数字图像处理第三章二值图像

合集下载

【精选】数字图像处理第3章

【精选】数字图像处理第3章

设定加权因子 ai 和 bi 的值,可以得到不同的变换。例如,当选定
a2 b1 切。
1 ,b2

0.1
,a1

a0
b0

0
,该情况是图像剪切的一种列剪
(a)原始图像
Digital Image Processing
(b)仿射变换后图像
3.1 图像的几何变换
◘透视变换 :
把物体的三维图像表示转变为二维表示的过程,称为透视 变换,也称为投影映射,其表达式为:

a2

b2
a1 b1
a0
b0


y

1
平移、比例缩放和旋转变换都是一种称为仿射变换的特殊情况。
仿射变换具有如下性质:
(1)仿射变换有6个自由度(对应变换中的6个系数),因此,仿射变换后 互相平行直线仍然为平行直线,三角形映射后仍是三角形。但却不能
保 证将四边形以上的多边形映射为等边数的多边形。
1D-DFT的矩阵表示 :
F (0)

F (1)


WN00 WN10

F (2)

WN20

F (N 1)
W
(N N
1)0
WN01 WN11 WN21
WN(N 1)1

W
0( N
N
1)
WN1(N 1)

第3章 图像变换
◆ 3.1 图像的几何变换 ◆ 3.2 图像的离散傅立叶变换 ◆ 3.3 图像变换的一般表示形式 ◆ 3.4 图像的离散余弦变换 ◆ 3.5 图像的离散沃尔什-哈达玛变换 ◆ 3.6 K-L变换 ◆ 3.7 本章小结

数字图像处理_课件_3

数字图像处理_课件_3
s cr c 1
21
航拍图像的幂律变换增强
数第 字三 图章 像灰 处度 理变
换 与 空 间 滤 波
a. 原始图像
b. C=1, =3.0 c. C=1, =4.0 (最佳) d. C=1, =5.0
s cr c 1
22
电子显微镜扫描
3.2.4 对比度拉伸
的 放 大 约 700 倍 的花粉图像
➢ 因此,归一化后的直方图由 p(rk ) nk / MN 给 出,其中k=0, 1, …, L-1。
29
数第 字三
➢ p(rk)是灰度级rk在图像中出现的概率的一
图 章 个估计。
像灰
处 度 ➢ 归一化直方图的所有分量之和应等于1。
理变
换 与
➢ 直方图是多种空间域处理技术的基础。




30
数第 字三 图章 像灰 处度 理变
换 与 空 间 滤 波
4. 一般情况下,从输入图像的左上角开始处理,以 水平扫描的方式逐像素地处理,每次一行
5. 当该邻域的原点位于图像的边界上时,部分邻域 将位于图像的外部。此时,可以用0或者其它指定 的灰度值填充图像的边缘,被填充边界的厚度取 决于邻域的大小。
以上处理称为空间滤波,邻域与预定义的操作一 起称为空间滤波器。
与 为输出中较宽范围的灰度值,可以扩展图像
空 间
中暗像素的值,同时压缩高灰度级的值。
滤 波
➢ 反对数变换的作用与此相反。
17
傅里叶频谱及其对数变换
数第
字三
图章
像灰
处度
理变



间 滤
傅立叶频谱的对数变换,s

c

数字图像处理二值图像处理PPT课件

数字图像处理二值图像处理PPT课件
图6-8 曲线的链码表示
第14页/共57页
(d) 边界的8链码表
•链 码 的 表 示 方 法 具 有 下 面 一 些 有 趣 的 特 性 : • ① 如果曲线上的像素数目为N,那么链码的长度则为N-1; • ② 链码是和起点相关的,不同的起点可以得到不同的链码表示。 • ③ 链码具有平移的不变性,也就是说曲线的位置变动不改变其链码结构; • ④ 曲线的旋转将使得得到的链码中的每个元素分量增加相同的数值。
• 对于离散的的数字图像f(i,j),矩定义为:
• 对于二值图像,在目标区域R有f(i,j)=1,背景区域f(i,j)=0,因此:
M 1 N 1
mpq
i p j q f (i, j) p, q 0,1,2
i0 j0
mpq
ip jq
(i, j)R
第22页/共57页
• 同样的,考察二值图像各阶矩,我们可以知道,其零阶矩m00为目标区域的面 积,也即区域中包含的点数;假设
• ② 对称性:

