北师大版八年级(上)数学《平面直角坐标系》同步练习1(含答案)
北师大版数学八年级上册第三章位置与坐标知识点归纳及例题(含答案)

北师大版八年级上册第三章位置与坐标知识点归纳及例题1 平面直角坐标系【要点梳理】知识点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位).知识点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).知识点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的. 2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.知识点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.知识点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.知识点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征知识点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.2.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【思路点拨】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【答案】D.【解析】由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.【总结升华】本题考查了学生的阅读理解能力,由已知条件正确确定点的位置是解决本题的关键.类型二、平面直角坐标系与点的坐标的概念3.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A 点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?【答案】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).4.如图,四边形OABC 各个顶点的坐标分别是O (0,0),A (3,0),B (5,2),C (2,3).求这个四边形的面积.【思路点拨】分别过C 点和B 点作x 轴和y 轴的平行线,如图,然后利用S 四边形ABCO =S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF 进行计算.【答案与解析】解:分别过C 点和B 点作x 轴和y 轴的平行线,如图,则E(5,3),所以S四边形ABCO =S矩形OHEF﹣S△ABH﹣S△CBE﹣S△OCF=5×3﹣×2×2﹣×1×3﹣×3×2=.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征5. 已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【思路点拨】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m 的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【答案与解析】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【总结升华】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.举一反三:【变式】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).2 坐标平面内图形的轴对称和平移【知识点梳理】知识点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.知识点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).知识点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.知识点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则的值为_______.【思路点拨】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a +b =-3,1-b =-1,再解方程可得a 、b 的值,进而算出的值.【答案】25【解析】解:∵点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),∴a +b =-3,1-b =-1,解得:b =2,a =-5,=25,【总结升华】此题主要考查了关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x 轴的对称点为( )A .(3,-2)B .(-3,2)C .(-3,-2)D .(2,-3)【答案】A .2.已知点A(-3,2)与点B(x ,y)在同一条平行于y 轴的直线上,且点B 到x 轴的距离等于3,求点B 的坐标.b a b a b a【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).度,变为P′(0,1).【答案】2、4.4. 如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【思路点拨】(1)把△ABO放在一个矩形里面,用矩形COED的面积﹣△ACO的面积﹣△ABD的面积﹣△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.【答案与解析】解:(1)如图所示:S=3×4﹣×3×2﹣×4×1﹣×2×2=5;△ABO(2)A′(2,0),B′(4,﹣2),O′(0,﹣3).【总结升华】此题主要考查了点的平移,以及求三角形的面积,当计算一个三角形的面积时,可以把它放在一个矩形里,然后用矩形的面积减去周围三角形的面积.举一反三:【变式】如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).3《平面直角坐标系》全章复习与巩固【知识网络】【知识点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.知识点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:知识点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1- x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1- y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1- x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1- y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.知识点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.知识点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).知识点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”. 【典型例题】 类型一、有序数对1.数学家发明了一个魔术盒,当任意数对(a ,b)进入其中时,会得到一个新的数:.例如把(3,-2)放入其中,就会有32 +(-2)+1=8,现将数对(-2,3)放入其中得到数m ,再将数对(m ,1)放入其中,得到的数是________. 【思路点拨】解答本题的关键是正确理解如何由数对得到新的数,只要按照新定义的数的运算,把数对代入求值即可. 【答案】66 .【解析】解:将(-2,3)代入,,得(-2)2+3+1=8, 再将(8,1)代入,得82 +1+1=66, 故填:66.【总结升华】解答此题的关键是把实数对(-2,3)放入其中得到实数m ,解出m 的值,即可求出把(m ,1)放入其中得到的数. 举一反三:【变式】我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米,记作________;数对(-2,-6)表示________. 【答案】 (-5,3);向西走2米,向南走6米. 类型二、平面直角坐标系2. 第三象限内的点P(x ,y),满足|x|=5,y 2=9,则点P 的坐标为________. 【思路点拨】点在第三象限,横坐标<0,纵坐标<0.再根据所给条件即可得到x ,y 的具体值.21a b ++21a b ++21a b ++【答案】(-5,-3).【解析】因为|x|=5,y2=9.所以x=±5,y=±3,又点P(x,y)在第三象限,所以x<0,y<0,故点P的坐标为(-5,-3).【总结升华】解决本题的关键是记住各象限内点的坐标的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).举一反三:【变式1】 (乐山)在平面直角坐标系中,点P(-3,4)到x轴的距离为( ) . A.3 B.-3 C.4 D.-4【答案】C.【变式2】 (长春)如图所示,小手盖住的点的坐标可能为( ) .A.(5,2) B.(-6,3) C.(-4,-6) D.(3,-4)【答案】D.类型三、坐标方法的简单应用3.