数字图像处理第4章

合集下载

数字图像处理(第二版)章 (4)

数字图像处理(第二版)章 (4)
一灰度区间进行扩展或压缩。例如,当[a,b]之间的变换直
线斜率大于1时,该灰度区间的动态范围增加,即对比度增强
了,而另外两个区间的动态范围被压缩了。当a=b,c=0,d=L-
1时,式(4-4)就变成一个阈值函数,变换后将会产生一个二值 图像。图4-3(c)是经由图4-3 (b)所示的分段线性变换对图43(a)的变换结果,它保持低灰度像素不变,增强了中间灰度的 对比度,并压缩了高灰度的动态范围。
2r 2 0 r 1
pr (r) 0
其他值
用式(4-11)求其变换函数,即其累积分布函数为
s T(r)
像素数之比p)r。(r对k ) 数 n字nk 图像,直k方图0,1可,2表,示, L为1
(4-8)
式中: n是一幅图像的像素总数; L是灰度级的总数目; rk表示第k个灰度级; nk为第k级灰度的像素数; pr(rk)表示 该灰度级出现的频率,是对其出现概率的估计。
第4章 图像增强
在直角坐标系中做出rk与pr(rk)的关系图形,称为该图像
设r为变换前的归一化灰度级,0≤r≤1,T(r)为变换函数, s=T(r)为变换后的归一化灰度级,0≤s≤1。变换函数T(r)应
满足下列条件:
(1) 在0≤r≤1区间内,T(r)单值单调递增; (2) 对于0≤r≤1,有0≤T(r)≤1。
第4章 图像增强
第一个条件保证了变换后图像的灰度级从黑到白的次序不 变。第二个条件保证了变换前后图像灰度范围一致。反变换
第4章 图像增强 灰度变换就是把原图像的像素灰度经过某个变换函数变换
成新的图像灰度。常见的灰度变换方法有直接灰度变换法和直 方图修正法。直接灰度变换法可以分为线性、分段线性以及非 线性变换。直方图修正法可以分为直方图均衡化和直方图规定 化。

数字图像处理其中的第4部分学习使用

数字图像处理其中的第4部分学习使用
(1)首先把一幅图像划提成一系列旳图像块,每个图像块包括8×8个 像素。假如原始图像有640×480个像素,则图片将包括80列60行旳 方块。假如图像只包括灰度,那么每个像素用一种8比特旳数字表达。 所以能够把每个图像块表达成一种8行8列旳二维数组。数组旳元素 是0~255旳8比特整数。离散余弦变换就是作用在这个数组上。
JPEG编码思想
思想:人对亮度比对色彩敏感,在光线不足旳情况下,所观察 物体都是黑白旳。所以能够对色调和饱和度做粗略处理。
措施:对8*8图像块矩阵,Y成份数据不变,U每2*2个数据求平 均,V每2*1个数据求平均。称为YUV421系统。
除此, 还有YUV422, 411, 420等系统.
2)FDCT与IDCT 思想:人眼对低频数据比对高频数据敏感。 FDCT 为前向 离散余弦变换,JPEG原则不要求FDCT和IDCT旳算法。 措施:
组旳函数,也就是说,把一种数组经过一种变换,变成另一种数组。 如图下图所示,对每个图像块做离散余弦变换。经过DCT变换能够把能量集
中在矩阵左上角少数几种系数上。
f(i,j)经DCT变换之后得到F(i,j),其中F(0,0)是直流系数,
称为DC系数,其他为交流系数,称为AC系数。
2023/10/10
思想:将每个DCT系数除以各自量化步长并四舍五入后取整, 得到量化系数。
F
u,
v
INT
F S
u,v u,v
0.5
F u,v F u,vS u,v
JPEG系统分别要求了亮度分量和色度分量旳量化表,显然色 度分量相应旳量化步长比亮度分量大。
4)对量化系数旳处理和组织
思想:JPEG采用定长和变长相结合旳编码措施。 直流系数:一般相邻8*8图像块旳DC分量很接近,所以

