数字图像处理(冈萨雷斯)-3空间域图像增强
第4讲邻域平均法及中值滤波

3.2 空域增强
平均模版与中值滤波效果:
第3章 图像增强
3.2 空域增强
百分比滤波器:是一类更广泛的非线性滤波器,在工作的时 候与中值滤波器相似。首先对窗口内的像素按灰度值的大小 进行排序,然后根据某个确定的百分比选取序列中对应的像 素值赋给窗口中心位置的像素。 如果百分比取最大就是最大值滤波器,它可以用来检测图像 中的最亮点; 如果百分比取最小,就是最小值滤波器,它可以用来检测图 像中的最暗; 如果百分比取50%,就是中值滤波器。
(a) 水平直线形 (b) 垂直直线形 (c) 十字形
(d) 方形
(e) 菱形
第3章 图像增强
3.2 空域增强
(a)原图
(b)1×3水平线形 (c) 1×5水平线形 (d) 5×5菱形
(e)3×1垂直线性 (f)5×1垂直线形 (g)3×3十字形 (h)5×5十字形 (i) 3×3方形 (j) 5×5方形
H
1 6
1
2
1
0 1 0
1 1 1
H
1 10
1
2
1
1 1 1
1 1 1
H
1 8
1
0
1
1 1 1
1 1 1
H
1 9
1
1
1
1 1 1
1 2 1
H
1 16
2
4
2
1 2 1
第3章 图像增强
3.2 空域增强
模板尺寸对图像平滑的效果 • 不同的模板尺寸:
3x3,5x5,7x7,… 如右图。
• 有何影响?
第3章 图像增强
数字图像处理
(Digital Image Processing)
第3章 图像增强
《数字图像处理》课程教学大纲

《数字图像处理》课程教学大纲课程代码:ABJD0619课程中文名称:数字图像处理课程英文名称:Dig让a1ImageProcessing课程性质:选修课程学分数:3学分课程学时数:48学时(32理论课时+16实验学时)授课对象:电子信息工程本课程的前导课程:高等数学,概率论,线性代数,数字信号处理,信息论,程序设计等一、课程简介数字图像处理是一门新兴的跨学科的前沿高科技,在军事、工业、科研、医学等领域获得了广泛应用,是国内外高校和科研院所的研窕生教育中一个重要的研究方向。
通过本课程的学习,同学们将掌握数字图像处理的基本理论与方法,包括图像变换、图像增强、图像分割、图像恢复、图像识别、图像压缩编码、数字图像处理系统及应用等内容。
二、教学基本内容和要求(-)数字图像处理方法概述教学内容:数字图像处理的研究对象、基本应用、研究内容等,数字图像的基本概念、彩色图像的调色板等概念。
课程的重点、难点:重点:CDIB类与程序框架结构介绍。
难点:调色板的基本概念和应用。
教学要求:D了解本课程研究的对象、内容及其在培养软件编程高级人才中的地位、作用和任务;2)了解数字图像处理的应用;3)理解数字图像的基本概念、与设备相关的位图(DDB)、与设备无关的位图(D1B);4)理解调色板的基本概念和应用;5)了解CD1B类与程序框架结构介绍;6)掌握位图图像处理技术。
(二)图像的几何变换教学内容:图像的几何变换种类以及概念,几何变换的实现原理和实施方法课程的重点、难点:重点:镜像变换。
难点:旋转。
教学要求:1)理解图像的缩放、平移、镜像变换、转置、旋转。
(三)图像灰度变换教学内容:直方图的概念、灰度的点运算(包含灰度信息的线性变化、指数变换等)、直方图的均匀化和规定化课程的重点、难点:重点:灰度直方图。
难点:灰度分布均衡化。
教学要求:1)了解非O元素取1法、固定阈值法、双固定阈值法的图像灰度变换;2)掌握灰度的线性变换、窗口灰度变换处理、灰度拉伸、灰度直方图、灰度分布均衡化。
北京大学数字图像处理(冈萨雷斯)课件

图像的采样和量化
• 大多数传感器的输出是连续电压波形 • 为了产生一幅数字图像,需要把连续的 感知数据转化为数字形式 • 这包括两种处理:取样和量化 • 取样:图像空间坐标的数字化 • 量化:图像函数值(灰度值)的数字化
图像采样 • 空间坐标(x,y)的数字化被称为图像采样 • 确定水平和垂直方向上的像素个数N、M
教材及参考书
• 教材
✓Rafael C. Gonzalez, Richard E. Woods 著 ,阮秋琦、阮宇智等译,数字图像处理(第 二版),电子工业出版社,2003年。
✓Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing(Second Edition) ,Prentice Hall,2003。
SAN与NAS比较
SAN
NAS
块级共享
文件级共享
远程存储访问
远程文件访问
存储专用网
共享LAN
存储协议(如FCP) 网络协议(如TCP/IP)
集中式管理
分散式管理
无限的扩展能力
有限的扩展能力
更高的连接速度和处理能力 较低的连接速度和处理能力
数字图像处理基础
• 图像的采样和量化 • 数字图像的表示 • 数字图像的质量 • 像素间的一些基本关系 邻域处理方
✓ 彩色图像可以用红、绿、蓝三元组的二维矩阵来表示。 通常,三元组的每个数值也是在0到255之间,0表示相应 的基色在该像素中没有,而255则代表相应的基色在该像 素中取得最大值
数字图像的像素表示
什么是像素?