如图,是某校的平面示意图,已知图书馆、行政楼的坐标分别为(﹣3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他地点的坐标(3)在图中用点P表示体育馆(﹣1,﹣3)的位置.【思路点拨】(1)根据图书馆、行政楼的坐标分别为(﹣3,2),(2,3),可以建立合适的平面直角坐标系,从而可以解答本题;(2)根据(1)中的平面直角坐标系可以写出其它地点的坐标;(3)根据点P(﹣1,﹣3)可以在直角坐标系中表示出来.【答案与解析】解:(1)由题意可得,(2)由(1)中的平面直角坐标系可得,校门口的坐标是(1,0),信息楼的坐标是(1,﹣2),综合楼的坐标是(﹣5,﹣3),实验楼的坐标是(﹣4,0);(3)在图中用点P表示体育馆(﹣1,﹣3)的位置,如下图所示,【总结升华】本题考查利用坐标确定位置,解题的关键是明确题意,建立相应的平面直角坐标系.4.如图,四边形OABC各个顶点的坐标分别是O(0,0),A(3,0),B(5,2),C(2,3).求这个四边形的面积.【思路点拨】分别过C 点和B 点作x 轴和y 轴的平行线,如图,然后利用S 四边形ABCO=S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF 进行计算.【答案与解析】解:分别过C 点和B 点作x 轴和y 轴的平行线,如图,则E (5,3),所以S 四边形ABCO =S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF=5×3﹣×2×2﹣×1×3﹣×3×2 =.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.5.△ABC 三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将△ABC 向右平移1个单位,再向下平移2个单位,所得△A 1B 1C 1的三个顶点坐标分别是什么?(2)将△ABC 三个顶点的横坐标都减去5,纵坐标不变,分别得到A 2、B 2、C 2,依次连接A 2、B 2、C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系? (3)将△ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到A 3、B 3、C 3,依次连接A 3、B 3、C 3各点,所得△A 3B 3C 3与△ABC 的大小、形状和位置上有什么关系? 【答案与解析】解:(1)A1(5,1),B1(4,-1),C1(2,0).(2)△A2B2C2与△ABC的大小、形状完全相同,在位置上是把△ABC向左平移5个单位得到.(3)△A3B3C3与△ABC的大小、形状完全相同,在位置上是把△ABC向下移5个单位得到.【总结升华】此题揭示了平移的整体性,以及平移前后的坐标关系是一一对应的,在平移中,横坐标减小等价于向左平移;横坐标增大等价于向右平移;纵坐标减小等价于向下平移;纵坐标增大等价于向上平移.举一反三:【变式】在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【答案】D.解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.类型四、综合应用6. 三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C (4,-3.5).(1)在直角坐标系中画出三角形ABC;(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;(3)求出三角形A1B1C1的面积.【思路点拨】(1)建立平面直角坐标系,从中描出A、B、C三点,顺次连接即可.(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,即三角形ABC向上平移3个单位,向左平移4个单位,得到三角形A1B1C1,按照平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.写出三角形A1B1C1三个顶点的坐标,从坐标系中画出图形.(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积.【答案与解析】解:(1)如图1,(2)如图2,A1(-2,2),B1(-3,0),C1(0,-0.5);(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积=3×2.5-1-2.5-0.75=3.25.∴△A1B1C1的面积=3.25.【总结升华】本题综合考查了平面直角坐标系,及平移变换.注意平移时,要找到三角形各顶点的对应点是关键,然后割补法求出三角形ABC的面积。
北师大版八年级数学上册平面直角坐标系(讲义及作业)

平面直角坐标系(讲义)一、 知识点睛1. 在平面内,确定一个物体的位置一般需要____个数据.2. 在平面内,两条__________且有_________的_________组成平面直角坐标系.水平的数轴叫_______或_______,铅直的数轴叫________或_______,________和______统称坐标轴. 3. 如图,对于平面内任意一点P ,过点P 分别向x 轴、y 轴________,垂足在x 轴、y 轴上对应的数a ,b 分别叫做点P 的_______、_______,__________(a ,b )叫做点P 的坐标.4. 坐标系把平面分成了_____个象限,第一象限的坐标符号是(+,+),第二象限的坐标符号是__________,第三象限的坐标符号是__________,第四象限的坐标符号是_________;坐标轴上的点不属于任何象限.5. 在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上唯一的一点和它对应. 6. 坐标特点(1)x 轴上的点____坐标等于零;y 轴上的点____坐标等于零.(2)平行于x 轴的直线上的点____坐标相同;平行于y 轴的直线上的点____坐标相同.(3) 关于x 轴对称的两个点,横坐标_____,纵坐标_________;关于y 轴对称的两个点,横坐标________,纵坐标_____. (4)横坐标加减管______平移,纵坐标加减管______平移.二、 精讲精练1. 写出图中的多边形ABCDEF解:A (___,___),第___象限;B (___,___),第___象限;C (___,___),第___象限;D (___,___),第___象限;E ( ),______象限;F ( ),______象限.2. 在平面直角坐标系中,)点(-2,-3)在第____象限;点在第____象限; 点1,1在第___象限;点(-2,a 2+1)在第___象限. 3. 若a <b <0,则点A (a -b ,b )在第________象限. 4. 在平面直角坐标系中,若点P (a ,b )在第二象限,则点Q (1-a ,-b )在第____象限.5. 在平面直角坐标系中描出下列各点,并将各组内这些点依次用线段连接起来.(1)A (-3,5),B (-7,3),C (1,3),A (-3,5); (2)D (-6,3),E (-6,0),F (0,0),G (0,3). 观察所描出的图形,解答下列问题:①坐标轴上的点有_______________,且x 轴上的点___坐标等于零,y 轴上的点___坐标等于零.②线段BC 与x 轴_______,点B 和点C ____坐标相同,线段BC 上其他点的____坐标都相同.③线段DE 与y 轴________,点D 和点E ____坐标相同,线段 DE 上其他点的____坐标都相同.6. 若点M (a +3,4-a )在x 轴上,则点M 的坐标为__________.7. 若过A (4,m ),B (n ,-3)两点的直线与x 轴平行,且AB =5,则m =_____,n =_______________. 8. 如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(-2,-2),(-2,3),(3,-2),则第四个顶点的坐标为________.第9题图 9. 如图,若在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点(____,____).10. 已知点P (-3,2),它到x 轴的距离为_____,到y 轴的距离为_____,到原点的距离为_____. 11. 在平面直角坐标系中,第二象限内有一点P ,P 点到x 轴的距离是4,到y 轴的距离是5,则P 点坐标为__________.12. 点M 在x 轴的上侧,距离x 轴4个单位长度,距离y 轴3个单位长度,则点M 的坐标为( )A .(4,3)B .(-4,3)或(4,3)C .(3,4)D .(-3,4)或(3,4) 13. 若点A (x ,4)到原点的距离为5,则x =____________. 14. 如图,△ABC 在平面直角坐标系中,则S △ABC =________.马帅炮兵15. 已知点A (0,4),B 点在x 轴上,AB 与坐标轴围成的三角形面积为2,则B 点坐标为______________.16. (1)作图,将△ABC 各顶点的横坐标保持不变,纵坐标乘以-1,顺次连接这些点,所得三角形与△ABC 关于_____轴对称; (2)如图,△DEF 与△ABC 关于____轴对称,它们相应顶点的横坐标___________、纵坐标____________.17. 如果点A (a ,b )与点B 关于x 轴对称,点B 与点C (2,3)关于y轴对称,那么a =_______,b =_______,点A 和点C 的位置关系是__________.18. 