• ③ 三角不等式:
d(A, B) 0
d(A, B) d(B, A) d(A,C) d(A, B) d(B,C)
第2页/共57页
•假 设 计 算 点 P ( a , b ) 与 Q ( c , d ) 间 距 离 可 以 采 取 下 面 的 几 种 定 义 形 式 :

① 欧几里德距离,用来De表示,如下式所示:
阶矩称为惯性矩。
•中心矩 :
pq (x x) p ( y y)q f (x, y)dxdy p, q 0,1,2
第21页/共57页
• 低阶矩主要描述区域的面积、转动惯量、质心等等,具有明显得几何意义,而高 阶矩一般主要描述区域的细节特征,比如三阶矩描述扭曲度,四阶矩描述峰值的状 态等等,一般来说高阶矩受到图像离散化等的影响,高阶矩一般在应用中不一定十 分准确。

数字图像处理中的二值化算法研究

数字图像处理中的二值化算法研究

数字图像处理中的二值化算法研究数字图像处理是一种将数字信号进行转换和处理的技术,其中二值化算法是数字图像处理中最基本的算法之一。

在数字图像处理中,二值化是将一张彩色或灰度图像转换成只包含黑白两种颜色的图像。

这篇文章将讨论数字图像处理中的二值化算法研究,重点探讨二值化算法的基本原理、常见的二值化算法以及它们的优缺点。

一、二值化算法的基本原理二值化算法是将一张彩色或灰度图像转换为只包含黑色和白色的图像。

这仅仅是将像素值分为两类,其中一个像素集合表示白色,另一个表示黑色。

二值化的原理是将灰度图像中亮度值相近的像素映射为同一种颜色,以达到压缩图像数据并提高图像处理速度的目的。

二、常见的二值化算法1、全局阈值法全局阈值法是通过计算整个图像的灰度平均值来确定二值化的阈值。

该算法简单易用,但它假定图像的背景和目标的亮度值之间存在一个确定的边界,这在实际应用中并不总是正确的。

2、自适应阈值法自适应阈值法是针对全局阈值法的不足,通过对每个像素周围的像素值的统计分布进行分析,自适应地确定像素的阈值。

该算法对于图像的光照变化和背景模糊有很好的鲁棒性。

3、Otsu算法Otsu算法是一种自适应的阈值算法,通过最小化类内方差和类间方差的和来确定阈值。

这个算法假设图像存在不同的颜色区域,旨在找到阈值,以最大化识别两个区域的差异。

三、二值化算法的优缺点1、全局阈值法的优点是简单易用,运算速度快,因此非常适合处理简单的图像。

但是,它不能很好地处理灰度变化较大的图像和背景复杂的图像。

2、自适应阈值法比全局阈值法更适用于处理复杂的图像,由于每个像素的阈值是基于周围像素的,具有更好的图像复杂性,然而,该算法对于图像的光照变化较大的情况也有一定的局限。

3、Otsu算法能够通过最小化类内方差和类间方差的和来确定阈值。

该算法对于事先未知的图像类型以及图像颜色区域的不均衡分布具有适应性和鲁棒性,是一种广泛应用于图像二值化中的方法。

四、二值化算法的应用二值化算法在字符识别、边缘检测等领域中有着广泛的应用。

数字图像处理第三章答案

数字图像处理第三章答案

3.1 a 为正常数的指数式ear -2对于构造灰度平滑变换函数是非常有用的。

由这个基本函数开始,构造具有下图形状的变换函数。

所示的常数是输入参数,并且提出的变换必须包含这些参数的特定形式并且提出的变换必须包含这些参数的特定形式(为(为了答案曲线中的L 0不是所要求的参数)。

解:由(解:由(a a )图所示,设e ar A r T -=2)(,则在r=0时,时,T(r)=A T(r)=A 在r=L 0时,时,T(r)=A/2 T(r)=A/2 联立,解得L L a 0693.002ln 22»=则CrLC D r T s e K+--==-)1)(()(22由(由(b b )图所示,可以由)图所示,可以由(a)(a)(a)图翻转得到,所以(图翻转得到,所以(图翻转得到,所以(b b )图的表达式s=)1()(220693.0rLB r T e --=(c )图是()图是(b b )图沿y 轴平移得到,所以(轴平移得到,所以(c c )图的表达式CrL C D r T s e K+--==-)1)(()(2203.19 (a)(a)在在3.6.2节中谈到,分布在图像背景上的孤立的亮和暗的像素团块,当它们小于中值滤波器区域的一半时,当它们小于中值滤波器区域的一半时,经过中值滤波器处理经过中值滤波器处理后会被滤除(被其邻值同化)。