数字图像由二维的元素组成,每一个元素具有一个 特定的位置(x,y)和幅值f(x,y),这些元素就称为像 素
数字图像处理_第三版_(冈萨雷斯_整理的知识点)

1.1 图像与图像处理的概念图像(Image):使用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视觉的实体。
包括:·各类图片,如普通照片、X光片、遥感图片;·各类光学图像,如电影、电视画面;·客观世界在人们心目中的有形想象以及外部描述,如绘画、绘图等。
数字图像:为了能用计算机对图像进行加工,需要把连续图像在坐标空间和性质空间都离散化,这种离散化了的图像是数字图像。
图像中每个基本单元叫做图像的元素,简称像素(Pixel)。
数字图像处理(Digital Image Processing):是指应用计算机来合成、变换已有的数字图像,从而产生一种新的效果,并把加工处理后的图像重新输出,这个过程称为数字图像处理。
也称之为计算机图像处理(Computer Image Processing)。
1.2 图像处理科学的意义1.图像是人们从客观世界获取信息的重要来源·人类是通过感觉器官从客观世界获取信息的,即通过耳、目、口、鼻、手通过听、看、味、嗅和接触的方式获取信息。
在这些信息中,视觉信息占70%。
·视觉信息的特点是信息量大,传播速度快,作用距离远,有心理和生理作用,加上大脑的思维和联想,具有很强的判断能力。
·人的视觉十分完善,人眼灵敏度高,鉴别能力强,不仅可以辨别景物,还能辨别人的情绪。
2.图像信息处理是人类视觉延续的重要手段非可见光成像。
如:γ射线、X射线、紫外线、红外线、微波。
利用图像处理技术把这些不可见射线所成图像加以处理并转换成可见图像,可对非人类习惯的那些图像源进行加工。
3.图像处理技术对国计民生有重大意义图像处理技术发展到今天,许多技术已日益趋于成熟,应用也越来越广泛。
它渗透到许多领域,如遥感、生物医学、通信、工业、航空航天、军事、安全保卫等。
1.3 数字图像处理的特点1. 图像信息量大每个像素的灰度级至少要用6bit(单色图像)来表示,一般采用8bit(彩色图像),高精度的可用12bit 或16bit。
第8章_图像增强

32
一、空间域图像增强(29)
对角线方向边缘增强示意图
33
一、空间域图像增强(30)
单方向一阶微分算子图像增强效果
34
一、空间域图像增强(31)
Roberts交叉微分算子
g x, y f x 1, y 1 f x, y f x 1, y f x, y 1
f
G x x
f
f
G
y
y
27
一、空间域图像增强(24)
一阶微分算子
单方向微分算子
(1)水平方向微分算子
Dlevel
1 2 1
0 0 0
1 2 1
g ( x, y ) [ f x 1, y 1 f x 1, y 1] 2[ f x 1, y f x 1, y ]
遥感数字图像处理
第8章
图像增强
背景知识
图像增强是通过一定手段对原图像进行变换或附加一些信息
,有选择地突出图像中感兴趣的特征或者抑制图像中某些不
需要的特征,使图像与视觉响应特性相匹配,从而加强图像
判读和识别效果,以满足某些特殊分析的需要。
目的:改善图像的视觉效果,帮助我们更好地发现或识别图
像中的某些特征。
作用:调整两幅图像的色调差异,使图像重叠区域的色调过渡柔和,改
善图像融合和图像镶嵌效果。
14
一、空间域图像增强(12)
直方图匹配的思想:
原图像中的任意一个灰度值ai 都可
以在参考图像上找到一个与之对应
的灰度值bi ,使得原图的灰度概率
数字图像处理第四版拉斐尔课后答案

数字图像处理第四版拉斐尔课后答案数字图像处理(美)Rafael C. Gonzalez(拉斐尔·C. 冈萨雷斯),Richard E. Woods(理查德·E. 伍兹)课后习题答案1. 新增了关于精确直⽅图匹配、⼩波、图像变换、有限差分、k均值聚类、超像素、图割、斜率编码的内容。
