,某天从A地出发到收工时,行走记录为(单位:千米):+18,-9,+14,-7,-6,+12,-5,-8.(1)收工时,检修小组在A地何方,距A地多远?(2)若汽车行驶每千米耗油0.3升,则从出发到收工共耗油多少升?2.4 绝对值与相反数(1-B)一、填空题.1.12+=___________;0=___________; 2.1-=_________.2.-23的绝对值是_________,23的绝对值是_________. 3.35-=__________;8--=_________;1532-=_________;53-++=_________. 4.95--=__________.5.___________的绝对值是其本身.6.绝对值是6的整数是___________,绝对值小于3的整数有__________.7.用“>”、“<”或“=”填空: 3-__________2.7; 5.5-_________7.2-.8.在数轴上表示-4、3、-2.5的点A 、B 、C ,填空:(1)点A 、B 、C 到原点的距离分别是_________、___________、_________;(2)4、3、-2.5的绝对值分别是__________、__________、__________.二、选择题.9.-6的绝对值是 ( )A .6B .-6C .+16 D .-16 10.-3-= ( )A .-3B .-13C .13D .311.在数轴上表示-2的点离原点的距离等于 ( )A .2B .-2C .±2D .4 三、解答题.12.求下列各数的绝对值:-5,4.5,-0.5,+1,0,π-3.13.在数轴上表示下列各数:0,-3,2,-14,5.并将上述各数的绝对值用“<”号连接起来.14.如果点M、N在数轴上表示的数分别是a,b,且a=3,b=1,试确定M、N两点之间的距离.15.如图,按下列方法将数轴的正半轴绕在一个圆上(该圆的周长为3个单位长度,且在圆周的三等分点处分别标上了数字0、1、2).先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4……所对应的点分别与圆周上1,2,0,1……所对应的点重合.这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)若圆周上的数字以与数轴上的数5对应,则a=________.(2)若数轴绕过圆周n圈(n为正整数)后,数轴上的一个整数点,刚好落在圆周上数字l所对应的位置,则这个整数是___________(用含托的代数式表示).。
七年级数学2.4绝对值与相反数生活中的绝对值
生活中的绝对值看到这个题目,同学们一定会感到惊讶,生活中哪有绝对值呀,为了让同学们能明白绝对值在生活中的应用,现举几例,希望同学们能有所感悟.例1 某检修小组甲乘一辆汽车沿公路检修线路,约定向东为正,某天从A 地出发到收工时,行走记录为(单位:千米):+15、-2、+5、-1、+10、-3、-2、+12、+4、-5、+6;另一小组乙也从A 地出发,在南北方向检修,约定向北为正,行走记录为:-17、+9、-2、+8、+6、+9、-5、-1、+4、-7、-8(1)分别计算收工时,两组在A 地的哪一边,距A 地多远?(2)若每千米汽车耗油量为2升,求出发到收工两小组各耗油多少升?分析:要确定两组在A 地的哪一边,距A 地多远,只要能分别求出行走记录和,若结果是正,则表示在A 地的东或北,若结果是负,则表示在A 地的西或南;进而利用绝对值的意义分别求出两组各行走的路程,再分别乘以每千米汽车耗油量即可求解.解:(1)因为(+15)+(-2)+(+5)+(-1)+(+10)+(-3)+(-2)+(+12)+(+4)+(-5)+(+6)=+39; (-17)+(+9)+(-2)+(+8)+(+6)+(+9)+(-5)+(-1)+(+4)+(-7)+(-8)=-4. 所以小组甲在A 地东39千米、小组乙在A 地南4千米.(2)因为|+15|+|-2|+|+5|+|-1|+|+10|+|-3|+|-2|+|+12|+|+4|+|-5|+|+6|=65; |-17|+|+9|+|-2|+|+8|+|+6|+|+9|+|-5|+|-1|+|+4|+|-7|+|-8|=76, 而65×2=130,76×2=152,所以小组甲130升、小组乙152升.例2 检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查(1)指出哪个篮球的质量好一些?(2)如果对两个篮球作上述检查,检查的结果分别为a 和b ,请利用学过的绝对值知识指出哪个篮球的质量好一些?