2019年中考数学专题复习分类练习数据分析(无答案)

合集下载

2019年中考数学总复习:数据分析考试试卷详解

2019年中考数学总复习:数据分析考试试卷详解

2019年中考数学总复习:数据分析考试试卷详解统计与概率——数据分析1一.选择题(共9小题)1.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44 B.45 C.46 D.472.如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.94.数据0,1,1,x,3, 4的平均数是2,则这组数据的中位数是()A.1 B.3 C.1.5 D. 25.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,906.作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五个同学每天课外作业时间分别是(单位:分钟):60,80,75,45,120.这组数据的中位数是()A.45 B.75 C.80 D.607.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7 B.8 C.9 D.108.一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是()A.中位数是91 B.平均数是91 C.众数是91 D.极差是789.我市某校举办“行为规范在身边”演讲比赛中,7位评委给其中一名选手的评分(单位:分)分别为:9.25,9.82,9.45,9.63,9.57,9.35,9.78.则这组数据的中位数和平均数分别是()A.9.63和9.54 B.9.57和9.55 C.9.63和9.56 D.9.57和9.57二.填空题(共8小题)10.近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x= _________ .11.数据0、1、1、2、3、5的平均数是_________ .12.某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为_________ 分.13.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是_________ 分.14.已知一组数据4,13,24的权数分别是,,,则这组数据的加权平均数是_________ .15.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是_________ 元.16.若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是_________ .17.在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是_________ .三.解答题(共6小题)18.已知甲校有a人,其中男生占60%;乙校有b人,其中男生占50%.今将甲、乙两校合并后,小清认为:「因为=55%,所以合并后的男生占总人数的55%.」如果是你,你会怎么列式求出合并后男生在总人数中占的百分比?你认为小清的答案在任何情况都对吗?请指出你认为小清的答案会对的情况.请依据你的列式检验你指出的情况下小清的答案会对的理由.19.2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.请根据以上信息解答问题:(1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.20.甲、乙两台包装机同时包装质量为500克的白糖,从中各随机抽出10袋,测得实际质量如下(单位:g)甲:501 500 503 506 504 506 500 498 497 495乙:503 504 502 498 499 501 505 497 502 499(1)分别计算两个样本的平均数;(2)分别计算两个样本的方差;(3)哪台包装机包装的质量较稳定?21.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95(1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).22.某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:个数 1 2 3 4 5 6 7 8 9 10 11人数 1 1 6 18 10 6 2 2 1 1 2(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?23.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩如下:(单位:环)甲:10,9,8,8,10,9乙:10,10,8,10,7,9请你运用所学的统计知识做出分析,从三个不同角度评价甲、乙两人的打靶成绩.统计与概率——数据分析1参考答案与试题解析一.选择题(共9小题)1.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44 B.45 C.46 D.47考点:算术平均数.分析:先求出这组数的和,然后根据“总数÷数量=平均数”进行解答即可;解答:解:平均数为:(40+42+43+45+47+47+58)÷7,=322÷7,=46(千克);故选:C.点评:此题考查了平均数的计算方法,牢记计算方法是解答本题的关键,难度较小.2.如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时考点:算术平均数;折线统计图.分析:根据算术平均数的概念求解即可.解答:解:由图可得,这7天每天的学习时间为:2,1,1,1,1,1.5,3,则平均数为:=1.5.故选:B.点评:本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A. 6 B.7 C.8 D.9考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选:C.点评:本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B.3 C.1.5 D.2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选:D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).5.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,90考点:中位数;加权平均数.专题:图表型.分析:根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.解答:解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选:B.点评:此题考查了中位数和平均数,掌握中位数和平均数的计算公式和定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.6.作业时间是中小学教育质量综合评价指标的考查要点之一,腾飞学习小组五个同学每天课外作业时间分别是(单位:分钟):60,80,75,45,120.这组数据的中位数是()A.45 B.75 C.80 D.60考点:中位数.专题:常规题型.分析:根据中位数的概念求解即可.解答:解:将数据从小到大排列为:45,60,75,80,120,中位数为75.故选:B.点评:本题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7 B.8 C.9 D.10考点:中位数.专题:常规题型.分析:根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.解答:解:把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.故选:B.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).8.一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是()A.中位数是91 B.平均数是91 C.众数是91 D.极差是78考点:中位数;算术平均数;众数;极差.专题:常规题型.分析:根据极差、中位数、众数及平均数的定义,结合数据进行分析即可.解答:解:A、将数据从小到大排列为:78,85,91,98,98,中位数是91,故A 选项正确;B、平均数是(91+78+98+85+98)÷5=90,故B选项错误;,C、众数是98,故C选项错误;D、极差是98﹣78=20,故D选项错误;故选:A.点评:本题考查了极差、中位数、众数及平均数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数,极差是用最大值减去最小值.9.我市某校举办“行为规范在身边”演讲比赛中,7位评委给其中一名选手的评分(单位:分)分别为:9.25,9.82,9.45,9.63,9.57,9.35,9.78.则这组数据的中位数和平均数分别是()A.9.63和9.54 B.9.57和9.55 C.9.63和9.56 D.9.57和9.57考点:中位数;算术平均数.分析:根据中位数和平均数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:9.25,9.35,9.45,9.57,9.63,9.78,9.82,则中位数为:9.57,平均数为:=9.55.故选:B.点评:本题考查了中位数和平均数的知识,平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二.填空题(共8小题)10.近年来,A市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量(单位:万辆)依次为11,13,15,19,x.若这五个数的平均数为16,则x= 22 .考点:算术平均数.分析:根据算术平均数:对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数的算术平均数进行计算即可.解答:解:(11+13+15+19+x)÷5=16,解得:x=22,故答案为:22.点评:此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.11.数据0、1、1、2、3、5的平均数是 2 .考点:算术平均数.分析:根据算术平均数的计算公式列出算式,再求出结果即可.解答:解:数据0、1、1、2、3、5的平均数是(0+1+1+2+3+5)÷6=12÷6=2;故答案为:2.点评:此题考查了算术平均数,用到的知识点是算术平均数的计算公式,关键是根据题意列出算式.12.某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为9.4 分.考点:加权平均数.专题:计算题.分析:根据加权平均数的计算公式列出算式,再进行计算即可.解答:解:这5个分数的平均分为(9.5×2+9.4×2+9.2)÷5=9.4;故答案为:9.4.点评:此题考查了加权平均数,用到的知识点是加权平均数的计算公式,关键是根据公式列出算式.13.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是88 分.考点:加权平均数.分析:按3:3:4的比例算出本学期数学学期综合成绩即可.解答:解:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88(分).故答案为:88.点评:本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.14.已知一组数据4,13,24的权数分别是,,,则这组数据的加权平均数是17 .考点:加权平均数.分析:本题是求加权平均数,根据公式即可直接求解.解答:解:平均数为:4×+13×+24×=17,故答案为:17.点评:本题主要考查了加权平均数的计算方法,正确记忆计算公式,是解题关键.15.某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是13 元.考点:加权平均数;扇形统计图.分析:根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.解答:解:10×60%+16×25%+20×15%=6+4+3=13(元).故答案为13.点评:本题考查的是加权平均数的求法.本题易出现的错误是求10,16,20这三个数的平均数,对平均数的理解不正确.