2. 扩展了关于⾻架、中轴和距离变换的说明,增加了紧致度、圆度和偏⼼率等描述⼦。
3. 新增了哈⾥斯-斯蒂芬斯⾓点探测器及*稳定极值区域的内容。
扫⼀扫⽂末在⾥⾯回复答案+数字图像处理⽴即得到答案4. 重写了关于神经⽹络和深度学习的内容,全⾯介绍了全连接深度神经⽹络,新增了关于深度卷积神经⽹络的内容。
5. 为学⽣和教师提供⽀持包,⽀持包可从本书的配套⽹站下载。
6. 新增了⼏百幅图像、⼏⼗个新图表和上百道新习题。
在数字图像处理领域,本书作为主要教材已有40多年。
第四版是作者在前三版的基础上修订⽽成的,是前三版的发展与延续。
除保留前⼏版的⼤部分内容外,根据读者的反馈,作者对本书进⾏了全⾯修订,融⼊了近年来数字图像处理领域的重要进展,增加了⼏百幅新图像、⼏⼗个新图表和上百道新习题。
全书共12章,即绪论、数字图像基础、灰度变换与空间滤波、频率域滤波、图像复原与重构、⼩波变换和其他图像变换、彩⾊图像处理、图像压缩和⽔印、形态学图像处理、图像分割、特征提取、图像模式分类。
本书的读者对象主要是从事信号与信息处理、通信⼯程、电⼦科学与技术、信息⼯程、⾃动化、计数字图像处理课后答案(美)Rafael C.Gonzalez(拉斐尔·C. 冈萨雷斯),Richard E. Woods(理查德·E. 伍兹)算机科学与技术、地球物理、⽣物⼯程、⽣物医学⼯程、物理、化学、医学、遥感等领域的⼤学教师和科技⼯作者、研究⽣、⼤学本科⾼年级学⽣及⼯程技术⼈员。
Rafael C. Gonzalez: 1965于美国迈阿密⼤学获电⽓⼯程学⼠学位;1967年和1970年于美国佛罗⾥达⼤学盖恩斯维尔分校分别获电⽓⼯程硕⼠学位和博⼠学位。
图像增强参考文献

[1] 冈萨雷斯. 数字图像处理[M]. 电子工业出版社,2003.[2] 杨帆等. 数字图像处理与分析[M]. 北京:北京航空航天大学出版社,2007[3] 马平. 数字图像处理和压缩[M]. 北京:电子工业出版社,2007[4] 闫敬文. 数字图像处理[M]. 北京:国防工业出版社,2007[5] 王慧琴. 数字图像处理. 北京:北京邮电出版社, 2006.[6] 阮秋琦. 数字图像处理学. 北京:电子工业出版社, 2001[7] 何东健. 数字图像处理. 西安:西安电子科技大学出版社, 2003.[8] 王家文, 曹宇. MATLAB6.5图形图像处理. 北京:国防工业出版社, 2004.[9] 余成波. 数字图像处理及MATLAB实现. 重庆:重庆大学出版社, 2003.[10] 张志涌, 徐彦琴. MATLAB教程-基于6.x版本.北京航空航天大学出版社, 2001.[11] 夏德深, 傅德胜. 计算机图像处理及应用. 南京:东南大学出版社, 2004.[12] Simard P,Steinkraus D,Malvar H.On-line Adaptation Image Coding with a 2-dTarp Filter. Proceedings of IEEE Data Compression Conference[J].2002.vol.8(1):23-32.[13] WangHong,LuLing,QueDaShun. Image Compression Based on WaveletTransformand Veetor Quantization[J] .Beijing : Proceedings of the First International Confereneeon Maehine Leamingand Cybernetics,2002(5):35-41 [14] WangHong,LuLing,QueDaShun. Image Compression Based on WaveletTransformand Veetor