分析:本题主要考查正、负数的意义及绝对值在实际问题中的应用.根据实际问题可知,哪个篮球的质量偏离标准质量越小,哪个篮球的质量越好.这个偏差可以用绝对值表示,绝对值小表示偏差小,绝对值大表示偏差大.解:(1)因为98743+<-<+<+<-,所以3号篮球的质量好一些. (2)如果b a >,则结果为b 的质量好一些. 如果b a <,则结果为b 的质量好一些. 如果b a =,则两个篮球的质量一样好.例3 有一只小昆虫在数轴上爬行,它从原点开始爬,“+”表示此昆虫由数轴向右,“-”表示此昆虫由原点向左,总共爬行了10次,其数据统计如下(单位:厘米):+3,-2,-3,+1,+2,-2,-1,+1,-3,+2.如果此昆虫每分钟爬行4厘米,则在此爬行过程中,它用了几分钟?分析:根据时间=路程÷速度,已知昆虫爬行的速度是每分钟4厘米,要求爬行的时间,须求出总路程,即此昆虫在爬行过程中每次爬行的距离之和,而要求每次爬行的距离,就是求各数的绝对值.解:路程=3++2-+3-+1++2++2-+1-+1++3-+2+=3+2+3+1+2+2+1+1+3+2=20. 所用时间为20÷4=5(分钟).即在此爬行过程中,它用了5分钟.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确) 1.下列方程中,是一元一次方程的是( ) A .220x +=B .237x y +=C .248x +=D .535x-= 2.把长14cm 的铁丝截成三段,围成三边都不相等的三角形,且使三边长均为整数,那么( ) A .只有一种截法 B .两种截法 C .三种截法D .四种截法3.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D .4.在平面直角坐标系中,将点A (-2,3)向右平移5个单位长度后,那么平移后对应的点A ′的坐标是( ) A .(-2,-3)B .(-2,8)C .(-7,3)D .(3,3)5.如图,△ABC 中,∠BAC=90°,AD ⊥BC ,∠ABC 的平分线BE 交AD 于点F ,AG 平分∠DAC ,给出下列结论:①∠BAD=∠C ;②∠AEF=∠AFE ;③∠EBC=∠C ;④AG ⊥EF ;正确结论有( )A .4个B .3个C .2个D .1个6.如图,将AOB 绕点O 逆时针旋转45后得到DOE ,若15AOB =,则AOE ∠的度数是( )A .25B .30C .35D .407.不等式3(x+1)>2x+1的解集在数轴上表示为( ) A . B . C .D .8.下面的调查中,不适合抽样调查的是( )A .一批炮弹的杀伤力的情况B .了解一批灯泡的使用寿命C .全国的人口普查D .全市学生每天参加体育锻炼的时间9.在ABC ∆和DEF ∆中,①A E ∠=∠,AB EF =,C D ∠=∠;②A D ∠=∠,AB EF =,B E ∠=∠;③A F ∠=∠,AB DF =,B D ∠=∠;④A F ∠=∠,AB EF =,CB ED =;⑤A D ∠=∠,B E ∠=∠,BC EF =能判断这两个三角形全等的条件有( )A .①②④B .①③⑤C .④⑤D .①③10.下列世界博览会会徽图案中是轴对称图形的是( )A .B .C .D .二、填空题题11.不等式组212x x m -≥⎧⎨+⎩<有三个整数解,则m 的取值范围是__.12.如图,AB ∥CD ,∠DCE=118°,∠AEC 的角平分线EF 与GF 相交于点F ,∠BGF=132°,则∠F 的度数是__.13.已知1x =,8y =-是方程31-=-mx y 的解,则m 的值是______.14.已知a 17b -1是400a b +的值为______.15.已知4360{270x y z x y z --=+-=,那么x y z x y z -+++的值等于_________.16.如图,射线OP 平分AOB ∠,PQ AO ⊥,垂足为Q ,3PQ =,4OQ =,点M 是OB 上的一个动点,则线段PM 的最小值是_________.17.方程2x+3y=17的正整数解为________________.三、解答题18.阅读理解.∵4<5<9,即2<5<1.∴1<5﹣1<2∴5﹣1的整数部分为1,∴5﹣1的小数部分为5﹣2.解决问题:已知a是17﹣1的整数部分,b是17﹣1的小数部分.(1)求a,b的值;(2)求(﹣a)1+(b+4)2的平方根,提示:(17)2=3.19.(6分)推理填空:如图,直线AB,CD被直线EF所截,AD是∠CAB的角平分线,若∠3=∠1,∠2=50°,求∠4的度数.