同时考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小.16.若一组数据3,4,x,5,8的平均数是4,则该组数据的中位数是 4 .考点:中位数;算术平均数.分析:首先根据平均数为4,求出x的值,然后根据中位数的概念求解.解答:解:根据题意可得,=4,解得:x=0,这组数据按照从小到大的顺序排列为:0,3,4,5,8,则中位数为:4.故答案为:4.点评:本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.在一次数学测试中,小明所在小组6人的成绩(单位:分)分别为84、79、83、87、77、81,则这6人本次数学测试成绩的中位数是82 .考点:中位数.分析:根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.解答:解:把这组数据从小到大排列为:77、79、81、83、84、87,最中间两个数的平均数是:(81+83)÷2=82;故答案为:82.点评:此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,熟练掌握中位数的概念是本题的关键.三.解答题(共6小题)18.已知甲校有a人,其中男生占60%;乙校有b人,其中男生占50%.今将甲、乙两校合并后,小清认为:「因为=55%,所以合并后的男生占总人数的55%.」如果是你,你会怎么列式求出合并后男生在总人数中占的百分比?你认为小清的答案在任何情况都对吗?请指出你认为小清的答案会对的情况.请依据你的列式检验你指出的情况下小清的答案会对的理由.考点:加权平均数.分析:根据加权平均数的计算公式可得合并后男生在总人数中占的百分比,再与小清的结果进行比较即可.解答:解:合并后男生在总人数中占的百分比是:×100%.当a=b时小清的答案才成立;当a=b时,×100%=55%.点评:此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,再进行比较.19.2010年春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.请根据以上信息解答问题:(1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.考点:加权平均数;用样本估计总体;扇形统计图;条形统计图.专题:压轴题;图表型.分析:(1)用水为3吨的家庭数=150﹣10﹣42﹣32﹣16=50户,淘米水浇花占的比例=1﹣30%﹣44%11%=15%;(2)全校学生家庭月用水总量=3000×150户用水的平均用水量.解答:解:(1)(2)全体学生家庭月人均用水量为=9040(吨).答:全校学生家庭月用水量约为9040吨.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.甲、乙两台包装机同时包装质量为500克的白糖,从中各随机抽出10袋,测得实际质量如下(单位:g)甲:501 500 503 506 504 506 500 498 497 495乙:503 504 502 498 499 501 505 497 502 499(1)分别计算两个样本的平均数;(2)分别计算两个样本的方差;(3)哪台包装机包装的质量较稳定?考点:方差;算术平均数.分析:(1)根据平均数就是对每组数求和后除以数的个数;(2)方差,通常用s2表示,其公式为s2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2](其中n是样本容量,表示平均数);(3)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.解答:解:(1)甲=(501+500+503+506+504+506+500+498+497+495)÷10=501,乙=(503+504+502+498+499+501+505+497+502+499)÷10=501;(2)S2甲=[(501﹣501)2+(500﹣501)2+…+(495﹣501)2]=12.6,S2乙=[(503﹣501)2+(504﹣501)2+…+(499﹣501)2]=6.4;(3)∵S2甲>S2乙,∴乙包装机包装10袋糖果的质量比较稳定.点评:本题主要考查了平均数、方差的计算以及它们的意义,正确记忆计算公式是解题的关键.21.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95(1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).考点:极差;算术平均数;中位数.分析:(1)根据中位数的定义:把数据从小到大排列,位置处于中间的数就是中位数;极差=最大数﹣最小数即可得到答案;(2)根据平均数的计算方法:把所有数据加起来再除以数据的个数即可计算出答案.解答:解:(1)将7次个成绩从小到大排列为:12.87,12.88,12.91,12.92,12.93,12.95,12.97,位置处于中间的是12.92秒,故这7个成绩的中位数12.92秒;极差:12.97﹣12.87=0.1(秒);(2)这7个成绩的平均成绩:(12.97+12.87+12.91+12.88+12.93+12.92+12.95)÷7≈12.92(秒).点评:此题主要考查了极差、中位数、平均数,关键是熟练掌握其计算方法.22.某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:个数 1 2 3 4 5 6 7 8 9 10 11人数 1 1 6 18 10 6 2 2 1 1 2(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?考点:众数;用样本估计总体;加权平均数;中位数;统计量的选择.分析:(1)根据出现最多的是众数;把这组数据按大小关系排列,中间位置的是中位数(偶数个数据取中间两个数的平均值);平均数是总成绩除以次数;(2)根据中位数或众数比较接近大部分学生成绩,故中位数或众数作为合格标准次数较为合适;(3)根据50人中,有42人符合标准,进而求出3万名该市九年级男生引体向上项目测试的合格人数即可.解答:解:(1)平均数为(1×1+1×2+6×3+18×4+10×5+6×6+2×7+2×8+1×9+1×10+2×11)÷50=5个;众数为4个,中位数为4个.(2)用中位数或众数(4个)作为合格标准次数较为合适,因为4个大部分同学都能达到.(3)(人).故估计该市九年级男生引体向上项目测试的合格人数是25200人.点评:此题主要考查了平均数、中位数和众数的定义以及利用样本估计总体,熟练掌握中位数和众数的定义以及平均数的计算方法解答是解题关键.23.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩如下:(单位:环)甲:10,9,8,8,10,9乙:10,10,8,10,7,9请你运用所学的统计知识做出分析,从三个不同角度评价甲、乙两人的打靶成绩.考点:方差;算术平均数.分析:根据平均数、方差、众数的意义分别进行计算,再进行比较即可.解答:解:根据题意得:甲这6次打靶成绩的平均数为(10+9+8+8+10+9)÷6=9(环),乙这6次打靶成绩的平均数为(10+10+8+10+7+9)÷6=9(环),说明甲、乙两人实力相当,甲的方差为:S2甲=[(10﹣9)2+(9﹣9)2+(8﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]÷6=,乙的方差为:S2乙=[(10﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2+(7﹣9)2+(9﹣9)2]÷6=,甲打靶成绩的方差低于乙打靶成绩的方差,说明甲的打靶成绩较为稳定.甲、乙两人的这6次打靶成绩中,命中10环分别为2次和3次,说明乙更有可能创造好成绩.点评:本题考查方差、平均数、众数的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.统计与概率——数据分析2一.选择题(共8小题)1.某事测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和402.学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.603.某小7名初中男生参加引体向上体育测试的成绩分别为:8,5,7,5,8,6,8,则这组数据的众数和中位数分别为()A.6,7 B.8,7 C.8,6 D.5,74.一组数据:﹣2,1,1,0,2,1,则这组数据的众数是()A.﹣2 B.0 C.1 D.25.一组数据1,3,6,1,2的众数和中位数分别是()A.1,6 B.1,1 C.2,1 D.1, 26.在某校开展的“厉行节约,你我有责”活动中,七年级某班对学生7天内收集饮料瓶的情况统计如下(单位:个):76,90,64,100,84,64,73.则这组数据的众数和中位数分别是()A.64,100 B.64,76 C.76,64 D.64,847.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是38.某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数 3 4 2 1分数80 85 90 95那么这10名学生所得分数的平均数和众数分别是()A.85和82.5 B.85.5和85 C.85和85 D.85.5和80二.填空题(共7小题)9.某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是_________ .10.已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为_________ .11.甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S2甲=0.9,S2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是_________ (填“甲”或“乙”).12.一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的中位数为3,则这组数据的方差是_________ .13.一组数据1,3,0,4的方差是_________ .14.已知甲组数据的平均数为甲,乙组数据的平均数为乙,且甲=乙,而甲组数据的方差为S2甲=1.25,乙组数据的方差为S2乙=3,则_________ 较稳定.15.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=1.5,则射击成绩较稳定的是_________ (填“甲”或“乙“).2=2,S乙三.解答题(共8小题)16.某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:测试项目测试成绩/分甲乙丙笔试92 90 95面试85 95 80图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?17.某班“环卫小组”为了宣传环保的重要性,随机调查了本班10名同学的家庭在同一天内丢弃垃圾的情况.经统计,丢垃圾的质量如下(单位:千克):2 3 3 4 4 3 5 3 4 5根据上述数据,回答下列问题:(1)写出上述10个数据的中位数、众数;(2)若这个班共有50名同学,请你根据上述数据的平均数,估算这50个家庭在这一天丢弃垃圾的质量.18.我市某校九年级一班学生参加毕业体考的成绩统计如图所示,请根据统计图中提供的信息完成后面的填空题(将答案填写在相应的横线上)(1)该班共有_________ 名学生;(2)该班学生体考成绩的众数是_________ ;男生体考成绩的中位数是_________ ;(3)若女生体考成绩在37分及其以上,男生体考成绩在38分及其以上被认定为体尖生,则该班共有_________ 名体尖生.19.在喜迎建党九十周年之际,某校举办校园唱红歌比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理方案来确定演唱者的最后得分(每个评委打分最高10分).方案1:所有评委给分的平均分.方案2:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分.方案3:所有评委给分的中位数.方案4:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,右侧是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演唱的最后得分?。