若点A (a ,4)、点B (3,b )关于x 轴对称,则(a +b )2 013的值为______.19. 若点P (b -3,-2b )在y 轴上,则点P 关于x 轴对称的点的坐标_______.20. 如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三个顶点的坐标分别为( ) A .(-1,-1),(2,3),(5,1) B .(-1,1),(3,2),(5,1) C .(-1,1),(2,3),(5,1) D .(1,-1),(2,2),(5,1)21. 如图,把图1中的△ABC 经过一定的变换得到图2中的△A ′B ′C ′,如果图1中△ABC 上点P 的坐标为(a ,b ),那么这个点在图2中的对应点P ′的坐标为______________.平面直角坐标系(作业)1. 如图,小明用手盖住的点的坐标可能为( )A .(2,3)B .(2,-3)C .(-2,3)D .(-2,-3)2. 平面直角坐标系中有一点P (a ,b ),如果ab =0,那么点P 的位置在( )A .原点B .x 轴上C .y 轴上D .坐标轴上 3. 若点A (a ,b )在第三象限,则点C (-a +1,3b -5)在第____象限.4. 在平面直角坐标系中,如果a <0,b >0,那么点(0,a )在_________________;点(b ,0)在_________________.图1图25. 点A (-3,2m -1)在x 轴上,点B (n +1,4)在y 轴上,则点C (m ,n )在第________象限.6. 若过A (4,m ),B (n ,-3)两点的直线与y 轴平行,且AB =2,则m =__________,n =__________.7. 已知点P (4,-3),它到x 轴的距离为_____,到y 轴的距离为_____,到原点的距离为_____.8. 点M 在y 轴的左侧,距离x 轴4个单位长度,距离y 轴6个单位长度,则点M 的坐标______.9. 点P (3,-2)关于x 轴的对称点的坐标是________,关于y坐标是________,关于原点的对称点的坐标是________. 10. 点P (-2a -1,a -1)在y 轴上,则点P 关于x __________.11. 将点P 向左平移2个单位,再向上平移1个单位得到P ′(-1,3)的坐标是________.12. 如图,△ABC 中任意一点P (a ,b )平移后的对应点为P ′(a +4b +1),将△ABC 作同样的平移得到△A ′B ′C ′,则A ′,B ′,C ′的坐标分别为_________、_________、_________. 13. 作图:在平面直角坐标系中,将坐标是(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(30),(2,0)的点用线段依次连接起来形成一个图案. 回答下列问题:(1)每个点的纵坐标保持不变,横坐标分别乘以-1,顺次连 接这些点,所得图案与原图案的位置关系是____________; (2)每个点的横坐标保持不变,纵坐标分别乘以-1,顺次连 接这些点,所得图案与原图案的位置关系是_____________.14. 如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成_______.。
北师大版八年级数学上册:3.2《平面直角坐标系》教案1

北师大版八年级数学上册:3.2《平面直角坐标系》教案1一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。
本节内容是在学生已经掌握了坐标系的基本概念的基础上进行讲解的,通过本节内容的学习,使学生能够熟练地建立平面直角坐标系,能够准确地确定点在坐标系中的位置,并能够利用坐标系解决一些实际问题。
二. 学情分析学生在学习本节内容之前,已经掌握了坐标系的基本概念,对于如何建立坐标系,如何确定点在坐标系中的位置有一定的了解。
但是,对于如何利用坐标系解决实际问题,部分学生可能会感到困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.让学生掌握平面直角坐标系的建立方法。
2.让学生能够准确地确定点在坐标系中的位置。
3.培养学生利用坐标系解决实际问题的能力。
四. 教学重难点1.重点:平面直角坐标系的建立方法,点在坐标系中的表示方法。
2.难点:如何利用坐标系解决实际问题。
五. 教学方法采用问题驱动法,引导学生通过观察、思考、探究,发现平面直角坐标系的建立方法,以及如何确定点在坐标系中的位置。
同时,通过实例讲解,让学生学会如何利用坐标系解决实际问题。
六. 教学准备1.准备平面直角坐标系的图片,用于讲解。
2.准备一些实际问题,用于练习。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如地图上的路线、飞机的飞行轨迹等,引导学生思考这些实例与坐标系之间的关系。
2.呈现(10分钟)讲解平面直角坐标系的定义,以及如何建立坐标系。
通过展示图片,让学生直观地理解坐标系的建立过程。
同时,讲解如何用坐标表示点在坐标系中的位置。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,尝试利用坐标系解决实际问题。
教师巡回指导,解答学生的问题。
4.巩固(5分钟)挑选几组学生的实例,让学生上台演示如何利用坐标系解决问题。
其他学生观看并给予评价。
5.拓展(5分钟)讲解坐标系在实际生活中的应用,如航天、地理信息系统等。
北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

第三章位置与坐标综合测试一、选择题1、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( )A.(0,4)→(0,0)→(4,0) B、(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0) D.(0,4)→(3,4)→(4,2)→(4,0)2、如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A的豆豆,如果点A用(-1,2)表示,那么(1,-2)所表示的位置是( ) A.点A B.点B C.点C D.点D3、如果点P(a,b)在x轴上,那么点Q(ab,-1)在( )A、y轴的正半轴上B、y轴的负半轴上C、x轴的正半轴上D.x轴的负半轴上4、在平面直角坐标系中,一个多边形各个顶点的纵坐标保持不变,横坐标分别乘-1,则所得的多边形与原多边形相比( )A、多边形形状不变,整体向左平移了1个单位;B、多边形形状不变,整体向下平移了1个单位C、所得多边形与原多边形关于y轴成轴对称;D.所得多边形与原多边形关于x轴成轴对称5、如图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得三角形ABP为直角三角形,则满足这样条件的点P共有( )A、2个B、4个C、6个D.7个6.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).A、原点B、x轴上C、y轴上D、x轴上或y轴上7.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).A、(1,2)B、(2,1)C、(1,2),(1,-2),(-1,2),(-1,-2)D、(2,1),(2,-1),(-2,1),(-2,-1)8.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).A、第一象限B、第二象限C、第三象限D、第四象限9.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.A、(0,3),(0,1),(-1,-1)B、(-3,2),(3,2),(-4,0)C、(1,-2),(3,2),(-1,-3)D、(-1,3),(3,5),(-2,1)二、填空题10.若点P(m-3,m+1)在第二象限,则m的取值范围是______.11.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.12.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.13.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.14.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______、15.观察如图所示的图形,若图中“鱼”上点P的坐标为(4,3、2),则点P的对应点P1的坐标应为____、16、在平面直角坐标系中,已知A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至CD,且点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),则a+b=____、三、解答题17、某地区两条交通主干线l1与l2互相垂直,并交于点O,l1为南北方向,l2为东西方向.现以l2为x轴,l1为y轴,取100 km为1个单位长度建立平面直角坐标系,根据地震监测部门预报,该地区最近将有一次地震,震中位置在P(1,-2)处,影响区域的半径为300 km.(1)根据题意画出平面直角坐标系,并标出震中位置.(2)在平面直角坐标系内画出地震影响的范围,并判断下列城市是否受到地震影响、城市:O(0,0),A(-3,0),B(0,1),C(-1、5,-4),D(0,-4),E(2,-4).18.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形回答下列问题.