解:∵直线AB与直线EF相交,∴∠2=∠CAB=50°.()∵AD是∠CAB的角平分线,∴∠1=∠5=12∠CAB=25°,()∵∠3=∠1,(已知)∴∠3=25°,(等量代换) ∴∠3=∠5,(等量代换)∴_______.( ) ∵CD ∥AB ,( ) ∴_______.(两直线平行,同位角相等)20.(6分)某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台? 21.(6分)计算:(1)(2)已知2x =,求()2924x x +-+的值.22.(8分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m =,n = ,并补全条形统计图; (2)扇形统计图中“C 组”所对应的圆心角的度数是 ;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.23.(8分)第一个容器有水44升,第二个容器有水56升,若将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是该容器的一半;若将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是该容器的三分之一,求两个容器的容量.24.(10分)如图,为建设美丽农村,村委会打算在正方形地块甲和长方形地块乙上进行绿化.在两地块内分别建造一个边长为a 的大正方形花坛和四个边长为b 的小正方形花坛(阴影部分),空白区域铺设草坪,记1S 表示地块甲中空白处铺设草坪的面积, 2S 表示地块乙中空白处铺设草坪的面积.(1)1S =__ ,2S = (用含,a b 的代数式表示并化简) .(2)若2a b =,求12S S 的值.(3)若1213S S =,求b a的值. 25.(10分)已知:如图,直线l 分别与直线AB ,CD 相交于点P ,Q ,PM 垂直于EF ,∠1+∠2=90°. 求证:AB ∥CD .参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】根据一元一次方程的概念逐一进行分析判断即可得.【详解】A、未知项的最高次数为2,不是一元一次方程;B、含有两个未知数,不是一元一次方程;C、符合一元一次方程的定义;D、分母中含有未知数,不是一元一次方程,故选C.【点睛】本题考查了一元一次方程的概念,只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).2.A【解析】【分析】根据题目要求,根据构成三角形的条件,周长为11,可逐步分析,将每个符合题意的三角形写出即可.【详解】根据三角形的三边关系,两边之和大于第三边,最短的边是1时,不成立;当最短的边是2时,三边长是:2,6,6(不合题意);当最短的边是3时,三边长是:3,5,6;当最短的边是1时,三边长是:1,1,6和1,5,5(均不合题意).最短的边一定不能大于1.综上,只有3,5,6共1种截法.故选A.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.3.A【解析】【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A是通过平移得到;B通过旋转得到;C通过旋转加平移得到;D通过旋转得到.故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.4.D【解析】【分析】在平面直角坐标系中,将点向右平移5个单位,即为把横坐标加上5,纵坐标不变,得到新的坐标即为平移后的坐标.【详解】点A横坐标为-2,平移后的点A′横坐标为-2+5=3,纵坐标不变都为3.所以点A′的坐标为(3,3).故选D.【点睛】本题考查平面直角坐标系中点的平移,务必清楚的是当点左(右)平移时,对横坐标减(加)相应的单位长度,上(下)平移时,对纵坐标加(减)相应的单位长度.5.B【解析】【分析】根据同角的余角相等求出∠BAD=∠C,再根据等角的余角相等可以求出∠AEF=∠AFE;根据等腰三角形三线合一的性质求出AG⊥EF.【详解】∵∠BAC=90°,AD⊥BC,∴∠C+∠ABC=90°,∠BAD+∠ABC=90°,∴∠BAD=∠C,故①正确;∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵∠ABE+∠AEF=90°,∠CBE+∠BFD=90°,∴∠AEF=∠BFD,又∵∠AFE=∠BFD(对顶角相等),∴∠AEF=∠AFE,故②正确;∵∠ABE=∠CBE,∴只有∠C=30°时∠EBC=∠C,故③错误;∵∠AEF=∠AFE,∴AE=AF,∵AG平分∠DAC,∴AG⊥EF,故④正确.