2019年中考数学真题知识点分类汇总—数据的分析

2019年中考数学真题知识点分类汇总—数据的分析

2019年中考数学真题知识点分类汇总—数据的分析一、选择题1. (2019广东深圳,5,3分)这组数据20,21,22,23,23的中位数和众数分别是()A.20,23 B.21,23 C.21,22 D.22,23【答案】D【解析】数据是从小到大排列的,排在最中间的数据为22,则中位数是22;出现最多的数据是23,即众数是23.故选D.【知识点】中位数;众数2. (2019广西省贵港市,题号3,分值3分)若一组数据为:10,11,9,8,10,9,11,9,则这组数据的众数和中位数分别是()A.9,9 B.10,9 C.9,9.5 D.11,10【答案】C.【解析】解:将数据重新排列为8,9,9,9,10,10,11,11,∴这组数据的众数为9,中位数为9109.52+=,故选:C.【知识点】中位数;众数3. (2019广西河池,T6,F3分)某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A.53,53 B.53,56 C.56,53 D.56,56【答案】D.【解析】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.【知识点】中位数;众数4. (2019贵州省毕节市,题号4,分值3分)在一次爱心义卖活动中,某中学九年级6个班捐献的义卖金额(单位:元)分别为800、820、930、860、820、850,这组数据的众数和中位数分别是()A.820,850 B.820,930 C.930,835 D.820,835【答案】D.【解析】解:将数据重新排列为800、820、820、850、860、930,所以这组数据的众数为820、中位数为=835,故选:D.【知识点】中位数;众数.5.(2019贵州遵义,6,4分)为参加全市中学生足球赛,某中学从全校学生中选拔22名足球运动员组建足球队,这22名运动员的年龄(岁)如右表所示,该足球队队员的平均年龄是(A) 12岁(B) 13岁(C) 14岁(D) 15岁【答案】B【解析】222153141013712⨯+⨯+⨯+⨯=x=13,所以选B【知识点】加权平均数6.(2019湖北十堰,6,3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):A.80,80 B.81,80 C.80,2 D.81,2【答案】A【解析】解:根据题意,得80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.【知识点】众数;平均数7.(2019湖北孝感,4,3分)下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式【答案】C【解析】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.【知识点】命题与定理;全面调查与抽样调查;众数;方差;随机事件8.(2019湖南湘西,16,4分)从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环,方差分别是s甲2=0.25克,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【答案】A【解析】解:因为方差越小成绩越稳定,故选甲.故选:A.【知识点】方差9.(2019内蒙古包头市,3题,3分)一组数据2,3,5,x ,7,4,6,9的众数是4,则这组数据的中位数是( ) A.4B.C.5D.【答案】B. 【解析】解:∵这组数据的众数是4, ∴x =4.∴这组数据从小到大排列为2,3,4,4,5,6,7,8,中间两个数是4和5, 故中位数是(4+5)÷2=4.5 . 故选B.【知识点】众数,中位数.10. (2019宁夏,4,3分)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:则本次调查中阅读时间的中位数和众数分别是().A .0.70.7和B .0.90.7和C .10.7和D .0.9 1.1和 【答案】B【解析】由于共有30名学生,所以学生一天课外阅读时间的中位数位于数据排序后的第15和第16个数,由于第15和第16个数均为0.9,所以这组数据的中位数为0.9,因为这30个数据中,阅读时间为0.7的人数最多,也就是0.7的个数最多,所以众数为0.7,故本题正确选项为B . 【知识点】数据分析(求中位数和众数).11. (2019北京市,8题,2分)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间 ②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是A .①③B .②④C .①②③D .①②③④【答案】C【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为52.5h ,则平均数一定在24.5——25.5之间,故①正确.②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20——30之间,故②正确.③由统计表类别栏计算可得,初中学生各时间段人数分别为25,36,44,11;共有116人,∴初中生参加公益劳动时间的中位数在对应人数为36的那一栏;即 中位数在20——30之间;故③正确.学生类别5④由统计表类别栏计算可得,高中学段栏各时间段人数分别为15,35,15,18,1;共有84人,∴中位数在对应人数为35人对应的时间栏,即中位数在10——20之间;故④错误.【知识点】条形统计图、统计表、统计量——平均数、中位数.12.阅读【资料】,完成第8、9题【资料】如图,这是根据公开资料整理绘制而成的2004—2018年中美两国国内生产总值(GDP)的直方图及发展趋势线(注:趋势线由Excel系统根据数据自动生成,趋势线中的y表示GDP,x 表示年数)8.(2019年广西柳州市,8,3分)依据【资料】中所提供的信息,2016—2018年中国GDP的平均值大约是()A.12.30 B.14.19 C.19.57 D .19.71【答案】A【解析】从条形统计图中获取2016—2018年中国GDP 的值,则这三年的平均值为11.1912.2413.4612.303++≈,故选A .【知识点】平均数;条形统计图9.(2019年广西柳州市,8,3分)依据【资料】中所提供的信息,可以推算出的GDP 要超过美国,至少要到( ) A .2052 B .2038 C .2037 D .2034 【答案】B【解析】由统计图得:0.86x+0.468>0.53x+11.778,解得x >34,即到2038年GDP 超过美国,因此本题选B . 【知识点】折线统计图;一次函数与一元一次不等式13. (2019黑龙江大庆,7题,3分) 某企业1-6月份利润的变化情况如图所示,以下说法与图中反应的信息相符的是( )A.1-6月份利润的众数是130万元B.1-6月份利润的中位数是130万元C.1-6月份利润的平均数是130万元D.1-6月份利润的极差是40万元第7题图 【答案】D【解析】A.1-6月份利润的众数是120万元,故A 错误;B.1-6月份利润的中位数是125万元,故B 错误;C.1-6月份利润的平均数约是128万元,故C 错误;D.1-6月份利润的极差是40万元,故D 正确.故选D 【知识点】众数,中位数,平均数,极差14. (2019黑龙江省龙东地区,14,3)某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是( ) A .平均数B .中位数C .方差D .极差【答案】B【解析】将最低成绩写得更低了,平均数变小,方差变大,极差也变大,但中位数不变,故选B. 【知识点】平均数;中位数;方差;极差15. (2019·江苏常州,8,2)随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y 1(ug/m 3)随着时间t (h )的变化如图所示,设y 2表示0到t 时PM2.5的值的极差(即0时到时PM2.5的最大值与最小值的差),则y 2与t 的函数关系大致是( )ABC .2 D【答案】B【解析】本题考查了极差的意义及函数图像的应用,将一天24小时分成三段:0≤t ≤10、10≤t ≤20、20≤t ≤24,在0≤t ≤10,y 2随t 的增大而增大;在10≤t ≤20,y 2随t 的增大而不变(恒为85-42=43),在20≤t ≤24,y 2随t 的增大而增大,因此本题选B .【知识点】极差的意义;函数图像的应用A .B .C .D .第8题图16.(2019辽宁本溪,8,3分)下列事件属于必然事件的是A.打开电视,正在播出系列专题片“航拍中国”B.