(1)图中格点三角形A'B'C'是由格点三角形ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出三角形DEF的面积.19、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为1 cm/s,且整点P做向上或向右运动,运动时间(s)与整点个数(个)的关系如下表:根据上表中的规律,回答下列问题:(1)当整点P从点O出发4s时,可以得到整点P的个数为____;(2)当整点P从点O出发8s时,在如图所示的直角坐标系中描出可以得到的所有整点;(3)当整点P从点O出发____s时,可以达到整点(16,4)的位置、20.如果点P(1-x,1-y)在第二象限,那么点Q(1-x,y-1)关于原点的对称点M在第几象限?21、如图,小虫A从点(0,10)处开始,以每秒3个单位长度的速度向下爬行,小虫B同时从点(8,0)处开始,以每秒2个单位长度的速度向左爬行,2秒钟后,它们分别到达点A'、B'.(1)写出点A'、B'的坐标;(2)求出四边形AA'B'B的面积.参考答案1、D解析因为小区道路均是正南或正东方向,所以由(3,4)不能直接到达(4,2)、2、D解析以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2)、3、B解析:∵点P(a,b)在x轴上,∴b=0,∴ab=0.∴点Q(ab,-1)在y轴的负半轴上.故选B、4、C5、C6.D7.D8.A9.D.10.-1<m<3.11.(-3,2).12.B'(-3,-6),(-4,-1).13.y轴.14.(2,-1).15、(4,2、2)解析:对比图中“鱼头”的坐标,图中“鱼头”O的坐标为(0,0),图中“鱼头”O1的坐标为(0,-1),可以看作“鱼头”O1是由“鱼头”O向下平移1个单位长度得到的,由平移的规律可得点P1的坐标为(4,2、2).16、3解析:∵两点A(2,0),B(0,1),把线段AB平移后点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),∴线段是向右平移1个单位,再向上平移了2个单位,∴a=0+1=1,b=0+2=2.∴a+b=1+2=3.17、分析:地震影响区域是以震中为圆心,半径为300km的圆内部分(包括圆周),圆外部分为不受影响的地区、解:(1)图略.(2)图略,O,D,E会受到地震影响,而A,B,C不会受到地震影响.18、解:(1)图中格点三角形A'B'C'是由格点三角形ABC向右平移7个单位长度得到的.(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),则格点三角形DEF各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,3).如图所示,S三角形DEF=S三角形DGF+s三角形GEF=1151515 22⨯⨯+⨯⨯=.19、解:(1)根据表中所示的规律,点的个数比时间数多1,由此可计算出整点P从O点出发4s时整点P的个数为5、(2)由表中所示规律可知,横、纵坐标的和等于时间,则得到的整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).所描各点如图所示:(3)由表中规律可知,横、纵坐标的和等于运动时间,因此可得16+4=20(s)、20、解:因为点P(1-x,1-y)在第二象限,所以1-x<0,1-y>0,即y-1<0,所以点Q(1-x ,y -1)在第三象限.又知点M 与点Q 关于原点对称,所以点M 在第一象限.21、解:(1)OA '=OA -AA '=10-3×2=4, ∴点A '的坐标为(0,4)、 ∵OB '=OB -BB '=8-2×2=4, ∴点B '的坐标为(4,0).(2)四边形AA 'B 'B 的面积=△AOB 的面积-△A 'OB '的面积 =1110844=408=3222⨯⨯-⨯⨯-、 www 、czsx 、com 、cn。
北师大版八年级上册数学同步练习:阶段测试一

阶段测试(一)(4.1~4.3)(时间:120分钟满分:120分) 一、选择题(每小题3分,共30分)1.函数y=xx-3的自变量x的取值范围是( C )A.x≥0 B.x≠3C.x≥0或x≠3 D.x>0或x≠32.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过( C )A.第一象限B.第二象限C.第三象限D.第四象限3.若正比例函数y=3x的图象经过A(-2,y1),B(-1,y2)两点,则y1与y2的大小关系为( A )A.y1<y2B.y1>y2C.y1≤y2D.y1≥y24.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是( A )A.(0,-2) B.(1.5,0) C.(8,20) D.(0.5,0.5)5.直线y=-2x-4与两坐标轴的交点分别为A,B,则三角形AOB的面积为( A ) A.4 B.8 C.16 D.66.已知一次函数y=-2x+3,当0≤x≤5时,函数y的最大值是( B )A.0 B.3 C.-3 D.-77.如图,将一个高度为12 cm的锥形瓶放入一个空玻璃槽中,并向锥形瓶中匀速注水,若水槽的高度为10 cm,则水槽中的水面高度y(cm)随注水时间x(s)的变化图象大致是( D ) 8.一次函数y=kx+b的图象经过(-1,m)和(m,1),其中m>1,则k,b的取值范围是( B )A.k>0且b>0 B.k<0且b>0C.k>0且b<0 D.k<0且b<09.如图,在平面直角坐标系中,直线y=-43x+4与x轴,y轴分别交于A,B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为( A )A.(-5,2) B.(-3,5) C.(-2,2) D.(-3,2),第9题图),第10题图)10.已知直线y=-43x+8与x轴,y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数表达式是( C )A.y=-12x+8 B.y=-13x+8C.y=-12x+3 D.y=-13x+3二、填空题(每小题3分,共18分)11.已知正比例函数的图象经过点(-1,3),那么这个函数的表达式为__y=-3x__. 12.将一次函数y=-5x+10向右平移1个单位后所得函数图象的表达式为__y=-5x+15__. 13.小明骑共享单车从A 地到距A 地10 km 的B 地,每小时骑行20 km ,设他距B 地的路程为y km ,骑行的时间为x 小时,则y 与x 的函数表达式为__y =10-20x__,自变量x 的取值范围是__0≤x ≤0.5__.14.如图,点P 在函数y =-x 的图象上运动,点A 的坐标为(1,0),当线段AP 最短时,点P 的坐标为__(12,-12)__. ,第14题图) ,第16题图)15.在一次函数的图象上到坐标轴的距离相等的点称之为“好点”,则在一次函数y =-3x +1的图象上的好点坐标是__(14,14)或(12,-12)__. 16.在平面直角坐标系中,直线l 经过点A(-1,0),点A 1,A 2,A 3,A 4,A 5,…按如图所示的规律排列在直线l 上.若直线l 上任意相邻两个点的横坐标都相差1,纵坐标也都相差1,则A 8的坐标为__(-5,4)__;若点A n (n 为正整数)的横坐标为2020,则n =__4041__.三、解答题(本大题9小题,共72分)17.(6分)某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离王老师家多远?从出发到学校用了多少时间?王老师吃早餐用了多少时间?(2)王老师是吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少? 解: (1)学校离王老师家有10千米,从出发到学校王老师用了25分钟,王老师吃早餐用了10分钟(2)吃早餐以前的速度为:5÷10=0.5(km /分钟),吃完早餐以后的速度为: (10-5)÷(25-20)=1(km /分钟)=60 km /小时,∴王老师吃完早餐以后速度快,最快时速达到60 km /小时18.(6分)已知y -2与x +1成正比例函数关系,且x =-2时,y =6.(1)写出y 与x 之间的函数关系式;(2)求当y =4时,x 的值.解:(1)依题意设y -2=k(x +1).将x =-2,y =6代入得k =-4,所以y =-4x -2(2)由(1)知y =-4x -2,∴当y =4时,4=(-4)×x -2,解得x =-3219.(7分)已知一次函数y =2x -1的图象如图所示,请根据图象解决下列问题:(1)写出一次函数的图象与x 轴,y 轴的交点坐标;(2)写出方程2x -1=3的解.解:(1)由图象可知,一次函数的图象与x 轴,y 轴的交点坐标分别为(12,0),(0,-1) (2)由图象知,当y =3时,x =2,即方程2x -1=3的解是x =220.(8分)在平面直角坐标系中,一次函数的图象经过点A(2,3)与点B(0,5).(1)求此一次函数的表达式;(2)若点P 为此一次函数图象上一点,且△POB 的面积为10,求点P 的坐标.解:(1)设此一次函数的表达式为y =kx +5(k ≠0).∵一次函数的图象经过点A(2,3)与点B(0,5),∴2k +5=3,解得k =-1,此一次函数的表达式为y =-x +5(2)设点P 的坐标为(a ,-a +5).∵B(0,5),∴OB =5.∵S △POB =10,∴12×5×|a|=10,∴|a|=4,∴a =±4,∴点P 的坐标为(4,1)或(-4,9)21.(8分)如图所示,在平面直角坐标系中,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y 轴交于B 点,且OA =OB.