综上所述,正确的结论是①②④.故选B.【点睛】本题考查了直角三角形的性质,等腰三角形三线合一的性质,同角的余角相等的性质以及等角的余角相等的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.6.B【解析】【分析】由已知求出旋转角,再根据角的和差关系求得∠AOE=∠BOE-∠AOB=45〬-15〬.【详解】由已知可得,旋转角:∠BOE=45〬,所以,∠AOE=∠BOE-∠AOB=45〬-15〬=30〬.故选:B【点睛】本题考核知识点:旋转角,角的和差倍.解题关键点:理解旋转角的定义.7.A【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:去括号得,3x+3>2x+1,移项得,3x﹣2x>1﹣3,合并同类项得,x>﹣2,在数轴上表示为:.故选:A.【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.8.C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解一批炮弹的杀伤力的情况,由于破坏性强,适合抽样调查,故选项错误;B、了解一批灯泡的使用寿命,调查具有破坏性,适合抽样调查,故选项错误;C、全面人口普查,适合全面调查,故选项正确;D、全市学生每天参加体育锻炼的时间,适合抽样调查,故选项错误.故选C.【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.B【解析】【分析】依据全等三角形的判定定理进行判断即可.【详解】解:第①组满足AAS,能证明△ABC≌△EFD.第②组不是两角及一边对应相等,不能证明△ABC和△DEF全等.第③组满足ASA,能证明△ABC≌△FDE.第④组只是SSA,不能证明△ABC≌△FED.第⑤组满足AAS,能证明△ABC≌△DEF.故选:B.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.B【解析】【分析】根据轴对称的定义即可解答.【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图叫做轴对称图形,这条直线叫做对称轴,根据轴对称的定义可得只有B选项是轴对称图形.故选B.【点睛】本题考查轴对称的定义,熟悉掌握是解题关键.二、填空题题11.7<m≤8【解析】【分析】把m当成已知数求解不等式即可.【详解】解不等式组可得3≤x<m-2因为不等式组有三个整数解3,4,5,所以5<m-2≤6,求得7<m≤8.【点睛】了解m-2的取值范围是解题的关键,注意端点处是否有等号,要单独考虑.12.11°.【解析】分析:本题考查的是平行线的内错角相等,角平分线的性质和三角形外角的性质.解析:∵AB//CD,∠DCE=118°,∴∠AEC=118°,∵∠AEC的角平分线EF与GF相交线于点F,∴∠AEF=∠FEC=59°,∵∠BGF=132°, ∴∠F=11°.故答案为11°.13.﹣3【解析】【分析】知道了方程的解,可以把这组解代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值. 【详解】把x=1,y=−8代入方程3mx−y=−1,得3m+8=−1,解得m=−3.故答案为−3.14.5【解析】【分析】直接利用估算无理数的方法进而得出a,b的值即可得出答案.【详解】解:∵a b-1是400的算术平方根,∴a=4,b-1=20,则b=21,5==.【点睛】此题主要考查了估算无理数的大小,正确把握算术平方根的定义是解题关键.15.1 3【解析】【分析】把z 看做已知数表示出x 与y ,代入原式计算即可得到结果.【详解】方程组整理得:43627{x y z x y z -=+=①②,②×4−①得:11y=22z ,即y=2z ,把y=2z 代入②得:x=3z ,则原式=321323z z zz z z -+=++.【点睛】本題考査三元一次方程組的解法,解题的关键是用含x 的代数式表示y 、z ,然后再求解就容易了. 16.1【解析】【分析】根据垂线段最短得出当PM ⊥OB 时,PM 的值最小,根据角平分线性质得出PQ =PM ,求出即可.【详解】当PM ⊥OB 时,PM 的值最小,∵OP 平分AOB ∠,PQ AO ⊥,3PQ =,∴PM =3PQ =,故答案为:1.