若原命题成立,则它的逆命题一定成立C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数【答案】C.【思路分析】本题主要考查了随机事件以及必然事件的定义,直接利用随机事件以及必然事件的定义分析得出答案.【解答过程】解:A选项,打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意;B选项,若原命题成立,则它的逆命题一定成立,是随机事件,不合题意;C选项,一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D选项,在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意,故选C.【知识点】方差;随机事件.17. (2019辽宁本溪,5,3分)下表是我市七个县(区)今年某日最高气温(℃)的统计结果:则该日最高气温(℃)的众数和中位数分别是:A. 25,25B.25,26C. 25,23D.24,25【答案】A.【解析】解:∵在这7个数中,25(℃)出现了3次,出现的次数最多,∴该日最高气温(℃)的众数是25;把这组数据按照从小到大的顺序排列位于中间位置的数是25, 则中位数为:25, 故选A .【知识点】中位数;众数.18. (2019广西贺州,3,3分)一组数据2,3,4,x ,6的平均数是4,则x 是( ) A .2 B .3 C .4 D .5【答案】D【解析】解:数据2,3,4,x ,6的平均数是4,∴234645x ++++=,解得5x =,故选:D .【知识点】算术平均数19.(2019广西梧州,10,3分)某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93【答案】D【解析】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=, 方差为2222221[(82101)(96101)(102101)(108101)(108101)(110101)]94.3936-+-+-+-+-+-≈≠; 故选:D .【知识点】众数;算术平均数;中位数;方差20.(2019湖北荆州,8,3分)在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.65【答案】C【解析】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.65×4﹣1.63×3=1.71米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【知识点】中位数;众数21.(2019湖南邵阳,5,3分)学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书价格组成的一组数据中,中位数是4C.在该班级所售图书价格组成的一纽数据中,众数是15D.在该班级所售图书价格组成的一组数据中,方差是2【答案】A【解析】解:A 、该班级所售图书的总收入为314411*********⨯+⨯+⨯+⨯=,所以A 选项正确; B 、第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误; C 、这组数据的众数为4,所以C 选项错误; D 、这组数据的平均数为2264.5250x ==,所以这组数据的方差 222221[14(3 4.52)11(4 4.52)10(5 4.52)15(6 4.52)] 1.450S =-+-+-+-≈,所以D 选项错误. 故选:A .【知识点】中位数;众数;方差22. (2019江苏常州,8,2分)随着时代的进步,人们对PM 2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM 2.5的值y 1(ug /m 3)随时间t (h )的变化如图所示,设y 2表示0时到t 时PM 2.5的值的极差(即0时到t 时PM 2.5的最大值与最小值的差),则y 2与t 的函数关系大致是( )【答案】B【解析】解:当t =0时,极差y 2=85﹣85=0,当0<t ≤10时,极差y 2随t 的增大而增大,最大值为43; 当10<t ≤20时,极差y 2随t 的增大保持43不变; 当20<t ≤24时,极差y 2随t 的增大而增大,最大值为98; 故选:B .【知识点】函数的图象;极差23. (2019四川省雅安市,5,3分)已知一组数据5,4,x ,3,9的平均数为5,则这组数据的中位数是( )A.3 B.4 C.5 D.6 【答案】B【解析】根据一组数据5,4,x,3,9的平均数为5得:543955x++++=,得x=4,把这组数据按从小到大的顺序排列为3,4,4,5,9,所以中位数是4,故选B.【知识点】平均数;中位数24.(2019江苏徐州,5,3分)【答案】B【解析】本题解答时要把数据按由小到大的顺序重新排列.解:把数据重新排列为:37,37,38,39,40,40,40,所以它的众数和中位数分别为40,39,故本题选B.【知识点】众数;中位数二、填空题1. (2019广西北部湾,15,3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是.(填“甲”或“乙”)【答案】甲.【解析】解:甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9-8)2+(8-8)2+(9-8)2+(6-8)2+(10-8)2+(6-8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定. 故答案为甲.【知识点】平均数;方差.2. (2019贵州黔西南州,11,3分)一组数据:2,1,2,5,3,2的众数是 . 【答案】2【解析】解:在数据2,1,2,5,3,2中2出现3次,次数最多,所以众数为2,故答案为:2. 【知识点】众数3. (2019黑龙江绥化,14题,3分)已知一组数据1,3,5,7,9,则这组数据的方差是________. 【答案】8【解析】平均数=(1+3+5+7+9)÷5=5,∴方差=15[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8.【知识点】方差4. (2019·湖南张家界,11,3)为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:该班学生平均每人捐书 本. 【答案】6. 【解析】∵x =354751*********⨯+⨯+⨯+⨯+⨯=24040=6,∴故答案为6.【知识点】统计;加权平均数5.(2019湖南郴州,14,3分)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2s乙2.(填“>”,“=”或“<”)【答案】<【解析】解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.故答案为:<.【知识点】折线统计图;方差6.(2019湖南郴州,12,3分)某校举行演讲比赛,七个评委对小明的打分如下:9,8,7,6,9,9,7,这组数据的中位数是.【答案】8【解析】解:把这组数据按照从小到大的顺序排列为:6,7,7,8,9,9,9,故这组数据的中位数是8.故答案为:8.【知识点】中位数7. (2019内蒙古包头市,16题,3分)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:某同学分析上表手得到如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数少于甲班优秀的人数(竞赛得分≥85分为优秀);③甲班成绩的波动比乙班小.上述结论中正确的是.(填写所有正确结论的序号)【答案】①②③.【解析】解:对于①,表格中两个班级的平均分均为83分,故正确;对于②,甲班中位数是86分,说明优秀人数至少为23人;乙班中位数是84分,说明优秀人数最多为22人,故乙班优秀人数少于甲班优秀的人数,故正确;对于③,甲班方差<乙班方差,说明甲班成绩波动比乙班小.故答案为①②③.【知识点】平均数,中位数,方差.8.(2019宁夏,13,3分)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图,则该班学生这天用于体育锻炼的平均时间为小时.【答案】1.15【解析】该班学生这天用于体育锻炼的平均时间为0.58116 1.512241.15816124⨯+⨯+⨯+⨯=+++小时.【知识点】加权平均数的计算.9.(2019山东东营,13,3分)东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____________小时.