(1)求这两个函数的表达式;(2)求△AOB 的面积S.解:(1)y =43x ,y =3x -5 (2)S =12×5×3=15222.(8分)已知关于x 的一次函数y =mx +4m -2.(1)若这个函数的图象经过原点,求m 的值;(2)不论m 取何实数,这个函数的图象过定点,试求这个定点的坐标.解:(1)这个函数的图象经过原点,所以当x =0时,y =0,即4m -2=0,解得m =12(2)一次函数y =mx +4m -2变形为:m(x +4)=y +2,因为不论m 取何实数这个函数的图象都过定点,所以x +4=0, y +2=0,解得x =-4,y =-2,则不论m 取何实数这个函数的图象都过定点(-4,-2)23.(9分)学习完一次函数后,小荣遇到过这样的一个新颖的函数:y =|x -1|,小荣根据学习函数的经验,对函数y =|x -1|的图象与性质进行了探究,下面是小荣的探究过程,请补充完成:(1)列表:下表是y 与x 的几组对应值,请补充完整.x… -3 -2 -1 0 1 2 3 … y … 4 3 2 1 0 1 2 …(2)描点连线:在平面直角坐标系中,请描出以上表中各对对应值为坐标的点,画出该函数的图象;(3)进一步探究发现,该函数图象的最低点的坐标是(1,0),结合函数的图象,写出该函数的其他性质(一条即可):__当x<1时,y 随x 的增大而减小__.解:(2)函数图象如下:24.(10分)已知长方形ABCD 中,AB =60 cm ,BC =40 cm ,动点P 从A 点出发,沿着长方形的边自A →B →C →D 运动到点D ,速度为1 cm /s ,设运动时间为t(s ),△APD 的面积为y(cm 2).(1)当点P 在AB 上运动时,求y 与t 的表达式;(2)当点P 在BC 上运动时,求y 与t 的表达式;(3)当点P 在CD 上运动时,求y 与t 的表达式.解:(1)因为四边形ABCD 为长方形,所以∠A =∠D =90°,当点P 在AB 上运动时(如图①),0<t ≤60,AP =t cm ,所以S △ADP =12AP ·AD =12×40×t =20t(cm 2),即y =20t(0<t ≤60) (2)当点P 在BC 上运动时(如图②),AB +BC =60+40=100(cm ),所以60<t ≤100,过点P 作PE ⊥AD.因为四边形ABCD 为长方形,所以∠EDC =∠C =90°,所以四边形PEDC为长方形,PE =DC =60 cm ,所以S △ADP =12AD·PE =12×40×60=1200(cm 2),即y =1200(60<t ≤100)(3)当点P 在CD 上运动时(如图③),AB +BC +DC =60+40+60=160(cm ),所以100<t ≤160,PD =DC -PC =DC -(t -AB -BC)=(160-t)cm ,AD =40 cm ,S △ADP =12AD·DP =12×40×(160-t)=(-20t +3200)(cm 2),即y =-20t +3200(100<t ≤160) 25.(10分)已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离证明可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-1,2)到直线y =3x +7的距离.解:因为直线y =3x +7,其中k =3,b =7,所以点P(-1,2)到直线y =3x +7的距离为:d =|kx 0-y 0+b|1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(-1,3)到直线y =x -3的距离;(2)已知直线y =3x +3与y =3x -6平行,求这两条直线之间的距离.解:(1)因为直线y =x -3,其中k =1,b =-3,所以点P(-1,3)到直线y =x -3的距离为d =|kx 0-y 0+b|1+k 2=|1×(-1)-3+(-3)|1+12=722 (2)当x =0时,y =3x +3=3,所以点(0,3)在直线y =3x +3上,因为点(0,3)到直线y=3x -6的距离为d =|kx 0-y 0+b|1+k 2=|3×0-3-6|1+32=91010,因为直线y =3x +3与直线y =3x -6平行,所以这两条直线之间的距离为91010。
北师大版初中数学八年级上册 第3章位置与坐标 确定位置同步练习含解析

3.1 确定位置一、选择题1.电影院的第3排第6座表示为(3,6).若某同学的座位号为(4,2),那么该同学的位置是()A.第2排第4座B.第4排第2座C.第4座第4排D.无法确定2.2013年04月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米.能够准确表示芦山县这个地点位置的是()A.北纬30.3°B.东经103.0°C.四川省雅安市D.北纬31°,东经103°3.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)4.如图,学校在李老师家的南偏东30°方向,距离是500m,则李老师家在学校的()A.北偏东30°方向,相距500m处B.北偏西30°方向,相距500m处C.北偏东60°方向,相距500m处D.北偏西60°方向,相距500m处5.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°6.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)7.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(1,6)表示的“将”位置,那么“炮”的位置应表示为()A.(6,4)B.(4,6)C.(8,7)D.(7,8)8.如图是沈阳市地区简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()A.D7,E6 B.D6,E7 C.E7,D6 D.E6,D79.如图所示,某班教室有9排5列座位.1号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”根据上面4位同学的描述,可知“5号”小明的位置在()A.4排3列B.4排5列C.5排4列D.5排5列二、填空题10.如图,学校在小明家偏度的方向上,距离约是米.11.小明的座位是第5列第3个,表示为M(5,3),他前面一个同学的座位可表示.12.如果电影院9排16号的座位用(9,16)表示,那么(10,2)表示排号.13.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用表示C点的位置.三、解答题14.(1)电影院在学校偏的方向上,距离是米.(2)书店在学校偏的方向上,距离是米.(3)图书馆在学校偏的方向上,距离是米.(4)李老师骑自行车从学校到邮局发邮件,每分钟走250米,需要多少分钟到达?15.如图,小王家在2街与2大道的十字路口,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示小王从家到工厂上班的一条路径,那么你能用同样的方式写出由家到工厂小王走的另一条路径吗?16.如图是小丽以学校为观测点,画出的一张平面图.(1)生源大酒店在学校偏方向米处.汽车站在学校偏方向米处;(2)中医院在邮电局东偏北60°方向400米处,请在上图中标出它的位置;(3)小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医院大约需要分钟.北师大新版八年级数学上册同步练习:3.1 确定位置参考答案与试题解析一、选择题1.电影院的第3排第6座表示为(3,6).若某同学的座位号为(4,2),那么该同学的位置是()A.第2排第4座B.第4排第2座C.第4座第4排D.无法确定【考点】坐标确定位置.【分析】根据坐标确定位置,从有序数对的两个数的实际意义考虑解答.【解答】解:∵电影院的第3排第6座表示为(3,6),∴某同学的座位号为(4,2),该同学的位置是:第4排第2座.故选:B.【点评】本题考查了确定位置,理解有序数对的两个数的实际意义是解题的关键.2.2013年04月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米.能够准确表示芦山县这个地点位置的是()A.北纬30.3°B.东经103.0°C.四川省雅安市D.北纬31°,东经103°【考点】坐标确定位置.【分析】根据题意结合四川省雅安市芦山县发生7.0级地震即可得出芦山县这个地点位置.【解答】解:∵2013年04月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米,∴能够准确表示芦山县这个地点位置的是四川省雅安市.故选:C.【点评】此题主要考查了确定地理位置,正确理解题意是解题关键.3.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【分析】由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y 轴的位置,从而可以确定“嘴”的坐标.【解答】解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.【点评】由已知条件正确确定坐标轴的位置是解决本题的关键.4.如图,学校在李老师家的南偏东30°方向,距离是500m,则李老师家在学校的()A.北偏东30°方向,相距500m处B.北偏西30°方向,相距500m处C.北偏东60°方向,相距500m处D.北偏西60°方向,相距500m处【考点】坐标确定位置;方向角.【分析】以学校为原点建立坐标系,确定李老师家的位置.