Quantization[D]. Beijing:Proeeedingsof the First Inter national Confereneeon Maehine Leamingand Cybernetics,2002[15] YufangGao ,Yang Liu. Analysis of Compression Encoding about DigitalImage[D].Beijing: Beijing University of Posts and Telecommunications,2003 [16] Jerome M. Sha Piro. Afast Technology for Identifying Zerotreesin the EZWAlgorithm[J],IEEET rans. Coef. Aeoustv Speech Signal Proeessing.1996(7):11-23[1] 冈萨雷斯. 数字图像处理[M]. 电子工业出版社,2003.摘要:本书是把图像处理基础理论论述与软件实践方法相结合的第一本书,它集成了冈萨雷斯和伍兹所著的《数字图像处理》一书中的重要内容和MathWorks 公司的图像处理工具箱。
冈萨雷斯数字图像处理中文版课件

x
一般取M=N=2n=64,128, 256,512,1024,2048
三、数字图像的表示方法
数字图像常用矩阵来表示:
f (0,0) f (0,1) f (0, N 1) f ( 1 , 0 ) f ( 1 , 1 ) f ( 1 , N 1 ) f (x, y) f (N 1,0) f (N 1,1) f (N 1, N 1) N N
现状
七十年代以来迅猛发展。
•1:主观需求:人类从外界获取得信息60~70%通过眼睛
的图象信息。 •2:计算机技术的发展和通信手段的发展提供客观可能;以 FFT为代表的数字信号处理算法和现代信号处理方法的精 确性,灵活性与通用性。 •3:数学化的特点是该学科成熟的一个标志。“一种科学只 有在成功地运用数学时,才算真正达到了完美的地 步”(分析,代数,几何) •总之:是一门在理论研究和应用开发两方面获得极大统一 的学科。
•1 模拟图像
2 数字图像
数字图像是指由被称作象素的小块区域组成的二维矩阵。将 物理图象行列划分后,每个小块区域称为像素(pixel)。
–每个像素包括两个属性:位置和灰度。
对于单色即灰度图像而言,每个象素的亮度用一个数值来表示, 通常数值范围在0到255之间,即可用一个字节来表示, 0表示黑、255表示白,而其它表示灰度级别。
?平板印刷技术?工业检测普通谷物普通谷物?显微镜方法?激光?生物图像?天文观测被真菌感染的谷物天鹅星座环154可见光及红外波段成像这一波段的应用最为广泛电视和多媒体光显微镜涉及的范围从药物到材料特性的检测a紫杉酚b胆固醇c微处理器d镍氢化物薄片e音频cd的表面f有机超导154可见光及红外波段成像遥感美国华盛顿区域的卫星遥感图像154可见光及红外波段成像天文天气观测与预报是卫星多光谱图像的主要应用领域154可见光及红外波段成像?工业检测可见光谱中主要成像领域是生产产品的自动视觉检测154可见光及红外波段成像拇指指纹图像识别指纹识别人脸识别车牌号码的识别红外图象红外图象155微波波段成像雷达在雷达图像中看到的只是反射到雷达天线的微波能量航天器拍摄的西藏东南山区雷达图像156无线电波成像无线电波段成像主要应用在医学和天文学在医学中无线电波用于磁共振成像mri157其他图像模式应用的实例超声波成像系统应用医学如妇产科超声波图像产生的步骤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰度反转图像
3.2 基本灰度变换
②对数变换 s c log(1 r )
可以用于扩展图像中的暗像素.
r [0,1.5 106 ]
(3.2 2)
使一窄带低灰度输入图像映射为一宽带输出值.