【答案】1【解析】由表格看出,共52个从小到大排列的数据,第26个和第27个数据都是1,故中位数是112+=1. 【知识点】中位数10. (2019北京市,15题,2分) 小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s _______20s . (填“>”,“=”或“<”)【答案】=【解析】数据92,90,94,86,99,85的平均数929094869985916x +++++==;新数据2,0,4,-4,9,-5的平均数为()()204495`16x +++-++-==;∴()()()()()()2222222016892919091949186919991859163S ⎡⎤=-+-+-+-+-+-=⎣⎦;()()()()()()2222222116821014141915163S ⎡⎤=-+-+-+--+-+--=⎣⎦;∴2201S S =.事实上由“将一组数据中的每个数加上或减去同一个数后,所得的新数据的方差与原数据的方差相同”易得2201S S =.【知识点】方差的计算和性质、平均数.11. (2019年广西柳州市,18,3分)已知一组数据共有5 个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是___________.【答案】7【思路分析】根据5个数的平均数是8,可知这5个数的和为40,根据5个数的中位数是8,得出中间的数是8,根据众数是8,得出至少有2个8,再根据5个数的和减去2个8和1个9得出前面2个数的和为15,再根据方差得出前面的2个数为7和8,即可得出结果.【解题过程】∵5个数的平均数是8,∴这5个数的和为40,∵5个数的中位数是8,∴中间的数是8,∵众数是8,∴至少有2个8,∵40﹣8﹣8﹣9=15,由方差是0.4得:前面的2个数的为7和8,∴最小的数是7.【知识点】方差、平均数、中位数、众数12. (2019贵州省安顺市,16,4分)已知一组数据x1,x2,x3,…,x n的方差为2,则另一组数据3x1,3x2,3x3,…,3x n的方差为.【答案】18【思路分析】如果一组数据x1,x2,x3,…,x n的方差是s2,若平均数为x那么数据kx1,kx2,kx3,…,kx n的方差是k2s2(k≠0),依此规律即可得出答案.【解题过程】解:∵一组数据x1,x2,x3,…,x n的方差为2,∴另一组数据3x1,3x2,3x3,…,3x n的方差为32×2=18.故答案为18.【知识点】方差13.(2019·江苏镇江,3,2)一组数据4,3,x,1,5的众数是5,则x=.【答案】5.【解析】本题考查了众数的概念,根据一组数据中出现次数最多的那个数据叫做这组数据的众数,可知“数据4,3,x,1,5的众数是5”,则这组数据中必有两个5,故x=5,因此本题答案为5.【知识点】统计;众数14.(2019广西桂林,14,3分)某班学生经常采用“小组合作学习”的方式进行学习,王老师每周对各小组合作学习的情况进行综合评分.下表是各小组其中一周的得分情况:这组数据的众数是.【答案】90【解析】解:众数是一组数据中出现次数最多的数.90出现了4次,出现的次数最多,则众数是90;故答案为:90【知识点】众数15.(2019江苏镇江,3,2分)一组数据4,3,x,1,5的众数是5,则x=.【答案】5【解析】解:数据4,3,x,1,5的众数是5,5∴=,故答案为:5.x【知识点】众数16.(2019内蒙古赤峰,16,3分)如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.你认为甲、乙两名运动员,的射击成绩更稳定.(填甲或乙)【答案】乙【解析】解:由统计表可知,甲和乙的平均数、中位数和众数都相等,由折线统计图可知,乙的波动小,成绩比较稳定,故答案为:乙.【知识点】折线统计图;算术平均数;中位数;众数;方差17.(2019四川泸州,13,3分)4的算术平方根是.【答案】2【解析】解:4的算术平方根是2.故答案为:2.【知识点】算术平方根三、解答题1. (2019广西北部湾,22,8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100;整理数据:分析数据:根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【思路分析】本题主要考查众数、平均数、中位数,用样本估计总体.(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.【解题过程】解:(1)由题意知a=4,b=110×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c=80+902=85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×430=76(张),答:估计需要准备76张奖状.【知识点】用样本估计总体;算术平均数;中位数;众数.2.(2019湖北咸宁,20,8分)某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取50名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:七、八年级学生一分钟跳绳成绩分析表七年级学生一分钟跳绳成绩(数据分7组:60≤x<80,80≤x<100,…,180≤x<200)在100≤x<120这一组的是:100 101 102 103 105 106 108 109 109 110 110 111 112 113 115 115 115 116 117 119根据以上信息,回答下列问题:(1)表中a=;(2)在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125次,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.(3)该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?【思路分析】(1)根据中位数,结合条形统计图及所给数据求解可得;(2)将甲、乙成绩与对应的中位数对比,从俄日得出答案;(3)利用样本估计总体思想求解可得.【解题过程】解:(1)∵七年级50名学生成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别是117、119,∴中位数a118,故答案为:118;(2)∴在各自年级所抽取的50名同学中,排名更靠前的是甲,理由是甲的成绩122超过中位数118,乙的成绩125低于其中位数126,故答案为:甲,甲的成绩122超过中位数118,乙的成绩125低于其中位数126.(3)估计一分钟跳绳不低于116次的有500270(人).【知识点】用样本估计总体;频数(率)分布直方图;:算术平均数;中位数;众数3. (2019黑龙江大庆,23题,7分)某校为了解七年级学生的体重情况,随机抽取了七年级m名学生进行调查,将抽取学生的体重情况绘制如下不完整的频数分布表和扇形统计图.第23题图请根据图表信息回答下列问题:(1)填空:①m =______;②n =______;③在扇形统计图中,C 组所在扇形的圆心角的度数等于______度;(2)若把每组中各个体重值用这组数据的中间值代替(例如:A 组数据的中间值为40千克),则被调查学生的平均体重是多少千克?(3)如果该校七年级有1000名学生,请估算七年级体重低于47.5千克的学生大约有多少人? 【思路分析】(1)20÷20%=100(人),100-10-40-20-10=20(人),40360144100⨯=;(2)总体重除以总人数可得;(3)用样本百分比计算总体中体重低于47.5千克的人数. 【解题过程】(1)①m =100;②n =20;③144度;(2)(10×40+20×45+40×50+20×55+10×60)÷100=50(千克).答:被调查学生的平均体重是50千克. (3)1000×10+20100=300(人),答:七年级体重低于47.5千克的学生大约有300人.【知识点】扇形统计图,总数频数百分比之间的关系,加权平均数,样本估计总体4. (2019吉林长春,19,7分)网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时): 3 2.5 0.6 1.5 1 2 2 3.3 2.5 1.8 2.5 2.2 3.5 4 1.5 2.5 3.1 2.8 3.3 2.4 整理上面的数据,得到表格如下:样本数据的平均数、中位数、众数如下表所示:根据以上信息,解答下列问题:(1)上表中的中位数m 的值为 ,众数的值为(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间。