数字图像处理第四章作业

数字图像处理第四章作业

第四章图像增强1.简述直方图均衡化处理的原理和目的。

拍摄一幅较暗的图像,用直方图均衡化方法处理,分析结果。

原理:直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

也就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

把给定图像的直方图分布改变成“均匀”分布直方图分布目的:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

它通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过直方图均衡化,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

Matlab程序如下:clc;RGB=imread('wxf.jpg'); %输入彩色图像,得到三维数组R=RGB(:,:,1); %分别取三维数组的一维,得到红绿蓝三个分量G=RGB(:,:,2); %为R G B。

B=RGB(:,:,3);figure(1)imshow(RGB); %绘制各分量的图像及其直方图title('原始真彩色图像');figure(2)subplot(3,2,1),imshow(R);title('真彩色图像的红色分量');subplot(3,2,2), imhist(R);title('真彩色图像的红色分量直方图');subplot(3,2,3),imshow(G);title('真彩色图像的绿色分量');subplot(3,2,4), imhist(G);title(' 的绿色分量直方图');subplot(3,2,5),imshow(B);title('真彩色图像的蓝色分量');subplot(3,2,6), imhist(B);title('真彩色图像的蓝色分量直方图');r=histeq(R); %对个分量直方图均衡化,得到个分量均衡化图像g=histeq(G);b=histeq(B);figure(3),subplot(3,2,1),imshow(r);title('红色分量均衡化后图像');subplot(3,2,2), imhist(r);title('红色分量均衡化后图像直方图');subplot(3,2,3),imshow(g);title('绿色分量均衡化后图像');subplot(3,2,4), imhist(g);title('绿色分量均衡化后图像直方图');subplot(3,2,5), imshow(b);title('蓝色分量均衡化后图像');subplot(3,2,6), imhist(b);title('蓝色分量均衡化后图像直方图');figure(4), %通过均衡化后的图像还原输出原图像newimg = cat(3,r,g,b); %imshow(newimg,[]);title('均衡化后分量图像还原输出原图');程序运行结果:原始真彩色图像均衡化后分量图像还原输出原图图1.1 原始图像与均衡化后还原输出图像对比通过matlab仿真,由图1.1比较均衡化后的还原图像与输入原始真彩色图像,输出图像轮廓更清晰,亮度明显增强。

数字图像处理第四章部分答案(全手打来自文库)

数字图像处理第四章部分答案(全手打来自文库)

4
计算原始累积直方图 pi 0.14 0.36 0.61 0.78 0.88 0.94 0.97 1.00
5
计算规定累积直方图 pj 0
0
0
0.19 0.44 0.65 0.89 1.00
6
按照 pi→ pj 找到对应的 3
4
5
6
6
6
7
7
i和j
7
确定变换关系 i→j
0→3 1→4 2→5 3,4,5→6
pjnjn014022025017010012步骤计算方式计算结果1列出图像灰度级ij012345672计算原始直方图pri0140220250170100060030033列出规定直方图pzj0000190250210240114计算原始累积直方图pi0140360610780880940971005计算规定累积直方图pj0000190440650891006按照pipj找到对应的i和j确定变换关系ij34566677703142534566778求变换后的匹配直方图pj01402202503300645解
6,7→7
8
求变换后的匹配直方图
p(j)
0.14 0.22 0.25 0.33 0.06
4.5
解:已知通过图像平均法可以将噪声均方差降低到原来的 1/ m ,m 为用于平均的图像个数,
所以 g=1/10 n= 1/ m n
所以 M=100,T=3.33 秒
4.8 解:对提示表达式进行傅里叶变换得
3
j
0.14 0.36 0.61 0.78 0.88 0.94 0.97 1.00
计算累积直方图:pj= p(k)
k 0
4 计算变换后的灰度值: 1

