双曲线考点与题型归纳

合集下载

双曲线题型归纳之双曲线的方程

双曲线题型归纳之双曲线的方程

第4讲 双曲线 一、知识梳理双曲线 标准方程(焦点在x 轴))0,0(12222>>=-b a b y a x 标准方程(焦点在y 轴) )0,0(12222>>=-b a b x a y 定义 第一定义:平面内与两个定点1F ,2F 的距离的差的绝对值是常数(小于12F F )的点的轨迹叫双曲线。

这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。

{}a MF MF M 221=-()212F F a <范围x a ≥,y R ∈ y a ≥,x R ∈ 对称轴x 轴 ,y 轴;实轴长为2a ,虚轴长为2b 对称中心原点(0,0)O 焦点坐标1(,0)F c - 2(,0)F c 1(0,)F c - 2(0,)F c焦点在实轴上,22c a b =+;焦距:122F F c = 顶点坐标(a -,0) (a ,0) (0, a -,) (0,a ) 离心率e a c e (=>1) 渐近线方程x a b y ±= x b a y ±= 共渐近线的双曲线系方程k b y a x =-2222(0k ≠) k b x a y =-2222(0k ≠)焦点三角形12PF F △的面积:122cot 2PF F S b θ=⋅△(12F PF θ∠=,b 为虚半轴长)x y P1F 2F xy x y P1F 2F xy二、题型归纳(一)双曲线定义及方程引入:把拉链的两脚固定,当拉开拉链时拉链的轨迹会时什么啦?【例1】若一个动点),(y x P 到两个定点)0,1(-A 、)0,1(1A 的距离之差的绝对值为定值a )0(≥a ,讨论点P 的轨迹.【练习】讨论122=+ny mx 表示何种圆锥曲线,它们有何共同特征.(二)求双曲线的方程【例2】根据下列条件,求双曲线的标准方程.(1)6=c ,经过点(-5,2),焦点在x 轴上;(2)过点⎪⎭⎫ ⎝⎛4153,P ,⎪⎭⎫ ⎝⎛-5316,Q 且焦点在坐标轴上;(3)与双曲线141622=-y x 有相同焦点,且经过点()223,.【例3】求下列动圆圆心M 的轨迹方程:(1)与⊙()2222=++y x C :内切,且过点()02,A ;(2)与⊙()11221=-+y x C :和⊙()41222=++y x C :都外切;(3)与⊙()93221=++y x C :外切,且与⊙()13222=+-y x C :内切.(三)焦点三角形【例4】已知双曲线116922=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF .求21PF F∠的大小.【练习】已知1F 、2F 是双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足 9021=∠PF F ,求21PF F ∆的面积.(四)求值【例题4】若椭圆122=+n y m x )0(>>n m 和双曲线122=-ty s x )0,(>t s 有相同的焦点1F 和2F ,而P 是这两条曲线的一个交点,则21PF PF ⋅的值是_____________.【练习】如果12,F F 分别是双曲线191622=-y x 的左、右焦点,AB 是双曲线左支上过点1F 的弦,且6AB =,则2ABF △的周长是_____________.三、课后练习1.双曲线的两焦点坐标是F 1(3,0),F 2(-3,0),2b =4,则双曲线的标准方程是( )A.x 25-y 24=1B.y 25-x 24=1C.x 23-y 22=1D.x 29-y 216=1 2.方程x =3y 2-1所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分3.双曲线x 216-y 29=1上一点P 到点(5,0)的距离为15,那么该点到点(-5,0)的距离为( ) A .7 B .23 C .5或25 D .7或234.双曲线1422=+ky x 的离心率(1,2)e ∈,则k 的取值范围是( ) .A (,0)-∞ .B (3,0)- .C (12,0)- .D (60,12)--5.双曲线221169x y -=的左支上的P 点到右焦点的距离为9,则点P 的坐标为___________. 6.已知点)0,2(),0,1(B A -,不在x 轴上的动点M 满足MBA MAB ∠=∠2,求动点M 的轨迹方程.。