2019届中考数学复习《数据的分析与决策》专题训练题含答案

2019届中考数学复习《数据的分析与决策》专题训练题含答案

天津市河东区普通中学2019届初三数学中考复习 数据的分析与决策专题复习训练题1.下列说法正确的是( B )A .了解飞行员视力的达标率应使用抽样调查B .一组数据3,6,6,7,9的中位数是6C .从2000名学生中选200名学生进行抽样调查,样本容量为2000D .一组数据1,2,3,4,5的方差是102.某校共有40名初中生参加足球兴趣小组,他们的年龄统计情况如图所示,则这40名学生年龄的中位数是( C )A .12岁B .13岁C .14岁D .15岁3.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是( B ) A .95 B .90 C .85 D .804.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( C )A .19,20,14B .19,20,20C .18.4,20,20D .18.4,25,205.某班七个兴趣小组人数分别为4,4,5,5,x ,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是( A )A .4,5B .4,4C .5,4D .5,56.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( D )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,537对于不同的x A .平均数、中位数 B .众数、中位数 C .平均数、方差 D .中位数、方差8. 已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( A )A .a <13,b =13B .a <13,b <13C .a >13,b <13D .a >13,b =139.已知一组数据x 1,x 2,x 3,x 4的平均数是5,则数据x 1+3,x 2+3,x 3+3,x 4+3的平均数是__8__. 10.两组数据m ,6,n 与1,m ,2n ,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为__7__.11.若四个互不相等的正整数中,最大的数是8,中位数是4,则这四个数的和为__17或18__. 12.在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140,146, 143, 175, 125, 164, 134, 155, 152, 168, 162, 148. (1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据中位数,推断他的成绩如何? 解:(1)中位数为150,平均数为151(2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好13(1)(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3∶3∶2∶2计算,那么甲、乙的数学综合素质成绩分别为多少分?解:(1)甲成绩的中位数是90,乙成绩的中位数是93(2)甲:90×310+93×310+89×210+90×210=90.7(分),乙:94×310+92×310+94×210+86×210=91.8(分),则甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分14.甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是__8__,乙的中位数是__7.5__;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?解:(2)x 乙=8;s 甲2=1.6,s 乙2=1.2,∵s 乙2<s 甲2,∴乙运动员的射击成绩更稳定15.八(1)班同学分成甲、乙两组,开展“社会主义核心价值观”知识竞赛,满分5分,得分均为整数,小马虎根据竞赛成绩,绘制了分组成绩条形统计图和全班成绩扇形统计图,经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)甲组同学成绩的平均数是__3.55分__,中位数是__3.5分__,众数是__3分__; (2)指出条形统计图中存在的错误,并求出正确值. 解:(2)乙组得5分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得 2÷5%=40,(3+2)÷12.5%=40,(7+5)÷30%=40,(6+8)÷35%=40, (4+4)÷17.5%≠40,故乙组得5分的人数统计有误,正确人数应为40×17.5%-4=316.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m)绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为__25__;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65 m的运动员能否进入复赛.解:(2)x=1.61;众数是1.65;中位数是1.60(3)能;∵共有20个人,中位数是第10,11个数的平均数.∴根据中位数可以判断出能否进入前9名;∵1.65 m>1.60 m,∴能进入复赛2019-2020学年数学中考模拟试卷一、选择题1.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B. C. D.2.如图,点E为△ABC的内心,过点E作MN∥BC交AB于点M,交AC于点N,若AB=7,AC=5,BC=6,则MN的长为()A.3.5B.4C.5D.5.53.若k>0,点P(﹣k,k)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限4.下列各数中,比﹣3小的数是()A.﹣1 B.﹣4 C.0 D.25.如图,圆上有两点A,B,连结AB,分别以A,B为圆心,AB的长为半径画弧,两弧相交于点C D CD,,交于AB点E,交AB于点F,若16EF AB==,,则该圆的半径长是( )A.10B.6C.5D.46.下列运算中正确的是()A .236x x x ⋅=B .238()x x =C .222()xy x y -=- D .633x x x ÷=7.如图是将一多边形剪去一个角,则新多边形的内角和( )A .比原多边形少180°B .与原多边形一样C .比原多边形多360°D .比原多边形多180°8.如图,在Rt △OAB 中,OA =AB ,∠OAB =90°,点P 从点O 沿边OA 、AB 匀速运动到点B ,过点P 作PC⊥OB 交OB 于点C ,线段AB =,OC =x ,S △POC =y ,则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .9.某城区青年在“携手添绿,美丽共创”植树活动中,共栽植、养护树木15000株将15000用科学计数法表示为( ) A.41.510⨯B.31510⨯C.51.510⨯D.60.1510⨯10.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A .25B .13C .415D .1511.如图,经过直线l 外一点A 作l 的垂线,能画出( )A.4条B.3条C.2条D.1条12.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有( )种. A .3B .4C .5D .613.如图,AOB ∆为等边三角形,点B 的坐标为()2,0-,过点()2,0C 作直线l 交AO 于D ,交AB 于E ,点E 在反比例函数ky x=的图像上,当ADE ∆和DCO ∆的面积相等时,k 的值是__________.14.在每个小正方形的边长为1的网格中,有等腰三角形ABC ,点,,A B C 都在格点上,点D 为线段BC 上的动点.(Ⅰ)AC 的长度等于_____; (Ⅱ)当35AD DC +最短时,请用无刻度...的直尺,画出点D ,并简要说明点D 的位置是如何找到的(不要求证明)___________.15.分解因式a 3﹣a 的结果是_____.16.某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x 本(x >10),则付款金额为___________元.17.如图,圆内接四边形ABCD 的边AB 过圆心O ,过点C 的切线与边AD 所在直线垂直于点M ,若∠ABC =65°,则∠ACD =_____°.18.将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1、12、12、13、13、13、…、1n 、1n …,记123111,,,22a a a ===…,11S a =,212S a a =+,3123S a a a =++,…,12...n n S a a a =+++,则S 2019=______.19.如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.20.如图,矩形OABC的一个顶点B的坐标是(4,2),反比例函数y= kx(k>0)的图象经过OB的中点E,且与BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)求△DOE的面积;(3)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式。