假定滤波器尺寸为n n ´,n 为奇数,解释这种现象的原因?答:在n n ´的滤波器中有n2个像素,n 为奇数,中值为x ,则有2)1(2-n 个像素小于或者等于x ,其它的大于或等于x 。

当其中孤立的亮或者暗的像素A 在像素团块中小于中值滤波器的一半22n 时,即使在当所有群集点包含过滤屏蔽的极端情况下,没有足够的在其中任何一个集群点等于中值。

如果在区域的中心点是一个群集点,它将被设置为中位数值,而背景的阴影将“淘汰”出集群。

这一结论适用于当集群区域包含积分少集群的最大规模的较极端情况下。

图像处理中的图像二值化算法

图像处理中的图像二值化算法

图像处理中的图像二值化算法随着科技的发展,图像处理技术应用越来越广泛。

作为一项基础技术,图像二值化算法在图像处理中扮演着非常关键的角色,它可以将图像分割成黑白两种颜色,也就是将图像中的灰度值转化为0和1,简化了后续的处理流程。

本文将介绍图像二值化算法的基本原理和应用情况。

一、二值化算法的基本原理在图像中,每个像素都有一定的灰度值,在8位灰度图像中,灰度值的范围在0-255之间,其中0是代表黑色,255代表白色。

当我们需要处理一张图片时,如果直接对每一个灰度值进行处理,那么处理的过程就会非常繁琐,因此,我们需要将图像灰度值转化为0和1两种数字进行处理。

常见的二值化算法有全局阈值算法、局部阈值算法、自适应阈值算法、基于梯度算法等。

其中,全局阈值算法是最基本、最简单的一种算法。

它将整张图像分成黑白两个部分,通过将整个图像的像素点的灰度值与一个固定的阈值进行比较,如果像素点的灰度值大于阈值,就将该像素点的灰度值置为1,否则置为0。

使用全局二值化算法的步骤如下:1.将图像读入到内存中;2.将图像转化为灰度图像;3.计算整个图像的平均灰度值,该平均灰度值作为全局阈值;4.将图像中每个像素点的灰度值与该全局阈值进行比较,灰度值大于等于该全局阈值的像素点赋值为255(代表白色),小于该阈值的像素点赋值为0(代表黑色);5.输出处理后的图像。

当然,这种方法的缺点也非常明显,那就是无法适应不同场合下的图像处理需求,处理效果难以保证。

因此,我们需要更为灵活的算法和方法来进行二值化处理。

二、不同类型的二值化算法1.基于直方图的全局阈值法二值化算法中的全局阈值算法通常是将整个图像分成两类像素:一类像素比较暗,另一类像素比较亮。

在直方图中,该分割就是直方图上的两个峰。

我们可以通过直方图分析来确定这个阈值,并将灰度值低于阈值的像素变为黑色,将灰度值高于阈值的像素变为白色。

对于图像I(x,y),它的灰度直方图h(i)可以表示为:h(i) = N(i) / MN (i=0,1,…,L-1)其中N(i)是图像中所有像素灰度值为i的像素数量,MN是总的像素数量,L是灰度级别数量(在8位图像中,L等于256)然后我们需要确定一个阈值T,所有像素点的灰度值小于T的变为黑色,大于等于T的变为白色。

DSP课设数字图像处理——二值化

DSP课设数字图像处理——二值化

DSP技术及应用课程设计报告课题名称:数字图像处理——二值化学院:电气信息工程学院专业:通信工程班级:姓名:学号:指导教师:董胜成绩:日期:2014.6.9-2014.6.20目录一、设计目的及要求 (2)二、设计所需的软件介绍 (2)三、设计原理 (3)四、程序流程图 (6)五、设计程序 (7)六、处理后的效果展示 (11)七、课程设计心得 (15)八、参考文献 (16)一、设计目的及要求:目的:1、掌握CCStudio3.3的安装和配置;2、掌握数字图像处理的原理、基本算法和各种图像处理技术;3、掌握图像的灰度化、二值化和灰度直方图的原理及编程思路;4、掌握图像滤波(图像锐化、中值滤波、边缘检测、特征识别等)的基本原理及编程方法及编程思路;要求:1、能够根据设计题目要求查阅检索有关的文献资料,结合题目选学有关参考书。