双曲线重难点题型归纳

双曲线重难点题型归纳

双曲线常考重难点题型归纳必考点1: 双曲线的定义1.双曲线的定义满足以下三个条件的点的轨迹是双曲线 (1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值; (3)这一定值一定要小于两定点的距离. 2.双曲线的标准方程标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形例题1: 已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y =234x -上的点,则|OP |=( ) A .222B 410C 7D 10【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数234y x =-()22210334y x x y x ⎧⎪⎨->-==⎪⎩,解得132332x y ⎧=⎪⎪⎨⎪=⎪⎩,即13271044OP =+= D. 例题2: 已知F 为双曲线22:149x y C -=的左焦点,P ,Q 为双曲线C 同一支上的两点.若PQ 的长等于虚轴长的2倍,点(13,0)A 在线段PQ 上,则PQF △的周长为________.【解析】根据题意,双曲线22:149x y C -=的左焦点(13,0)F -,所以点(13,0)A 是双曲线的右焦点,虚轴长为:6;双曲线图象如图:||||24PF AP a -==① ||||24QF QA a -== ②而||12PQ =,①+②得:||||||8PF QF PQ +-=,∴周长为||||||82||32PF QF PQ PQ ++=+=.故答案为:32.【小结】1.双曲线定义的主要应用(1)判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.2.用定义法求双曲线方程,应依据条件辨清是哪一支,还是全部曲线. 3.与双曲线两焦点有关的问题常利用定义求解.4.如果题设条件涉及动点到两定点的距离,求轨迹方程时可考虑能否应用定义求解.双曲线的标准方程例题3: 已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A.221412x y -= B.221124x y -= C.2213x y -= D.2213y x -=【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a b ba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==,双曲线方程为:2213y x -=.本题选择D 选项.【小结】1.求双曲线方程的思路(1)如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a ,b ,c 的方程组,解出a 2,b 2,从而写出双曲线的标准方程(求得的方程可能是一个,也有可能是两个,注意合理取舍,但不要漏解). (2)当焦点位置不确定时,有两种方法来解决:一是分类讨论,注意考虑要全面;二是注意巧设双曲线:①双曲线过两点可设为221(0)mx ny mn -=>,②与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a b λλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.2.利用待定系数法求双曲线标准方程的步骤如下:(1)定位置:根据条件判定双曲线的焦点在x 轴上还是在y 轴上,不能确定时应分类讨论.(2)设方程:根据焦点位置,设方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0),焦点不定时,亦可设为mx 2+ny 2=1(m ·n <0);(3)寻关系:根据已知条件列出关于a 、b (或m 、n )的方程组;(4)得方程:解方程组,将a 、b 、c (或m 、n )的值代入所设方程即为所求. 3.双曲线方程的几种形式:(1)双曲线的一般方程:当ABC ≠0时,方程Ax 2+By 2=C 可以变形为x 2C A +y 2C B =1,由此可以看出方程Ax 2+By 2=C 表示双曲线的充要条件是ABC ≠0,且A ,B 异号.此时称方程Ax 2+By 2=C 为双曲线的一般方程.利用一般方程求双曲线的标准方程时,可以将其设为Ax 2+By 2=1(AB <0),将其化为标准方程,即x 21A +y 21B =1.因此,当A >0时,表示焦点在x 轴上的双曲线;当B >0时,表示焦点在y 轴上的双曲线.(2)共焦点的双曲线系方程:与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为x 2a 2+λ-y 2b 2-λ=1(a >0,b >0);与双曲线y 2a 2-x 2b 2=1(a >0,b >0)有公共焦点的双曲线的方程为y 2a 2+λ-x 2b 2-λ=1(a >0,b >0).必考点2: 双曲线的实际应用例题4: 已知A ,B 两地相距800m ,在A 地听到炮弹爆炸声比在B 地晚2s ,且声速为340m /s ,求炮弹爆炸点的轨迹方程.【解析】如图以AB 为x 轴,AB 的垂直平分线为y 轴,建立坐标系,设炮弹爆炸点为(,)P x y ,由题知:3402680800PA PB -=⨯=<. 所以P 的轨迹是以A ,B 为焦点,2680a =的抛物线的右支. 即340a =,400c =,22244400b c a =-=.所以P 的轨迹方程为22111560044400x y -=(340)x ≥.【小结】解答实际应用问题时,要注意先将实际问题数学化,条件中有两定点,某点与这两定点的距离存在某种联系,解题时先画出图形,分析其关系,看是否与椭圆、双曲线的定义有关,再确定解题思路、步骤.焦点三角形问题例题5: 设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 25P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1 B .2C .4D .8【解析】5ca =,5c a ∴,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥,()22212||2PF PF c ∴+=, ()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.例题6: 设12,F F 是双曲线221916x y -= 的两个焦点,点P 在双曲线上,且1260F PF ∠=︒,求△12F PF 面积【解析】双曲线221916x y -=的3,5,a c ==不妨设12PF PF >,则1226PF PF a -==22212121202cos6F F PF PF PF PF =+-⋅︒,而12210F F c ==得22212121212()100PF PF PF PF PF PF PF PF +-⋅=-+⋅= 1264,PF PF ⋅=故12121sin 601632F PF PF P S F =⋅⋅︒=△【小结】双曲线中的焦点三角形双曲线上的点P 与其两个焦点F 1,F 2连接而成的三角形PF 1F 2称为焦点三角形. 