【点睛】本题考查了角平分线性质,垂线段最短的应用,能得出要使PM 最小时M 的位置是解此题的关键.17.1{=5xy=,4{=3xy=,7{=1xy=【解析】由2x+3y=17可得1723xy-=,当x=1时,y=5,当x=4时,y=3,当x=7时,y=1,所以方程2x+3y=17的正整数解为1{=5xy=,4{=3xy=,7{=1xy=.三、解答题18.(1)a=1,b﹣4;(2)±4.【解析】【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣1<2,∴a=1,b4;(2)(﹣a)1+(b+4)2=(﹣1)1+4+4)2=﹣1+3=16,∴(﹣a)1+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.19.对顶角相等;角平分线定义;CD∥AB;内错角相等,两直线平行;已证;∠4=∠2=50°【解析】【分析】根据平行线的判定及性质求角的过程,一步步把求解的过程补充完整即可.【详解】直线AB与直线EF相交,∴∠2=∠CAB=50°(对顶角相等),∵AD是∠CAB的角平分线,∴∠1=∠DAB=12∠CAB=25°(角平分线的定义),∵∠3=∠1,(已知)∴∠3=25°,(等量代换)∴∠3=∠5,(等量代换)∴CD∥AB.(内错角相等,两直线平行)∵CD∥AB,(已证)∴∠4=∠2=50°.(两直线平行,同位角相等)故答案为:对顶角相等;角平分线定义;CD∥AB,内错角相等,两直线平行;已证;∠4=∠2=50°.【点睛】本题考查了平行线的判定及性质、角平分线的定义,解题的关键是把解题的过程补充完整.本题属于基础题,难度不大,解决该题型题目时,熟悉利用平行线的性质解决问题的过程.20.(1)分别为200元、150元;(2)A种型号电风扇37台时,采购金额不多于7500元【解析】【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50−a)台,根据金额不多余7500元,列不等式求解.【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:341200561900x yx y+=⎧⎨+=⎩,解得:200{150xy==,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤3712.答:超市最多采购A种型号电风扇37台.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.21.(1);(2)4.【解析】【分析】(1)先去括号再利用根式的运算法则进行计算即可.(2)先利用完全平方公式计算出x 2=9-45,再把x 和x 2的值代入得到原式=(9+45)(9-45)-(5+2)(5-2)+4,然后利用平方差公式计算.【详解】(1) 原式=1322⨯⨯= (2) 52x =-,222)549x ∴==-=-2(92)4(92)4x x ∴+-+=+--+8180(54)4=---+114=-+4=.【点睛】本题考查了二次根式的化简求值及完全平方公式的运用,熟练掌握二次根式的运算法则是正确求解的关键. 22.(1)m =30,n =20;(2)“C 组”所对应的圆心角的度数是90°;(3)估计这所学校本次听写比赛不合格的学生人数为450人.【解析】【分析】(1)根据条形图和扇形图确定B 组的人数环绕所占的百分比求出样本容量,求出m 、n 的值; (2)求出C 组”所占的百分比,得到所对应的圆心角的度数;(3)求出不合格人数所占的百分比,求出该校本次听写比赛不合格的学生人数.【详解】(1)从条形图可知,B 组有15人,从扇形图可知,B 组所占的百分比是15%,D 组所占的百分比是30%,E 组所占的百分比是20%,15÷15%=100,100×30%=30,100×20%=20,∴m =30,n =20;(2)“C 组”所对应的圆心角的度数是25÷100×360°=90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点睛】本题考查的是频数分布表、条形统计图和扇形统计图,用样本估计总体的知识. 利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.第一个容器60升,第二个容器80升.【解析】【分析】设第一个容器x 升,第二个容器y 升,根据题意列出方程组求解即可。
苏教版七年级数学上册《绝对值和相反数》课件
解:3的相反数是-3,
-4.5 的相反数是 4.5 ,
-4(的 -4相 .5)反 = 4数 .54是.