查询相关资料,初步制定设计方案。

2、用CCS软件进行C语言设计相关算法,实现对图像的采集及处理。

3、编写相应的C语言程序实现各种图像处理。

二、设计所需的软件介绍:英文全称:Code Composer Studio 中文译名:代码调试器,代码设计套件。

CCS的全称是Code Composer Studio,它是美国德州仪器公司(Texas Instrument,TI)出品的代码开发和调试套件。

TI公司的产品线中有一大块业务是数字信号处理器(DSP)和微处理器(MCU),CCS便是供用户开发和调试DSP和MCU程序的集成开发软件。

Code Composer Studio v3.3 (CCStudio v3.3) 是用于 TI DSP、微处理器和应用处理器的集成开发环境。

Code Composer Studio 包含一整套用于开发和调试嵌入式应用的工具。

它包含适用于每个 TI 器件系列的编译器、源码编辑器、项目构建环境、调试器、描述器、仿真器以及多种其它功能。

Code Composer Studio IDE 提供了单个用户界面,可帮助您完成应用开发流程的每个步骤。

【数字图像处理】灰度图像二值化

【数字图像处理】灰度图像二值化

【数字图像处理】灰度图像⼆值化灰度图像每副图像的每个像素对应⼆维空间中⼀个特定的位置,并且有⼀个或者多个与那个点相关的采样值组成数值。

灰度图像,也称为灰阶图像,图像中每个像素可以由0(⿊)到255(⽩)的亮度值(Intensity)表⽰。

0-255之间表⽰不同的灰度级。

灰度图像⼆值化⼆值化:以⼀个值(阈值)为基准,⼤于(等于)这个值的数全部变为是1(或者0),⼩于等于这个数的就全部将他们变为0(或1)。

⼆值化算法处理飞思卡尔赛道思路:设定⼀个阈值valve,对于图像矩阵中的每⼀⾏,从左⾄右⽐较各像素值和阈值的⼤⼩,若像素值⼤于或等于阈值,则判定该像素对应的是⽩⾊赛道;反之,则判定对应的是⿊⾊的⽬标引导线。

记下第⼀次和最后⼀次出现像素值⼩于阈值时的像素点的列号,算出两者的平均值,以此作为该⾏上⽬标引导线的位置。

摄像头的⼆值化的代码:Void image_binaryzation(){for(int i=0;i{for(int j=0;j{if(Image[i][j] >= Threshold)Image_new[i][j]=1;elseImage_new[i][j]=0;}}}Row是对应采集到的⾏数,Col是列数,Image[i][j]是摄像头采集未⼆值化的数据存放的数组,Img[i][j]是新建的存放⼆值化后的数组。

合适的阈值在阈值⼆值化中,最主要的是选取合适的阈值,这也是⼆值化的难点所在。

常⽤的⼆值化阈值选取⽅法有双峰法、p参数法、⼤律法(Otsu法)、最⼤熵阈值法、迭代法等。

⼤律法(Otsu法)Otsu⽅法⼜名最⼤类间差⽅法,通过统计整个图像的直⽅图特性来实现全局阈值T的⾃动选取,其算法步骤为:1) 先计算图像的直⽅图,即将图像所有的像素点按照0~255共256个bin,统计落在每个bin的像素点数量2) 归⼀化直⽅图,也即将每个bin中像素点数量除以总的像素点3) i表⽰分类的阈值,也即⼀个灰度级,从0开始迭代4) 通过归⼀化的直⽅图,统计0~i 灰度级的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的⽐例w0,并统计前景像素的平均灰度u0;统计i~255灰度级的像素(假设像素值在此范围的像素叫做背景像素) 所占整幅图像的⽐例w1,并统计背5) 计算前景像素和背景像素的⽅差 g = w0*w1*(u0-u1) (u0-u1)6) i++;转到4),直到i为256时结束迭代7)将最⼤g相应的i值作为图像的全局阈值缺陷:OSTU算法在处理光照不均匀的图像的时候,效果会明显不好,因为利⽤的是全局像素信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 3.13a 4邻点 中轴变换举例 中轴可作为物体的一种简洁表示.
图3.13b表明少量噪声会使中轴变换结果产 生显著的差异.
图 3.13b 中轴变换举例
3.5.7 细化
细化是把区域缩成线条、逼近中心线(骨架或核线)的一种图 像处理。细化的目的是减少图像成份,直到只留下区域的最基 本信息,以便进一步分析和识别.虽然细化可以用在包含任何 区域形状的二值图像,但它主要对细长形(而不是凸圆形或水滴 状)区域有效.细化一般用于文本分析预处理阶段,以便将文本 图像中线条图画或字符笔画表示成单像素线条.
d=i-j+m-1
二值图像及其对 角线上的投影图
3.4游程长度编码 (run-length encoding)
用图像像素值连续为1的个数来描述图像,有两种方法: (1)用1的起始位置和1的游程长度; (2)仅仅使用游程长度,0:表示从0象素开始 ; 例:
1的游程:(2,2)(6,3)(13,6)(20,1) (4,6)(11,10) (1,5 )(11,1)(17,4)