s log(1 r )
对数变换的图像(显示在一个8bit的系统中)
③幂次变换 s cr
3、位图切割 :把数字图像分解成为位平面,(每一个位平面可以
处理为一幅二值图像)对于分析每一位在图像中的相对重要性 是有用的。(高阶位如前4位包含视觉上很重要的大多数数据; 其它位对图像中的更多微小细节有作用)
例如每个象素点的灰度值用8bit表示,假如某像素点的灰度值为00100010, 分解处理 如下:
方图来达到使图像清晰的目的。 直方图增强处理
3.3.1
3.3 直方图处理
直方图均衡化
直方图均衡化处理:
假设原图的灰度值变量为r,变换后新图的灰度值变量 为s,我们希望寻找一个灰度变换函数T:s=T(r),
使得概率密度函数pr(r)变换成希望的概率密度函数 ps(s) 灰度变换函数T(r)应该满足:
f(x,y)是输入图像 g(x,y)是输出图像 T是对f的一种操作,定义在(x,y)的邻域上.
3.1 背景知识
定义一个点(x,y)邻域的主要方法是:
①邻域:中心在(x,y)点的正方形或矩形子图像. ②子图像的中心从一个像素向另一个像素移动, ③T操作应用到每一个(x,y)位臵得到该点的输出g.
1×1的邻域 T(r)产生两级(二值) 图像, 阈值函数
图像反转 s L 1 r 对数变换 s c log( 1 r ) 幂次变换 s cr
输入灰度级,r 用于图像增强的某些基本灰度变换函数
3.2 基本灰度变换
①反转变换 s L 1 r (3.2 1)
适于处理增强嵌入于图像暗色区域的白色或灰色 细节,特别是当黑色面积占主导地位时.
预先进行 r c s1/
v Cs (线性关系)
• 因此,γ校正的关键是确定γ值。
实际中 γ值的确定方法 通常CCD的γ 值在0.4 ~0.8之间,γ 值越小,画面的 效果越差。根据画面对比度的观察与分析,可以大致 得到该设备的γ 值(或依据设备的参考γ 值)。
3.2 基本灰度变换
1时, 该变换将
L5
高灰度值(亮值)进行拉伸
幂次变换的应用
(伽马)校正 s cr3.2 基本灰度变换 为什么要进行γ校正? 几乎所有的CRT显示设备、摄像胶片、许多电子
照相机的光电转换特性都是非线性的。所以,如果不
进行校正处理的话,将无法得到好的图像效果,见课 本P67图3.7。 光电传感器的输入输出特性:这些非线性部件的输出 与输入之间的关系可以用一个幂函数来表示,形式为:
3.2 基本灰度变换
④分段线性变换函数
位图切割
位图切割示例
位图切割在图像压缩和重建中的应用
重建: ①第n个bit平面的每个像素 2
n 1
;
②所有bit平面相加;
3.2 基本灰度变换
MATLAB 例子:线性变换
I=imread('pout.tif'); pout=double(I); A=0.5; B=50; pout2=pout*A+B; A=1.5,B=50; pout3=pout*A+B;
第三章、空间域图像增强
电气信息学院 自动化系
本章内容
3.1 3.2 3.3 3.4 3.5 3.6 3.7 背景知识 基本灰度变换 直方图处理 空间滤波基础 平滑空间滤波器 锐化空间滤波器 混合空间增强法
图象增强的含义和目的
一、什么是图象增强?
图像增强是要突出图像中的某些信息,同时削弱 或去除某些不需要信息的一种处理方法,以得到 对具体应用来说视觉效果更“好”,或更“有用” 的图像的技术.
二、为什么要增强图象?
图像在传输或者处理过程中会引入噪声或使图像变 模糊,从而降低了图像质量,甚至淹没了特征,给 分析带来了困难。
图象增强的含义和目的
图象增强的含义和目的
三、目的:
(1)改善图象的视觉效果,提高图像的清晰度; (2)将图象转换成更适合于人眼观察和机器分析识 别的形式,以便从图象中获取更有用的信息。
0
0
1
0
0
0
1
0
000000000) ( 000000102) ( 000000000) ( 000000000) ( 000000000) ( 0010000032) ( 这样这个位臵的像素,就 000000000) ( 分解成了8部分,各部分的 000000000) (
值转成十进制就是该点在 该位平面上的灰度值。
对于数字图象:
sk T (rk ) pr (rj )
j 0 j 0 k k
nj n
(3.3.8) k 0,1, 2,, L 1
随机变量:不一定是均匀分布的
根据该方程可以由原图像的各像素灰度值直接得 到直方图均衡化后各灰度级所占的百分比
3.3 直方图处理
直方图均衡化处理的计算步骤如下: (1)统计原始图象的直方图 rk 是输入图象灰度级; (2)计算直方图累积分布曲线
Imadjust-examp.m
自己怎样确定这两个数值?