2019届中考数学章节复习测试:数据的分析(含解析)

2019届中考数学章节复习测试:数据的分析(含解析)
数据的分析
一、填空题
1. 为 了 调 查 现 在 中 学 生 的 身 体 状 况 , 从 某 地 市 抽 取 100 名 初 三 学 生 测 量 了 他 们 的 体 重 , 其 中 样 本 是 指
_________________.
答案:抽取的 100 名初三学生的体重
提示:所有的考察对象的全体叫做总体,每一个考察对象叫做个体,从总体中抽出一部分个体叫做样本.
提示:用(2)的规律来解.
9.甲、乙两位同学参加奥赛班 11 次测验成绩分布如图 8-56 所示:(单位:分)
图 8-56 (1)他们的平均成绩分别是多少? (2)他们测验成绩的方差、极差是多少? (3)现要从中选出一人参加比赛,历届比赛表明,成绩达到 98 分以上才可进入决赛,你认为应选谁参加这次比赛, 为什么? (4)分析两位同学的成绩各有何特点?并对两位同学 各提一条学习建议. (1)答案:甲的平 均成绩为 96 分,乙的平均成绩为 96 分. 提示:甲的 11 次成绩为 100,100,100,99,98,98,95,93,93,90,90,乙的 11 次成绩为 99,99,98,98, 97,96,96,95,94,92,92,根据数据求平均数. (2)答案:甲的方差为 14.18,极差为 10 分;乙的方差为 5.82,极差为 7 分. 提示:极差是一组数据中最大和最小数据的差,方差是指各数据与平均数的差的平方的平均数. (3)答案:甲,因为 11 次考试中甲有 4 次超过 98 分. 提示:选出一人参加比赛,一般要根据达到该成绩的频数来确定. (4)答案:乙成绩稳定,甲有潜力等. 建议:甲在今后的学习中应保持成绩稳定,乙在今后的学习中应不断努力, 提高高分率. 提示:可以看平均水平,或比较沉积的稳定性,也可考察数据的频数等不同的侧面来加以描述.答案不唯一,只 要有道理都可. 10.甲、乙两人在相同条件下各射靶 10 次,每次射靶的成绩情况如图 8-57 所示:

2019年北京中考数学习题精选:数据的分析

2019年北京中考数学习题精选:数据的分析

温度(°C )40302010一、选择题1.(2018北京西城区二模) 在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好 答案:C2、(2018北京丰台区二模)为适应新中考英语听说机考,九年级甲、乙两位同学使用某手机软件进行英语听说练习并记录了40次的练习成绩. 甲、乙两位同学的练习成绩统计结果如图所示:甲同学的练习成绩统计图 乙同学的练习成绩统计图下列说法正确的是(A )甲同学的练习成绩的中位数是38分(B )乙同学的练习成绩的众数是15分(C )甲同学的练习成绩比乙同学的练习成绩更稳定 (D )甲同学的练习总成绩比乙同学的练习总成绩低答案:A 3、(2018北京东城区二模)七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:以下叙述错误..的是 A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161 C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大 答案D4、(2018北京房山区二模)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是A .30,28B .26,26C .31,30D .26,22答案:B5、(2018北京昌平区二模)某九年一贯制学校在六年级和九年级的男生中分别随机抽取40名学生测量他们的身高,将数据分组整理后,绘制的频数分布直方图如下:其中两条纵向虚线上端的数值分别是每个年级抽出的40名男生身高的平均数,根据统计图提供的信息,下列结论不合理的是( ) A .六年级40名男生身高的中位数在第153~158cm 组B .可以估计该校九年级男生的平均身高比六年级的平均身高高出18.6cmC .九年级40名男生身高的中位数在第168~173cm 组D .可以估计该校九年级身高不低于158cm 但低于163cm 的男生所占的比例大约是5%答案:A6.(2018北京燕山地区一模)每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界。

(完整版)2019中考真题——数据分析

(完整版)2019中考真题——数据分析

2019 年中考真题——数据的解析一、选择题1.(毕节)在一次爱心义卖活动中,某中学九年级 6 个班捐献的义卖金额(单位:元)分别为 800、 820、 930、 860、820、 850,这组数据的众数和中位数分别是()A .820, 850B .820, 930C. 930,835D. 820, 8352.(铜仁)某班 17 名女同学的跳远成绩以下表所示:成绩( m) 1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90人数23234111这些女同学跳远成绩的众数和中位数分别是()A .1.70, 1.75B .1.75, 1.70C. 1.70,1.70D. 1.75, 1.7253.(成都)某校睁开了主题为“青春·梦想”的艺术作品收集互动,从九年级五个班收集到的作品数量(单位:件)分别为:A.42 件B.45 件42,50,45,46,50 则这组数据的中位数是()C.46 件D.50 件4. (广元)若是一组数据6,7,x,9,5 的平均数是2x,那么这组数据的中位数为()A .5B .6C. 7D. 95.(四川凉山)某班 40 名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班 40 名同学一周参加体育锻炼时间的众数、中位数分别是()A .17, 8.5B .17, 9C. 8, 9D. 8, 8.56.(四川眉山)某班七个兴趣小组人数以下:5,6, 6, x, 7,8, 9,已知这组数据的平均数是7,则这组数据的中位数是()A .6B .6.5C. 7D. 87. (四川绵阳)帅帅收集了南街米粉店今年 6 月1 日至 6 月5 日每天的用水量(单位:吨),整理并绘制成以下折线统计图.以下结论正确的选项是()A. 极差是6B.众数是 7C. 中位数是5D. 方差是88. (四川雅安)已知一数据 5 ,4 ,x,3,9 的平均数 5 ,数据的中位数是()A.3B. 4C. 5D. 69.(四川达州)一数据1,2, 1, 4的方差()A. 1B. 1. 5C. 2D. 2. 5二、填空1.(安)已知一数据x1,x2,x3,⋯,x n的方差 2 ,另一数据 3 x1,3 x2,3 x3,⋯,3 x n的方差.2. (黔东南)一组数据:2,1,2, 5, 3, 2 的众数是.3. (四川内江)一数据0, 1, 2,3, 4,数据的方差是.4.(四川遂宁)某校招聘一批秀教,其中某位教笔、、面三得分分 92 分、 85 分、 90 分,合成笔占40%,占40%,面占20%,名教的合成分.5.(四川南充)下表是某养殖的500 只销售量的数据.量 /kg 1.0 1.2 1.4 1.6 1.8 2.0数 /只561621121204010500 只量的中位数 ___________.6.(四川攀枝花)一数据1,2,x,5,8 平均数是 5,数据的中位数是 ____________7. (四川阳)一数据1,2,5, x,3,6 的众数 5.数据的中位数 _______.三、解答1.()某中学数学趣小在一次外学与研究中遇到一些新的数学符号,他将其中某些资料摘以下:于三个数a, b, c,用 M{ a, b, c} 表示三个数的平均数,用min{ a,b, c} 表示三个数中最小的数.比方:M{1,2,9}==4,min{1,2,3}=3,min{3,1,1} =1.请结合上述资料,解决以下问题:2 2,﹣ 2 2; ② min{sin30 °,cos60°,tan45°} =;( 1)① M{(﹣ 2),2 } =( 2)若 M{ ﹣ 2x ,x 2, 3} = 2,求 x 的值;( 3)若 min{3 ﹣ 2x , 1+3x ,﹣ 5} =﹣ 5,求 x 的取值范围.2. (贵阳) 为了提高学生对毒品危害性的认识, 我市相关部门每个月都要对学生进行 “禁毒知识应知应会” 测评.为了激发学生的积极性, 某校订达到必然成绩的学生授予 “禁毒小卫士”的荣誉称号.为了确定一个合适的奖励目标,该校随机采用了七年级20 名学生在5 月份测评的成绩,数据以下:收集数据: 9091 89 96 90 98 90 97 91 98 99 97 91 889097 95909588( 1)依照上述数据,将以下表格补充完满.整理、描述数据:成绩 /分 88 89 90 91 95 96 97 98 99 学生人数2132121数据解析:样本数据的平均数、众数和中位数以下表平均数众数中位数9391得出结论:( 2)依照所给数据,若是该校想确定七年级前50% 的学生为“优异”等次,你认为“良好”等次的测评成绩最少定为分.数据应用:( 3)依照数据解析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明原由.3. (黔东南)某中学数学兴趣小组在一次课外学习与研究中遇到一些新的数学符号,他们将其中某些资料摘录以下对于三个实数 a,b,c ,用M a,b,c表 示 这 三 个 教 的 平 均 数 , 用min a,b, c表示这 三 个 教 中 最 小 的 数 , 例 如 :129M 1,2,943, min 3,1,,1 1,清结合上述材3, min 1,2, 3料,解决下列问题:( 1 )①M ( 2)2,22,22____________,② min sin 30 ,cos60 ,tan 45____________;(2)若min 3 2x,13x,5 5 ,则x的取值范围为___________:(3)若M2x, x2 ,32, 求x的值(4)若是M 2,1 x,2x min 2,1x,2x ,求x的值。