`S
(7) 边界
S的边界是S中与`S中有4连通关系的像素集合S '
(8) 内部
S中不属于它的边界的像素集合. S的内部等于S - S '
(9) 包围
如果从S中任意一点到图像边界的4路径必须与区域T相 交,则区域 T 包围区域 S(或S在T内)
S `S
边界
内部 包围
例:一幅二值图像
图像 边界
3.5.2 连通成分标记算法
(2) 路径
列:
[路i0径,j0 :]从[像,i1,素j1][i0 ,, j,0[]in 到,j像n]素,[[iikn
,
,
jn ]
jk ]
的一个像素序 和 [ik1, jk1] 互为邻点
4路径:像素与其近邻像素是4连通关系
8路径:像素与其近邻像素是8连通关系
(3)前景:图像中所有1点
(4)连通性
已知像素p 和q ,如果存在一条从p到q的路径,且路径上
S ( k ) :S扩展k倍 S (k ) :S收缩k倍
(Sm )n(Sn)mS(m n) S (Sk )k
S (Sk )k
3.6形态学算子
数学形态学(mathematical mophology)
理论基础:集合论 作用:保持形状特征,同时简化图像 工具:结构元
ห้องสมุดไป่ตู้
3.6.1 形态学集合论基础
• 图像=前景像素的集合
标记输入等价表中作为等价标记. (d) 否则给这一个像素点分配一新的标记并将这一标记输
入等价表. 3.回到第2步只到扫描完所有点. 4.在等价表的每一等价集中找到最低的标记. 5.扫描图像,用等价表中的最低标记取代每一标记.
3.5.3 欧拉数
在视觉应用中,欧拉数或亏格数可作为识别物体的特征。
1. 定义:连通成份数减去空洞数 E=C-H
如果 T1I[i,j]T2 其它
1 如果 I[i,j]Z B[i,j]0 其它
其中Z是组成物体各部分灰度值的集合.
一幅灰度图像和使用不同阈值得到的二值图 像结果
1:原始灰度图像,2:阈值T=100;3:T=128.4:T1=100|T2=128.
3.2 几何特性
通过阈值化方法检测出物体后,下一步就要 对物体进行识别和定位.
3.5.5 距离
欧几里德距离:
d Eu (i c 1 ,[ j l 1 ] i[ i d 2 , ,j e 2 ]a ) n ( i 1 i 2 ) 2 ( j 1 j 2 ) 2
街区距离:
d Bl o |i 1 ci2 k | |j1 j2 |.
棋盘距离:
d Ch m esi s 1 a i2 |x |,j1 (j2 ||).
n行m列,则i和j的范围分别为0到n-1和0到m-1. 假设对角线的标号d用行和列的仿射变换(线性组 合加上常数)计算,即:
d = ai+ bj + c 对角线投影共对应n+m-1个条,其中仿射变换 把右上角像素映射成对角线投影的第一个位置, 把左下角像素映射成最后一个位置,如图所示, 则当前行列对应的标号d的公式为:
2.递归分配标记L给1点的邻点; 3.如果不存在没标记的点,则停止; 4.返回第1步。
算法3.2:4-连通成份序贯算法
1.从左至右、从上到下扫描图像. 2.如果像素点为1,则: (a) 如果上面点和左面点有一个标记,则复制这一标记. (b) 如果两点有相同的标记,复制这一标记. (c) 如果两点有不同的标记,则复制上点的标记且将两个
在大多数工业应用中,摄像机的位置和环境 是已知的,因此通过简单的几何知识就可以从物 体的二维图像确定出物体的三维位置.
利用尺度和形状特征来识别:如大小、位置 和方向.
(1) 尺寸和位置 一幅二值图像区域的面积(或零阶矩)由下式 给出:
物体的中心位置:
其中x和y是相对于图像左上角的中心坐标. 物体的位置为:
s(k) (x (k)y ,(k)k ) ,0
② 用c表示当前边界上被跟踪的像素点.置 c s(k),
记c左4邻点为b,b S ;
③ 按逆时针方向从b开始将c的8个8邻点分别记为:
n1,n2, ,n8 kk1
④ 从b开始,沿逆时针方向找到第一个 ni S ;
⑤ 置 cs(k)ni ,bni1 ;
⑥ 重复步骤③、④、⑤,直到 s(k)s(0) 。