数字图像处理第04章图像增强ppt课件

数字图像处理第04章图像增强ppt课件

归一化的直方图(histogram)定义为灰度级出 现的相对频率。即
Pr(k)nk /N
(4.13)
式中,N表示像素的总数;nk表示灰度级为k的
像素的数目。
Slide 25
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.线性变换
灰度g与灰度f之间的关系为
gaba[f a] ba
(1)变换使得图像灰度范围增 大,即对比度增大,图像会变得 清晰;
(2)变换使得图像灰度范围缩 图4.4 线性变换 小,即对比度减小。
Slide 16
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
图4.7 三段线性变换实例
(a)原始图像
(b)增强效果
Slide 21
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3.非线性灰度变换
当用某些非线性函数如对数、指数函数等作为 映射函数时,可实现灰度的非线性变换。
J = imadjust(I,[0.3 0.7],[]); %使用imadjust函数进行灰度的线性变换
figure,imshow(J); figure,imhist(J)
%显示变换后图像的直方图
Slide 17
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
【例4.1】采用线性变换进行图像增强。

数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

F (u,v)
F *(u, v)
f ( x ,y ) ☆ h ( x ,y ) i f f t c o n j F ( u , v ) H ( u , v )
h(x,y):CD 周期延拓
PAC1
h:
PQ
QBD1
DFT
H (u,v)
F*(u,v)H(u,v)
IDFT
R(x,y):PQ
✓ 使用这组基函数的线性组合得到任意函数f,每个基函数的系 数就是f与该基函数的内积
图像变换的目的
✓ 使图像处理问题简化; ✓ 有利于图像特征提取; ✓ 有助于从概念上增强对图像信息的理解;
图像变换通常是一种二维正交变换。
一般要求: 1. 正交变换必须是可逆的; 2. 正变换和反变换的算法不能太复杂; 3. 正交变换的特点是在变换域中图像能量将集中分布在低频率 成分上,边缘、线状信息反映在高频率成分上,有利于图像处理
4.11 二维DFT的实现
沿着f(x,y)的一行所进 行的傅里叶变换。
F (u ,v ) F ( u , v ) (4 .6 1 9 )
复习:当两个复数实部相等,虚部互为相 反数时,这两个复数叫做互为共轭复数.
4.6
二维离散傅里叶变换的性质
其他性质:
✓尺度变换〔缩放〕及线性性
a f( x ,y ) a F ( u ,v ) f( a x ,b y ) 1 F ( u a ,v b ) |a b |
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质
✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现

第4章遥感图像数字处理的基础知识

第4章遥感图像数字处理的基础知识
第四章 遥感图像数字处理的基础知识
河北联合大学
内容提纲
➢ 图像的表示形式 ➢ 遥感数字图像的存贮 ➢ 遥感数字图像处理系统 ➢ 彩色的基本原理
4.1 图像的表示形式
❖遥感图像的表示形式:遥感传感器记录地物 电磁波的形式
▪ 光学图像:胶片或其它光学成像载体形式 ▪ 数字图像:数字形式
1.光学图像
❖ BMP文件的图像深度可选lbit、4bit、8bit及24bit。 BMP文件存储数据时,图像的扫描方式是按从左到右、 从下到上的顺序。
文件头 调色板 图像数据
TIFF
❖ 标签化图象文件格式,Taggen-Image File Format (TIFF)
❖ 由Aldus公司与Microsoft公司共同开发设计的图像文 件格式。TIFF格式可以存储多幅图像,TIFF图像数 据可分割成几个部分分别存档,还能够提供多种不同 的压缩数据的方法。
透射光栅
反射光栅
4.3.1 可见光与色彩
1. 人眼的视觉
(1)人眼的结构
➢ 视锥细胞:明视觉,感觉颜色; ➢ 视杆细胞:暗视觉,感觉光线明暗。
(2)人眼对颜色的分辨能力
在光亮的条件下,能分辨各种颜色,在亮度降到一定 程度,呈现明暗不同的灰阶带。
正常人眼可分辨的颜色种类可达几十万种以上。对于 灰度图像,一般人眼能分辨的灰度级仅为15~25种。
4.3.1 可见光与色彩
2.色彩概念
❖ 色调(H:Hue):色彩相互区分的特性。 ❖ 明度(L:Lightness):光作用于人眼时引起的明亮程度
的感觉,范围为从黑到白。 ❖ 亮度(V:Value或I:Intensity):颜色的相对明暗程度,
范围为灰色部分,小于明度的范围。 ❖ 饱和度(S:Saturation):彩色浓淡的程度,即渗白程度。