7
7
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
4
解: 因 2为 的相反数 2, 是 所以 ( 2)2.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
AB
FC D
E
- 5 - 4 - 3 - 2 - 1 0 1 2 34 5
点 A 表示 -5 ,点 A 与原点的距 离是 5 ,所以 -5 的绝对值是 5 .记为 |-5| = 5.
说一说:
你能说出数轴上点 A、B、C、D、 E、F 各点所表示的数的绝对值吗?
AB
FC D
E
- 5 - 4 - 3 - 2 - 1 0 1 2 34 5
解:(4)因为4 4, 4 4, 并且44,
所以4 4 .
动脑筋 有一天,甲、乙两个数在比谁
大.甲抢着说:“在数轴上我表示 的点到原点的距离比你表示的点到 原点的距离要大,看来我比你大”, 乙不甘示弱,紧接着说,“我是正 数,我大于零,也大于一切负数, 当然是我比你大”.你们说到底谁 大呢?
4
解 : 因 2为 .的 7 相反数 2., 7是
所 (以 2.7) 2.7.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
4
解 : 因3为 的 相 反 数 3,是 所(以 3) 3.
例2 化 ( 简 2 ) ,( 2 .7 ) ,( 3 ) ,( 3 ).
•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。
2.4__绝对值与相反数(2)
能力提升
① 什么数的相反数大于本身? ② 什么数的相反数等于本身? ③ 什么数的相反数小于本身?
4、下面的说法是否正确?请将错误的改过来.
①有理数的绝对值一定比0大;
②有理数的相反数一定比0小;
③如果两个数的绝对值相等,那么这两个 数相等; ④互为相反数的两个数的绝对值相等.
5、-a一定是负数吗?
(2)点A、B与原点的距离都是5.
即A、B两点分别代表的数的绝对值相等.
议一议
1. 观察下列各对有理数,你发现了什么? 5与-5
2 2 与 -3 3
-2.5与2.5,
π 与 -π
2. 你还能举出类似的数对吗?
相反数的概念
像5与-5, -2.5与2.5,
2 2 与3 3
与 -
符号不同、绝对值相同的两个数互为相反数 (opposite number).
(1)求绝对值不大于2的整数; (2)已知x是整数,2.5<|x|<7, 求x .
初中数学 七年级(上册)
2.4
绝对值与相反数(2)
1.观察数轴上点A、B的位置及其到原点的 距离,你有什么发现?
- 5 - 4 - 3 - 2 -1 0
A
B
1 2
3
4
5
(1)点A、B在原点两侧,分别表示-5和5;
判断: (1)一个数的绝对值是 2 ,则这数是2 。 (2)|5|=|-5|。 (3)|-0.3|=|0.3|。 (4)|3|>0。 (5)|-1.4|>0。 (6)有理数的绝对值一定是正数。 (7)若a=b,则|a|=|b|。 (8)若|a|=|b|,则a=b。 (9)若|a|=-a,则a必为负数。 (10)互为相反数的两个数的绝对值相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级 姓名 ______考试时间___________ ___ 装订线内不要答题 ◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆
2013-2014学年度七年级数学练习四
2.4 绝对值与相反数(2)
命题:朱学范 审题:朱学范 2013-9-2
一、填空题.
1.-
1
2
的相反数是_______. 2.化简(1)-(+2)=_______;(2)+(-
1
5
)=_______;(3)-[-(-3)]=_______. 3.若a 与2互为相反数,则2a 等于_______.
4.已知a 与b 互为相反数,b 与c 互为相反数,且c =-10,则a =_______. 5.在数轴上,若点A 和点B 分别表示互为相反数的两个数,并且这两点间的距离是11,则两点所表示的数分别是_______,_______.
二、选择题.
6.下列各数中,相反数等于5的数是 ( ) A .-5 B .5 C .-15 D .15
7.-(-2)的相反数是 ( ) A .2 B .