1和0的游程长度:0,1, 2,2,3,4,6, 1,1; 0,3,6,1,10 ; 5,5,1,5,4
3.5 二值图像算法
3.5.1 定义 (1)近邻:
4邻点(4-neighbors):有公共边关系的两个像素. 8邻点(8-neighbors):两个像素至少共享一个顶角 4连通(4-connected):一个像素与其4邻点的关系 8连通(4-connected):一个像素与其8邻点的关系
有:
2 (jc o s isin )2 B [i,j] ij
令: 2 0 , 2 0 有:xco sysin
1tan1( b )
2 ac
其中:a(xijx)2B[i,j];
ij
b2 (xijx)y (ijy)B [i,j];
ij
c (yijy)2B[i,j];
ij
注意:求得的惯性轴有两个,即最大、最小惯性 轴。
对字母h收缩与扩展算法实验结果:
原始噪声图像 扩展运算 收缩运算
对字母h收缩与扩展算法实验结果:
原始噪声图像 扩展运算 收缩运算 扩展-收缩 收缩-扩展 先扩展后收缩算法能补上不希望存在的洞, 先收缩后扩展算法则能去除孤立的噪声点。
对字母h收缩与扩展算法实验结果:
原始噪声图像 扩展运算 收缩运算 扩展-收缩 收缩-扩展
(3)二值图象的获取
a. 硬件实现
敏感元二值输出或逻辑输出。敏感元模拟值 输出,通过硬件电路二值化。
b. 软件实现
灰度图象可以通过阈值(threshold)分割进 行二值化处理。
(4)灰度图象的二值化
图象二值化 设一幅灰度图像中物体的灰度分布在某一区间内,经
过阈值运算后的图像为二值图像。
1 B[i,j] 0
数字图像处理第三章-二值图 像
3.1 二值图象 二值图像例
(2) 二值图象的特点
a. 二值图像只有两个灰度级,其中物体像素值为1, 背景像素值为0;
b. 图象中许多的特征如边缘、轮廓可以用二值图像 表示;
c.二值图像处理的算法简单,所需的内存小,计算 速度快;
d.二值视觉系统技术可用于灰度图像视觉系统 。
的全部像素都为黑,则称p与q是连通的.
(5)连通成份:一个像素集合,如果集合内的每一个像素
与集合内其它像素连通,则称该集合为一个连通成份。
(6) 背景:`S(S的补集)中包含图像边界点的所有连通
成份的集合。
洞:` s中所有非背景其它元。
对物体和背景应使用不同的连通.如果对 S 使用8连通,
则对`S 应使用4连通。
A B p p b A , b B
A BpB p A,p A
用结构元进行腐蚀运算也可以描述为:结构元的原点像 素经过待腐蚀的二值图像中所有1像素点时,如果结构元 中有一个1像素没有对应待腐蚀二值图像的1像素,则 对应结构元原点的待腐蚀二值图像1像素置为0.
用结构元位移计算
图3.16 原始测试图像A (左)与结构元B(右). 注意结构元的原点比中的其它像素点要黑一些.
注意:因约定y轴
向上故有负号.
(2)方向
一般假定物体是长形的,其长轴方向被定义为物体的方
向.通常,二维平面上与最小惯量轴同方向的最小二阶
矩轴被定为长轴.
设惯性轴:
xcos ysi,n满足:
2ri2jB[i,j]min;
ij
r i , j 是点[i, j]到该轴的距离。
ri,j jcosisin
Maximum axis Minimum axis
(3) 密集度 区域的密集度:
其中,p 和 A 分别为图形的周长和面积.
根据此定义,圆是最密集的图形. 密集度的另一意义:周长在给定后,密集度越高, 所围面积越大.
(4) 体态比 区域的最小外接矩形的长与宽之比特性: 1)正方形和圆的体态比等于1 2)细长形物体的体态比大于1 下图是几种形状的外接矩形:
3.5.6 中轴
如果对 S 中像素[i, j]的所有邻点[u,v]有下式成立:
d ([i, j], S ) d ([u, v], S )
(3.25)
则 S 中像素[i, j] 到 S 的距离 d([i, j],S ) 是局部最大值. S 中所有到 S 的距
离是局部最大值的像素点集合称为对称轴或中轴,通常记为 S* .
相关文档
最新文档