【解答】解:学校在李老师家的南偏东30°方向,距离是500m,以正北方向为y轴正方向,正东方向为x轴的正方向,以李老师家为原点,则学校在第四象限;以学校为原点建立坐标系,则李老师家在第二象限,即北偏西30°方向,相距500m处.故选B.【点评】本题利用了平面直角坐标系来理解生活中的相对位置问题.5.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有D能确定一个位置,故选:D.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.6.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【考点】坐标确定位置.【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【解答】解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.故选D.【点评】本题考查了学生的阅读理解能力,由已知条件正确确定坐标轴的位置是解决本题的关键.7.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(1,6)表示的“将”位置,那么“炮”的位置应表示为()A.(6,4)B.(4,6)C.(8,7)D.(7,8)【考点】坐标确定位置.【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:由“用(2,﹣3)表示“帅”的位置,向左移2个单位,向上移3个单位,那个点就是原点(0,0),建立坐标系.可得“炮”的位置为(6,4).故选A.【点评】本题解题的关键就是确定坐标原点和x,y轴的位置及方向.8.如图是沈阳市地区简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()A.D7,E6 B.D6,E7 C.E7,D6 D.E6,D7【考点】坐标确定位置.【分析】读图可知:故宫所在位置是E竖排,7横行;鼓楼所在的位置是D竖排,6横行;故图中“故宫”、“鼓楼”所在的区域分别是E7,D6.【解答】解:故宫所在位置是E竖排,7横行;鼓楼所在的位置是D竖排,6横行.故图中“故宫”、“鼓楼”所在的区域分别是E7,D6.故选C.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力.9.如图所示,某班教室有9排5列座位.1号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”根据上面4位同学的描述,可知“5号”小明的位置在()A.4排3列B.4排5列C.5排4列D.5排5列【考点】坐标确定位置.【分析】在数轴上,用一个数据就能确定一个点的位置;在平面直角坐标系中,要用两个数据才能表示一个点的位置;在空间内要用三个数据才能表示一个点的位置.【解答】解:根据1号同学,2号同学,3号同学的说法,可知小明在第4列,再根据4号同学说:“小明离1号同学和3号同学的距离一样远”可得小明在第5排第4列.故选C.【点评】本题是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系,通过此题可以做到在生活中理解数学的意义.二、填空题10.如图,学校在小明家北偏西45 度的方向上,距离约是500 米.【考点】方向角.【分析】根据方向角的定义结合图例即可做出判断.【解答】解:学校在小明家北偏西45度的方向上,距离≈200×2.5=500米.故答案为:北;偏西45;500.【点评】本题主要考查的是方向角的定义,掌握方向角的定义是解题的关键.11.小明的座位是第5列第3个,表示为M(5,3),他前面一个同学的座位可表示(5,2).【考点】坐标确定位置.【专题】数形结合.【分析】由于他前面一个同学的座位为第5列第2个,然后可根据题中的表示方法用有序实数对表示他前面一个同学的座位.【解答】解:他前面一个同学的座位为第5列第2个,表示为(5,2).故答案为(5,2).【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.如果电影院9排16号的座位用(9,16)表示,那么(10,2)表示10 排 2 号.【考点】坐标确定位置.【专题】应用题.【分析】由“9排16号”记作(9,16)可知,有序数对与排号对应,(10,2)的意义为第10排2号.【解答】解:根据题意知:前一个数表示排数,后一个数表示号数,∴(10,2)的意义为第10排2号.故答案为10排2号.【点评】本题主要考查了类比点的坐标解决实际问题的能力和阅读理解能力,比较简单.13.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用(6,1)表示C点的位置.【考点】坐标确定位置.【专题】网格型.【分析】可根据平移规律解答;也可根据已知两点的坐标建立坐标系后解答.【解答】解:以原点(0,0)为基准点,则C点为(0+6,0+1),即(6,1).故答案填:(6,1).【点评】本题考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.三、解答题14.(1)电影院在学校南偏东70°的方向上,距离是400 米.(2)书店在学校北偏西60°的方向上,距离是800 米.(3)图书馆在学校南偏西15°的方向上,距离是400 米.(4)李老师骑自行车从学校到邮局发邮件,每分钟走250米,需要多少分钟到达?【考点】方向角.【分析】(1)、(2)、(3)根据方向角的定义和图例即可做出判断;(4)根据时间=路程÷速度计算即可.【解答】解:(1)电影院在学校南偏东70°的方向上,距离是400米.(2)书店在学校北偏西60°的方向上,距离是800米.(3)图书馆在学校南偏西15°的方向上,距离是400米.故答案为:(1)南;偏东70°;400;(2)北;偏西60°;800(3)南;偏西15°400.(4)5×200÷250=4.答:需要4分钟到达.【点评】本题主要考查的是方向角的定义,掌握方向角的定义是解题的关键.15.如图,小王家在2街与2大道的十字路口,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示小王从家到工厂上班的一条路径,那么你能用同样的方式写出由家到工厂小王走的另一条路径吗?【考点】坐标确定位置.【专题】数形结合.【分析】每个十字路口用有序实数对表示,然后表示出第2大道与第2、3、4、5街的路口,再表示第5街与第3、4大道的路口,从而得到由家到工厂小王走的另一条路径.【解答】解:小王从家到工厂上班的另一条路径可为:(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4).【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.16.如图是小丽以学校为观测点,画出的一张平面图.(1)生源大酒店在学校北偏西30°方向400 米处.汽车站在学校南偏西50°方向600 米处;(2)中医院在邮电局东偏北60°方向400米处,请在上图中标出它的位置;(3)小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医院大约需要24 分钟.【考点】方向角.【分析】(1)由图意可知:生源大酒店在学校北偏西30°处,汽车站在学校南偏西50°方向,再据“实际距离=图上距离÷比例尺”即可求得学校到生源大酒店的距离,以及学校到汽车站的距离;(2)依据“图上距离=实际距离×比例尺”即可求得中医院到邮电局的图上距离,再据方向和角度,即可标出中医院的位置;(3)先求出从汽车站经过学校、邮局再到中医院的实际距离,再据“路程÷速度=时间”即可求得小丽需要的时间.【解答】解:(1)生源大酒店在学校在学校北偏西30°处,汽车站在学校南偏西50°方向,量得学校到生源大酒店的距离是2厘米,则学校到生源大酒店的实际距离是:2÷=40000(厘米)=400(米);量得学校到汽车站的距离是3厘米,则学校到汽车站的实际距离是:3÷=60000(厘米)=600(米);故答案为:北、西30°、400、南、西50°、600;(2)因为400米=40000厘米,则中医院到邮电局的图上距离是:40000×=2(厘米);如图所示,即为中医院的位置:(3)量得学校到邮电局的图上距离为1厘米,则学校到邮电局的实际距离为:1÷=20000(厘米)=200(米);所以小丽需要的时间为:(600+200+400)÷50,=1200÷50,=24(分钟);答:小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医院大约需要24分钟.故答案为:24.【点评】此题考查了方向角,用到的知识点是比例尺的意义、方向角、“路程÷速度=时间”,关键是根据所给出的图形量准图上的距离.。
北师大版八年级数学上册《第三章位置与坐标》同步训练题-附答案