中考数学专题复习 分类练习 数据分析(无答案)

中考数学专题复习 分类练习 数据分析(无答案)

2019年中考数学复习专题分类练习---数据分析1.某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图.上网查找学习资源方式频数分布表(1)频数分布表中a,b的值:a= ;b= ;(2)补全频数分布直方图;(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?2.在对某超市销售的价格相当的甲、乙、丙3种大米进行质量检测时,质检部门共抽查大米200袋,质量评定分为A,B两个等级(A级优于B级),相应数据的统计图如下图所示.根据所给信息,解决下列问题:(1)a=,b=;(2)已知该超市现有乙种大米750袋,根据检测结果,估计该超市乙种大米中有多少袋B级大米?;(3)对于该超市的甲种大米和丙种大米,你会选择购买哪一种?简述理由.3.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.(1)根据折线图把下列表格补充完整;(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.4.某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图:频数请根据以上图表信息解答下列问题:频数分布表中的______,______;在扇形统计图中,“排球”所在的扇形的圆心角为______度;全校有多少名学生选择参加乒乓球运动?5.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩扇形统计图 甲校成绩条形统计图①②(1)分”所在扇形的圆心角等于(2)请将图②的统计图和乙校成绩统计表补充完整;(3)经计算,甲校的平均分是8. 3分,中位数是8分,请写出乙校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.6.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不(2)请你将如图的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.7.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动.在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号).①在活动之前,该网站已有3 200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2 528人.。

中考数学专题复习卷 数据的整理与分析(含解析)-人教版初中九年级全册数学试题

中考数学专题复习卷 数据的整理与分析(含解析)-人教版初中九年级全册数学试题

数据的整理与分析一、选择题1.一组数据2,1,2,5,3,2的众数是()A. 1B. 2C. 3D. 5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工【答案】C【解析】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故答案为:C.【分析】为调查某大型企业员工对企业的满意程度,那么做抽样调查的对象必须具有代表性而且调查对象的数量必须要达到一定的量,一个企业的所有员工中,它是包括男女老少,故可得出最具代表性样本。

3.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()。

.5【答案】B【解析】:∵一组数据3、4、5、x、6、7的平均数是5,∴3+4+5+x+6+7=6×5,∴x=5.故答案为:B.【分析】根据平均数的定义和公式即可得出答案.4.下列说法正确的是()A. 了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查 B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三X分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X,恰好抽到中心对称图形卡片的概率是 D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三X分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学复习专题分类练习---数据分析
1.某学校为了了解本校学生采用何种方式上网查找所需要的学习资源,随机抽取部分学生了解情况,并将统计结果绘制成频数分布表及频数分布直方图.
上网查找学习资源方式频数分布表
(1)频数分布表中a,b的值:a= ;b= ;
(2)补全频数分布直方图;
(3)若全校有1000名学生,估计该校利用搜索引擎上网查找学习资源的学生有多少名?
2.在对某超市销售的价格相当的甲、乙、丙3种大米进行质量检测时,质检部门共抽查大米200袋,质量评定分为A,B两个等级(A级优于B级),相应数据的统计图如下图所示.
根据所给信息,解决下列问题:
(1)a=,b=;
(2)已知该超市现有乙种大米750袋,根据检测结果,估计该超市乙种大米中有多少袋B级大米?;
(3)对于该超市的甲种大米和丙种大米,你会选择购买哪一种?简述理由.
3.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.
(1)根据折线图把下列表格补充完整;
(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.
4.某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如图不完整的
频数分布表和扇形统计图:
频数
请根据以上图表信息解答下列问题:
频数分布表中的______,______;
在扇形统计图中,“排球”所在的扇形的圆心角为______度;
全校有多少名学生选择参加乒乓球运动?
5.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
甲校成绩扇形统计图 甲校成绩条形统计图


(1)分”所在扇形的圆心角等于
(2)请将图②的统计图和乙校成绩统计表补充完整;
(3)经计算,甲校的平均分是8. 3分,中位数是8分,请写出乙校的平均分、中位数;
并从平均分和中位数的角度分析哪个学校成绩较好.
6.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不
(2)请你将如图的统计图补充完整.
(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
7.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动.在活动期
间,加入该网站的人数变化情况如下表所示:
(1)表格中a=,b=;
(2)请把下面的条形统计图补充完整;
(3)根据以上信息,下列说法正确的是 (只要填写正确说法前的序号).
①在活动之前,该网站已有3 200人加入;
②在活动期间,每天新加入人数逐天递增;
③在活动期间,该网站新加入的总人数为2 528人.。

相关文档
最新文档