12 C .-1
2
D .-2 8.下列叙述不正确的是 ( )
A .正数的相反数是负数,负数的相反数是正数
B .-个正数和一个负数互为相反数
C .互为相反数的两个数有可能相等
D .数轴上与原点距离相等的两个点所表示的数一定互为相反数 9.如果a +b =0,那么有理数a 、b 的取值一定是 ( )
A .都是0
B .至少有一个是0
C .a 为正数,b 为负数
D .互为相反数 10.下列各对数中,互为相反数的有 ( )
①(-1)与+1;②+(+1)与-1;③-(-2)与+(-2);④-(-
12)与+(+12
);⑤+[-(+1)]与-[+(-1)];⑥-(+2)与-(-2);
A .6对
B .5对
C .4对
D .3对
三、解答题.
11.写出下列各数的相反数,并在数轴上表示下列各数及它们的相反数.
+2,-3,0,-(-1),-31
2
,-(+4)
12.化简下列各数的符号:
(1)+(-2) (2)-(-5
2
) (3)-[-(+3)] (4)-[-(-2)]
(5)-{+[-(+5)]) (6)-{-[+(-9)]}
13.已知A、B两点在数轴上分别表示互为相反数的两个数a,b(a<b),并且A、B两点之间的距离是6,求出a、b两数.
14.一个数a在数轴上表示的点是A,当点A在数轴上向右平移了5个单位后是点B,点A与点B表示的数恰好互为相反数,那么数a是几?
15.在数轴上点A表示5,点B、C表示互为相反数的两个数,且C与A间的距离为2,求点B、C对应的数是什么?
2.4 绝对值与相反数(3)
一、填空题.
1.符号是“-”号,绝对值为2011的数是_______. 2.用“>”、“<”、“=”填空: (1)-9_______-7.5;(2)-(-
1
2
)_______12-.
3.绝对值是它本身的数是_______;绝对值是它的相反数的数是_______.
4.绝对值不大于3的整数有_______.
5.若x<y<0,则-x_______y ,x_______-y ,______x y .
二、选择题.
6.如果a 与1互为相反数,则a 等于 ( )
A .2
B .2
C .1
D .-1 7.3.14π-的值为 ( )
A .0
B .3.14-π
C .π-3.14
D .0.14 8.下列说法错误的是 ( )
A .一个正数的绝对值一定是正数
B .任何数的绝对值都是正数
C .一个负数的绝对值一定是正数
D .任何数的绝对值都不是负数
9.比较-
12,-13,1
4的大小,结果正确的 ( ) A .-12<-13<14 B .-12<14<-13 C .14<-13<-12 D .-1
3
<-12<14
10.如图所示,数轴上两点A 、B 分别表示有理数a 、b ,则下列四个数中最大的一个数
是 ( )
A .a
B .b
C .
1a D .1b
三、解答题.
11.下列哪些数是正数?
-2,1
3
+
,3-,0,-2+,()2--,-2-
12.比较下列各对数的大小:
(1)56-和67-; (2)22
7
-
和-3.13;
(3)5--与0; (4)15⎛⎫
-- ⎪⎝⎭
与16--.
13.如果a =4,b =3,则比较a 与b 的大小会有哪些结果,请你都写出来.
14.先比较下列各式的大小,再回答问题. (1)35_______35-++-+;
(2)1111_______2424
-
+---; (3)03_______03+--.
(4)通过上面的比较,请你归纳出当a ,b 为有理数时,a +b 与a b +的大小关系.
15.阅读下列文字,然后回答问题:
我们知道,正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值是零. 用字母表示为: 当a>0时,a =a ;当a<0时,a =-a ;当a =0时a =0.在a -b 中,若a>b ,则a -b>0,
a b -=a -b ;若a =b ,则a -b =0,a b -=0;若a<b ,则a -b<0,a b -=b -a .
(1)在1x -中当x>1时,x -1_______ 0,1x -=_______; (2)在1x -中当x<1时,x -1_______ 0,1x -=_______; (3)在1x -中当x =1时,x -1_______ 0,1x -=_______; (4)如图9-2,b a -= _______,b c -=_______.。