北师大版八年级数学上册《第三章位置与坐标》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________时间:60分钟满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·广东深圳龙华区期末)家长会前,四个孩子分别向家长描述自己在班里的座位,家长能准确找到自己孩子座位的是()A.小明说他坐在第1排B.小白说他坐在第3列C.小清说她坐在第2排第5列D.小楚说他的座位靠窗2.(2021·四川成都郫都区期末)如图,小手盖住的点的坐标可能为()A.(5,2)B.(-6,3)C.(-3,-2)D.(3,-3)3.(2022·广西百色期中)在图中,所画的平面直角坐标系正确的是()A BC D4.(2022·黑龙江哈尔滨道里区期末)在平面直角坐标系中,点A在y轴上,位于原点上方,距离原点2个单位长度,则点A的坐标为() A.(2,0) B.(-2,0)C.(0,2)D.(0,-2)5.(2022·山西晋中期中)如图,在四边形ABCD中,AD∥BC∥x轴,下列说法正确的是()A.B与C的纵坐标相同B.C与D的横坐标相同C.A与D的横坐标相同D.B与D的纵坐标相同(第5题)(第6题)6.如图,雷达探测器测得六个目标A,B,C,D,E,F.按照规定的目标表示方法,目标C,F的位置分别表示为C(6,120°),F(5,210°).按照此方法表示目标A,B,D,E的位置,不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)7.小莹和小博士下棋,小莹执圆子,小博士执方子,如图,棋盘中心方子的位置用(-1,0)表示,左下角方子的位置用(-2,-1)表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是()A.(-2,0)B.(-1,1)C.(1,-2)D.(-1,-2)(第7题)(第8题)8.(2022·山东济宁任城区期末)如图,在平面直角坐标系中,点O为坐标原点,点A的坐标为(-5,12),它关于y轴的对称点为B,则△ABO的周长为()A.24B.34C.35D.369.(2021·辽宁锦州期中)下列说法不正确的是()A.若x+y=0,则点P(x,y)一定在第二、四象限的角平分线上B.点P(-2,3)到y轴的距离是2C.若P(x,y)中xy=0,则点P在x轴上D.点A(-a2,|b|)可能在第二象限10.对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P'为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P'(9,6).若点P在x轴的正半轴上,点P的“k 属派生点”为P'点,且线段PP'的长度为线段OP长度的3倍,则k的值为()A.3B.±3C.6D.±6二、填空题(共5小题,每小题3分,共15分)11.如图,已知字母W对应的有序数对为(2,4),有一个英文单词的字母依次对应的有序数对分别为(1,2),(1,3),(2,3),(5,1),请你把这个英文单词写出来.12.(2021·重庆北碚区期末)已知点P(a,b)在第三象限,且点P到x轴的距离为4,到y轴的距离为3,则点P的坐标为.13.(2022·重庆綦江区期末)在平面直角坐标系中,若点A(m-1,3)与点B(2,n-1)关于x轴对称,则(m+n)2 021的值为.14.(2021·江苏南京期末)如图,在平面直角坐标系中,点P为x轴上一点,且到A(0,2)和点B(5,5)的距离相等,则线段OP的长度为.(第14题)(第15题)15.(2022·河南郑州三中期末)如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2 021的横坐标为.三、解答题(共6小题,共55分)16.(7分)如图,我们把杜甫的《绝句》整齐排列放在平面直角坐标系中.(1)“东”“窗”和“柳”的坐标依次是:,和;(2)将第2行与第4行对调,再将第4列与第6列对调,(注:最上边一行为第一行,最左边一列为第一列)“里”由开始的坐标依次变换到和.17.(8分)下图中标明了李明家附近的一些地方,已知李明家位于(-2,-1).(1)建立平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李明从家里出发,沿着(-1,-2),(1,-2),(2,-1),(1,-1),(1,3),(-1,0),(0,-1)的路线转了一下后回到家里,用线段顺次连接李明家和他在路上经过的地点,你能得到什么图形?18.(8分)(2022·浙江宁波期末改编)已知点P(-3a-4,2+a),解答下列问题:(1)若点P在x轴上,试求出点P的坐标;(2)若Q(5,8),且PQ∥y轴,试求出点P的坐标.19.(9分)(2022·河南郑州八中期末)如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C;(2)求△ABC的面积;(3)在y轴上有一点D,且S△ACD=S△ABC,写出点D的坐标.20.(11分)(2021·山东济南期中)如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a,b满足√a-4+|b-6|=0,点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O—C—B—A—O的线路移动一圈停止.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.21.(12分)(2022·甘肃白银期末)阅读下列文字,然后回答问题.已知在平面内有两点P1(x1,y1),P2(x2,y2),它们之间的距离P1P2=√(x1-x2)2+(y1-y2)2.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离.(2)已知△DEF各顶点为D(1,6),E(-2,2),F(4,2),请判断此三角形的形状,并说明理由.(3)在(2)的条件下,在平面直角坐标系中的x轴上找一点P,使PD+PF的长度最短,求出PD+PF的最短长度.参考答案12345678910C D A C A D B D C B11.HOPE12.(-3,4)13.114.4.615.1 0121.【答案】C(排除法)小明说他坐在第1排,无法确定座位位置;小白说他坐在第3列,无法确定座位位置;小楚说他的座位靠窗,无法确定座位位置.故选C.2.【答案】D3.【答案】A4.【答案】C∵在平面直角坐标系中,点A在y轴上,位于原点上方,距离原点2个单位长度,∴A点的坐标是(0,2).5.【答案】A∵在四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.6.【答案】D7.【答案】B棋盘中心方子的位置用(-1,0)表示,则这点所在的横线是x轴,这点向右1个单位所在的纵线是y轴,所以建立平面直角坐标系如图,故小莹将第4枚圆子放的位置是(-1,1)时所有棋子构成轴对称图形.8.【答案】D∵点A与点B关于y轴对称,A(-5,12),∴B(5,12),∴AB=10,OA=13,OB=13,∴△AOB的周长=OA+OB+AB=13+13+10=36.9.【答案】C∵x+y=0,∴x=-y,即点在第二、四象限的角平分线上;∵点P的横坐标是-2,∴点P到y轴的距离是2;若P(x,y)中xy=0,则点P可能在x轴上,也可能在y轴上;∵-a2≤0,|b|≥0,∴点A可能在第二象限,也可能在坐标轴上.故选C.10.【答案】B∵点P在x轴的正半轴上,∴P点的纵坐标为0,设P(a,0),a>0,则点P的“k属派生点”P'点为(a,ka),∴PP'=|ka|,OP=|a|,∵线段PP'的长度为线段OP长度的3倍,∴|ka|=3|a|,∴k=±3.11.【答案】HOPE由题意知(1,2)表示H,(1,3)表示O,(2,3)表示P,(5,1)表示E,所以这个英文单词为HOPE.12.【答案】(-3,4)13.【答案】1∵点A(m-1,3)与点B(2,n-1)关于x轴对称,∴m-1=2,n-1=-3,∴m=3,n=-2,∴(m+n)2 021=(3-2)2 021=1.14.【答案】4.6设点P(x,0),根据题意得x2+22=(5-x)2+52,解得x=4.6,∴OP=4.6.15.【答案】1 012∵A3是第一与第二个等腰直角三角形的公共点,A5是第二与第三个等腰直角三角形的公共点,A7是第三与第四个等腰直角三角形的公共点,A9是第四与第五个等腰直角三角形的公共点,…,∵2 021=1 010×2+1,∴A2 021是第1 010个与第1 011个等腰直角三角形的公共点,∴A2 021在x轴正半轴上,∵OA5=4,OA9=6,OA13=8,…,∴OA2 021=(2 021+3)÷2=1 012,∴点A2 021的坐标为(1 012,0),即A2 021的横坐标为1 012.16.【答案】(1)(3,1)(1,2)(7,4)(3分) (2)(6,1)(6,3)(4,3)(7分) 17.【答案】(1)建立平面直角坐标系如图所示,学校和邮局的坐标分别为(1,3),(0,-1).(2分)(5分)(2)如图,用线段顺次连接李明家和他在路上经过的地点,得到的图形是帆船.(8分)18.【答案】(1)∵点P在x轴上∴2+a=0,解得a=-2∴-3a-4=2∴点P的坐标为(2,0).(4分) (2)∵Q(5,8),且PQ∥y轴∴-3a-4=5,解得a=-3∴2+a=-1∴点P的坐标为(5,-1).(8分) 19.【答案】(1)如图,点A,C即为所求.(4分)×8×4=16.(7分) (2)易知B(-3,4),AC=8,所以S△ABC=12(3)点D的坐标为(0,4)或(0,-4).(9分) 20.【答案】(1)46(4,6)(3分) 解法提示:∵a,b满足√a-4+|b-6|=0∴a-4=0,b-6=0解得a=4,b=6.∵四边形OABC为长方形∴点B的坐标是(4,6).(2)当点P移动4秒时,共移动了8个单位长度.∵OA=4,OC=6∴此时点P在线段CB上,离点C的距离是8-6=2(个)单位长度∴点P的坐标是(2,6).(6分) (3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况:①当点P在OC上时点P移动的时间是5÷2=2.5(秒);(8分) ②当点P在BA上时点P移动的时间是(6+4+1)÷2=5.5(秒).故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.(11分) 21.【答案】(1)AB=√(2+3)2+(4+8)2=13.(2分) (2)等腰三角形.(3分) 理由:DE=√(1+2)2+(6-2)2=5EF=√(-2-4)2+(2-2)2=6DF=√(1-4)2+(6-2)2=5∴DE=DF<EF,DE2+DF2>EF2∴△DEF为等腰三角形.(6分) (3)如图,作点F关于x轴的对称点F',连接DF'交x轴于点P,则点P即为所求.∵F(4,2),∴F'(4,-2).∵D(1,6)∴DF'=√(1-4)2+(6+2)2=√73∴PD+PF的最短长度为√73.(12分)。