1000
1000
500
500
0 0 50 100 150 200 250
0 0 50 100 150 200 250
使用imadjust的两个步骤
(1)观察图像的直方图,判断灰度范围
附录:Matlab函数
(2)将灰度范围转换为0.0~1.0之间的分数,使得灰度范围可以通 过向量[low,high]传递给imadjust函数。 (3)可以利用stretchlim函数以分数向量形式返回灰度范围, 直接 传递给imadjust().
3.2 基本灰度变换
特点:突出目标的轮廓,保留背景细节
2、灰度切割 :提高
特定灰度范围的 亮度
(a)加亮[A,B]范围,其他 灰度减小为一恒定值 (b)加亮[A,B]范围,其他
(a) (b)
灰度级不变
(c)原图像 (d)使用(a)变换的结果
(c) (d)
例3.3
④分段线性变换函数
3.2 基本灰度变换
3.3 直方图处理
直方图: 归一化直方图:
h(rk ) nk
nk pr ( rk ) ,0 pr 1, rk 0,1, 2,...L 1 n
rk 0
其中:rk [0, L 1]——灰度级;nk 灰度级为rk的象素个数
p (r ) 1
r k
L 1
设CCD的输入(入射光强度)为r,输出(电压)为v,
则有:
v C r (非线性关系)
例如,电子摄像机的输出电压与场景中光强度的关系
幂次变换的应用
(伽马)校正 s cr
3.2 基本灰度变换
γ校正的原理 即在显示之前通过幂次变换将图像进行修正。 整个过程利用公式表示如下: v C r
四、基本方法:
空间域处理:点处理(图象灰度变换、直方图均衡等); 邻域处理(线性、非线性平滑和锐化等); 频域处理 :高、低通滤波、同态滤波等
3.1 背景知识
空间域增强是指增强构成图像的像素,可由下式定义: g(x,y)=T[f(x,y)] (3.1-1)
邻域和预定义的操作一起 称为空间滤波器(掩模、 其中 核、模板)
4.0
5.0
3.2 基本灰度变换
④分段线性变换函数
其形式可以任意组合,有些重要的变换可以应用分段线性 函数描述.
1、对比拉伸 :扩展图
像 处 理时灰度 级的 动态范围。
(a)变换函数的形式 (b)低对比度图像 (c)对比度拉伸的结果
(a)
(b)
(d)门限化的结果
(c) (d)
④分段线性变换函数
特点:突出目标的轮廓,消除背景细节
g( x , y ) af ( x , y ) b
255
a1
a1
J1=uint8(pout2); J2=uint8(pout3); subplot(1,3,1),imshow(I); subplot(1,3,2),imshow(J1); subplot(1,3,3),imshow(J2);
Im=imread('rice.png'); Jm=imadjust(Im,[0.15,0.9],[0,1]); figure(1);subplot(211);imshow(Im);subplot(212); imhist(Im); figure(2);subplot(211);imshow(Jm);subplot(212); imhist(Jm);
幂次变换的应用 伽马校正
(a)原图像
sr
1 2.5
v cr 2.5
v c s
3.2 基本灰度变换
幂次变换的应用
例3.1 用幂次变换 进行对比度增强
c=1, =0.6,0.4,0.3
原图像
0.6
0.4
0.3
3.2 基本灰度变换
幂次变换的应用
“冲淡”效果图
原图像
3.0
c=1, =3.0,4.0,5.0
(c, 0) (3.2 3)
3.2 基本灰度变换
幂次曲线中的 值决定了是把输入窄带暗值映射到宽 带输出值还是把输入窄带亮值映射到宽带输出.
1时, 该变换将
低灰度值(暗值)进行拉伸 例: 0.4时,该变换将动态范围 从 [ 0 , L 5 ] 扩展到 [ 0 , L 2 ]