遥感数字图像处理-第4章 变换域处理方法

遥感数字图像处理-第4章 变换域处理方法
颜色空间是用一种数学方法来形象化地表示颜色,颜色空 间常用来指定和产生颜色。
颜色空间中的颜色通常用代表3个参数的3维坐标来描述, 其颜色要取决于所使用的坐标。大部分遥感数据都采用 RGB颜色空间来描述,但对图像进行一些可视分析时,也 会使用其他颜色空间(如HSI模型)。
10
七、颜色空间变换
颜色空间分类
第4章
变换域处理方法
为什么要进行变换域处理?
换一个角度来看数字图像
空间域图像直观地为我们提供了丰富的空间和数字信息, 但如果我们将空间域图像进行某种变换,将会较为容易地 识别出一些在原始图像上无法直观看到的信息,从而有利 于图像的后续处理。
介绍常用的数字图像变换算法原理及其应用,旨 在为后续章节的图像变换域处理提供基础。
用三棱镜! 如果想把一段音频文件不同频率的声音检测出来怎么办?
用傅立叶变换!
8
六、小波变换
小波变换与傅里叶变换类似,都是把一个信号分解成一组 正交信号,但不同于傅里叶变换中使用的三角函数,小波 变换是用由零开始由零结束、中间为一段震荡的波来表示 信号,它是一种能量在时域非常集中的波。
9
七、颜色空间变换
“鸡尾酒会问题”
在嘈杂的鸡尾酒会上,许多
(Cocktail Party Problem) 人在同时交谈,可能还有背
景音乐,但人耳却能准确而
清晰的听到对方的话语。
从混合声音中选择自己感兴 趣的声音而忽略其他声音的 现象
7
五、傅里叶变换
人的视觉系统时时刻刻都在进行“分离信号”这种行为:看 见不同的颜色,听到不同频率的声音,甚至尝到酸甜苦辣咸 这五种不同的味道也是一种识别不同信号的表现。 而傅立叶变换正是一种通过频率来分离不同信号的方法! 如果想把自然光中的七色成分分离出来怎么办?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通滤波、高通滤波以及同态滤波等。
Digital Image Processing
4.1
◘图像对比度增强定义
图像的对比度增强
采用图像灰度值变换的方法,即改变图像像素的灰度值, 以改变图像灰度的动态范围,增强图像的对比度。
设原图像为f(m,n),处理后为g(m,n),则对比度增强可表
示为
g (m, n) T [ f (m, n)]
其中, k
d c b a 称为变换函数(直线)的斜率。
g (m, n)
g (m, n)
d
c
c a b
f (m, n)
d a b
f (m, n)
图4.1-1 灰度线性变换关系
(a) k
d c 0 ba
(b) k
d c 0 ba
Digital Image Processing
(2) 扩展感兴趣的,压缩其它 在扩展感兴趣的[a,b]区间的同时,为了保留其它区间的灰度层次,也可以 采用其它区间压缩的方法,即有扩有压。变换函数为
c f ( m, n ) ; 0 f ( m, n ) a a d -c g ( m, n ) c [ f ( m, n ) a ]; a f ( m, n ) b b a N d d [ f ( m, n ) b]; b f ( m, n ) M M b
与对数变换的效果相反,指数变换使得高灰度范围得到扩展,而压缩了低 灰度范围,其一般表达式为 其中λ和γ为常数。为避免f(m,n)=0 时底数为0的情况,增加偏移量ε。 γ值的选择对于变换函数的特性有很大影响,当γ<1时会将原图像的灰度向 高亮度部分映射,当γ>1时向低亮度部分映射,而当γ=1时相当于正比变换。 灰度指数变换的图像示例如图4.1-5所示。
(a)原图像;
(b)γ=0.7时的变换结果; (c)γ=1.7时的变换结果。 图4.1-5 取不同γ值的指数变换结果对比。
Digital Image Processing
4.2
图像的直方图修正
◘ 概述 ▓ 定义:灰度直方图定义为数字图像中各灰度级与其出现的频 数间的统计关系,可表示为:
P(k )
概述
◘图像增强
目的:一是改善图像的视觉效果,提高图像的清晰度;
二是将图像转换成一种更适合于人或机器分析处理的形 式。
分类:空域法直接对图像的像素灰度值进行操作。包括图像
的灰度变换、直方图修正、图像空域平滑和锐化处
理、彩色增强等。
频域法在图像的变换域中,对图像的变换值进行操作, 然后经逆变换获得所需的增强结果。常用的方法包括低
(3)缩小动态范围。若 [c, d ] [a, b] ,即 0 k 1 ,则变换后图像动态范 围会变窄。
(4)反转或取反。若 k 0 ,即对于 b a ,有 d c 则变换后图像的灰度 值会反转,即原亮的变暗,原暗的变亮。在 k 1 时,g (m, n) 即为
f (m, n) 的取反。
Digital Image Processing
4.1
图像的对比度增强
图4.1-4 对数变换应用示例。 (a)图像;(b)图像的傅立叶谱;(c)图(b)的对数变换效果;(d)对数变换关系(λ=1)。
Digital Image Processing
4.1
2. 指数变换
图像的对比度增强
g (m, n) ( f (m, n) )
4.1
图像的对比度增强
根据[a,b]和[c,d]的取值大小可有如下几种情况:
(1)扩展动态范围。若 [a, b] [c, d ] ,即 k 1 ,则结果会使图像灰度取值 的动态范围展宽,这样就可改善曝光不足的缺陷,或充分利用图像显示 设备的动态范围。 (2)改变取值区间。若 k 1 ,即 d c b a ,则变换后灰度动态范围 不变,但灰度取值区间会随a和c的大小而平移。
(d)有扩有压。
图4.1-3 图像灰度的线性变换示例
Digital Image Processing
4.1
◘灰度的非线性变换