2021年八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题专训及答案

2021年八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题专训及答案2021八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题-专训1、(2020苍南.八上期末) 如图,直角坐标系中,点C 是直线y= x 上第一象限内的点点A(1,0),以AC 为边作等腰Rt△AC B ,AC=BC 点B 在x 轴上,且位于点A 的右边,直线BC 交y 轴于点D 。
(1) 求点B ,C 的坐标;(2) 点A 向上平移m 个单位落在△OCD 的内部(不包括边界),求m 的取值范围。
2、(2019嘉荫.八上期末) 如图,在平面直角坐标系中,四边形ABCD 是边长为5的正方形,顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA , OB 的长满足|OA ﹣4|+(OB ﹣3)=0.(1) 求OA ,OB 的长;(2) 求点D 的坐标;(3) 在y 轴上是否存在点P ,使△PAB 是以AB为腰的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3、(2019道里.八上期末) 如图,在平面直角坐标系中,O 是坐标原点,点分别在轴的正半轴和x 轴的正半轴上,的面积为,过点 作直线轴.(1) 求点的坐标;(2) 点是第一象限直线上一动点,连接 .过点 作,交轴于点D ,设点 的纵坐标为,点 的横坐标为,求与 的关系式;(3)在(2)的条件下,过点 作直线,交轴于点,交直线 于点 ,当时,求点 的坐标.4、(2019昆山.八上期末) 已知:如图,一次函数y= x+3的图象分别与x 轴、y 轴相交于点A 、B ,且与经过点C(2,0)的一次函数y=kx+b 的图象相交于点D ,点D 的横坐标为4,直线CD 与y 轴相交于点E.2(1) 直线CD 的函数表达式为;(直接写出结果)(2) 在x 轴上求一点P 使△PAD 为等腰三角形,直接写出所有满足条件的点P 的坐标.(3) 若点Q 为线段DE 上的一个动点,连接BQ.点Q 是否存在某个位置,将△BQD 沿着直线BQ 翻折,使得点D 恰好落在直线AB 下方的y 轴上?若存在,求点Q 的坐标;若不存在,请说明理由.5、(2017东台.八上期末) 如图,在平面直角坐标系xOy 中,已知点A (﹣1,0),点B (0,2),点C (3,0),直线a 为过点D (0,﹣1)且平行于x 轴的直线.(1) 直接写出点B 关于直线a 对称的点E 的坐标;(2) 若P 为直线a 上一动点,请求出△PBA 周长的最小值和此时P 点坐标;(3) 若M 为直线a 上一动点,且S =S ,请求出M 点坐标.6、(2017萍乡.八上期末) 如图1,在平面直角坐标系中,A (0,1),B (4,1),C 为x 轴正半轴上一点,且AC 平分∠OA B .(1) 求证:∠OAC=∠OCA ;(2) 如图2,若分别作∠AOC 的三等分线及∠OCA 的外角的三等分线交于点P,即满足∠POC= ∠AOC ,∠PCE= ∠ACE ,求∠P 的大小;(3) 如图3,在(2)中,若射线OP 、OC 满足∠POC= ∠AOC ,∠PCE= ∠ACE ,猜想∠OPC 的大小,并证明你的结论(用含n 的式子表示)7、(2019深圳.八上期中) 如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)=0.(1) a=,b=;(2) 如果在第二象限内有一点M (m ,1),请用含m 的式子表示四边形ABOM 的面积;△A BC △M A B 2(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上求点N(的坐标),使得△ABN的面积与四边形ABOM的面积相等.(直接写出答案)8、(2019下陆.八上期末) 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3) P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P的坐标.9、(2019福田.八上期末) 如图1,在平面直角坐标系中将向下平移3个单位长度得到直线,直线与x轴交于点C;直线:与x轴、y轴交于A、B两点,且与直线交于点D.(1)填空:点A的坐标为,点B的坐标为;(2)直线的表达式为;(3)在直线上是否存在点E,使?若存在,则求出点E的坐标;若不存在,请说明理由.(4)如图2,点P为线段AD上一点不含端点,连接CP,一动点H从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D后停止,求点H在整个运动过程中所用时间最少时点P的坐标.10、(2019兰州.八上期末) 如图,,,点在轴上,且 .(1)求点的坐标,并画出 ;(2)求的面积;(3)在轴上是否存在点,使以三点为顶点的三角形的面积为10?若存在,请直接写出点的坐标;若不存在,请说明理由.11、(2019江岸.八上期中) 在平面直角坐标系中,,点在第二象限的角平分线上,、的垂直平分线交于点.(1)求证:;(2)设交轴于点,若,求点的坐标;(3)作交轴于点,若,求点的坐标.12、(2019滨海.八上期末) 如图,在平面直角坐标系中,直线:与直线:交于点,与y轴交于点,与x轴交于点C.(1)求直线的函数表达式;(2)求的面积;(3)在平面直角坐标系中有一点,使得,请求出点P的坐标;(4)点M为直线上的动点,过点M作y轴的平行线,交于点N,点Q为y轴上一动点,且为等腰直角三角形,请直接写出满足条件的点M的坐标.13、(2019句容.八上期末) 如图(1)【模型建立】如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点 .求证:;(2)【模型应用】已知直线:与坐标轴交于点、,将直线绕点逆时针旋转至直线,如图2,求直线的函数表达式;(3)如图3,长方形,为坐标原点,点的坐标为,点、分别在坐标轴上,点是线段上的动点,点是直线上的动点且在第四象限.若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.14、(2020徐州.八上期末) 如图,在平面直角坐标系中,已知A(10,0),B(10,6),BC⊥y轴,垂足为C,点D在线段BC上,且AD=AO.(1)试说明:DO平分∠CDA;(2)求点D的坐标.15、(2020岑溪.八上期末) 如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是 .(1)请直接写出点的坐标(,);(2)求该一次函数的解析式;(3)求的面积.2021八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题-答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 平面直角坐标系
一、填空题
1.__________________________________________组成平面直角坐标系.2.(1)图1中多边形ABCDEF各顶点坐标为
______________________________________
(2)A与B和E与D的横坐标有什么关系_______________________
(3)B与D、C与F坐标的特点是______________________________
(4)线段AB与ED所在直线的位置关系是_______________________
图1图2
3.图2是画在方格纸上的某行政区简图,
(1)则地点B,E,H,R的坐标分别为:
_______________________________________________
(2)(2,4),(5,3),(7,7),(11,4)所代表的地点分别为___________
4.已知:如图3等腰△ABC的腰长为22,底边BC=4,以BC所在的直线为x轴,BC的垂直平分线为y轴建立如图所示的直角坐标系,则B()、C()、A().
图3图4
5.如图4草房的地基AB长15米,房檐CD的长为20米,门宽为6米,CD到地面的距离为18米,请你建立适当的直角坐标系并写出A、B、C、D、E、F的坐标.
(1)以_________为x轴,以_____________为y轴建立平面直角坐标系,则A________,B,C________,D________,E________,F________.
二、建立一个直角坐标系,并在坐标系中,把以下各组点描出来,并观察图形像什么?
(1)(0,4),(0,2),(3,5),(4,6),(0,-2),(-3,5),(-4,6),(6,0),(-6,0)
(2)(0,-4),(3,-5),(-3,-5),(6,0),(-6,0)
参考答案
一、1.有公共原点标准单位且互相垂直的两条数轴
2.(1)A(-4,3),B(-4,0),C(0,-2),D(5,0),E(5,3),F(0,5) (2)相同(3)均有个坐标为0,B、D纵坐标为0,C、F横坐标为0(4)平行3.(1)B(4,8),E(11,4),H(10,4),R(6,1)(2)M,I,C,E
4.(-2,0),(2,0),A(0,2)
5.注:草房所在的平面图是轴对称图形
二、略。