图像的对比度增强
灰度的非线性变换:常用的灰度非线性变换方法包括:
1. 对数变换
对数变换的一般表达式为
g (m, n) log(1 f (m, n))
其中λ为一个调节常数,用它来调节变换后的灰度值,使 其符合实际要求。对数变换的作用是扩展图像的低灰度范围, 同时压缩高灰度范围,使得图像灰度分布均匀,与人的视觉特 性相匹配。
Digital Image Processing
4.1

图像的对比度增强
灰度分段线性变换
(1) 扩展感兴趣的,牺牲其它 对于感兴趣的[a,b]区间,采用斜率大于1的线性变换来进行扩展,而把其 它区间用a或b来表示。变换函数为
a ; f (m, n) a d c g (m, n) c [ f (m, n) a ]; a f (m, n ) b b a b ; f (m, n) b
T [ ] 表示增强图像和原图像的灰度变换关系(函数)。 其中,
Digital Image Processing
4.1
图像的对比度增强
◘灰度线性变换 ▓ 灰度的线性变换:设原图像灰度值 f ( m, n) [ a, b] , 线性变 换后的取值 g (m, n) [c, d ] ,则线性变换如图4.1-1所示。变换 关系式为 g (m, n) c k[ f (m, n) a]
L 1
且 P(k ) 1 其中,k为图像的第k级灰度值, nk 是f(m,n) 中 k 0 灰度值为k的像素个数,n是图像的总像素个数,L是灰度级数。

nk , n
k 0,1,
, L 1
性质:1. 直方图的位置缺失性 2. 直方图与图像的一对多特性 3. 直方图的可叠加性
Digital Image Processing
4.1
g (m, n)
图像的对比度增强
g (m, n)
d
N
dห้องสมุดไป่ตู้
c a b
f (m, n)
c a b
M
f (m, n)
图4.1-2 灰度分段线性变换关系 (a)扩展感兴趣的,牺牲其它; (b)扩展感兴趣的,压缩其它。
(a)原图像;
(b)扩展动态范围;
(c)图像取反;
相关文档
最新文档