令|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ,因|F 1F 2|=2c ,所以有 (1)定义:|r 1-r 2|=2a .(2)余弦公式:4c 2=r 21+r 22-2r 1r 2cos θ(3)面积公式:S △PF 1F 2=12r 1r 2sin θ.一般地,在△PF 1F 2中,通过以上三个等式,所以求问题就会顺利解决.已知双曲线的方程,研究其几何性质双曲线的几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) 渐近线 y =±b a xy =±a b x离心率e =ca ,e ∈(1,+∞),其中c =a 2+b 2实虚轴线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长.a 、b 、c 的关系c 2=a 2+b 2(c >a >0,c >b >0)例题7: 设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为【解析】,双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限,联立,解得,故联立,解得,故, , 面积为:双曲线,其焦距为当且仅当取等号, 的焦距的最小值:8例题8: 已知双曲线22221(00)x y C a b a b-=>>:,2,则点(4,0)到C 渐近线的距离为( ) A 2B .2C .322D .2【解析】2e 1()2c ba a==+=1b a ∴=,所以双曲线的渐近线方程为x y 0±=所以点(4,0)到渐近线的距离d 2211==+ D例题9: 已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,双曲线C= 【小结】1.已知双曲线方程讨论其几何性质,应先将方程化为标准形式,找出对应的a 、b ,利用c 2=a 2+b 2求出c ,再按定义找出其焦点、焦距、实轴长、虚轴长、离心率、渐近线方程.2.画双曲线图形,要先画双曲线的两条渐近线(即以2a 、2b 为两邻边的矩形对角线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的草图.3.双曲线的标准方程中对a 、b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,b 的要求相同. 若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2.4.注意区分双曲线中的a ,b ,c 大小关系与椭圆a 、b 、c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2.5.等轴双曲线的离心率与渐近线关系双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系). 6.双曲线的焦点到渐近线的距离等于虚半轴长b 7.渐近线与离心率()222210,0x y a b a b -=>>的一条渐近线的斜率为b a ===可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小. 8.与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系,如借助双曲线上点的坐标范围,方程中Δ≥0等来解决.必考点3: 由双曲线的性质求双曲线的方程例题10:已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b-=可得:2b y a =±,不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得:23a =,则双曲线的方程为22139x y -=. 本题选择A 选项. 【小结】1.由双曲线的几何性质求双曲线的标准方程,一般用待定系数法,同样需要经历“定位→定式→定量”三个步骤.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1(mn >0),从而直接求得.2.根据双曲线的渐近线方程可设出双曲线方程.渐近线为y =n m x 的双曲线方程可设为:x 2m 2-y 2n 2=λ(λ≠0);如果两条渐近线的方程为Ax ±By =0,那么双曲线的方程可设为A 2x 2-B 2y 2=m (m ≠0);与双曲线x 2a 2-y 2b 2=1共渐近线的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0).必考点4: 求双曲线的离心率(或范围)例题11:双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒ 2222222sin 50sin 50cos 50111tan 501cos 50cos 50cos50c b e a a ︒︒+︒⎛⎫∴==+=+︒=+== ⎪︒︒︒⎝⎭,选D例题12:已知双曲线C :2222x y 1(a b 0)a b-=>>右支上非顶点的一点A 关于原点O 的对称点为B ,F为其右焦点,若AF FB ⊥,设ABF θ∠=,且ππθ,124⎛⎫∈⎪⎝⎭,则双曲线C 离心率的取值范围是______.【解析】设双曲线的左焦点为,连接,,AF FB ⊥,可得四边形为矩形,设AF m =,BF n =,即有,且222m n 4c +=,n m 2a -=,m tan θn=, 22222222222c 4c m n 11e 2mn 2a 4a m 2mn n 11m n m n n m+=====-+--++1211tan θtan θ=-+, 由ππθ,124⎛⎫∈ ⎪⎝⎭,可得()t tan θ23,1=∈,则()1t 2,4t +∈,可得21,112t t⎛⎫∈ ⎪⎝⎭+,即有2110,12t t⎛⎫-∈ ⎪⎝⎭+,则()12,211tan θtan θ∞∈+-+,即有)e 2,∞∈+例题13:设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a === 【小结】1.在解析几何中,求“范围”问题,一般可从以下几个方面考虑:①与已知范围联系,通过求值域或解不等式来完成;②通过判别式Δ求解;③利用点在双曲线内部形成的不等关系求解;④利用解析式的结构特点,如a ,a ,|a |等非负性求解.2.求双曲线离心率的取值范围,关键是根据题目条件得到不等关系,并想办法转化为关于a ,b ,c 的不等关 系,结合c 2=a 2+b 2和ca =e 得到关于e 的不等式,然后求解.在建立不等式求e 时,经常用到的结论:双曲线上一点到相应焦点距离的最小值为c -a .双曲线的离心率常以双曲线的渐近线为载体进行命题,注意二者参数之间的转化.3.与双曲线离心率、渐近线有关问题的解题策略(1)双曲线的离心率e =ca 是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形成关于e 的关系式,并且需注意e >1.(2)双曲线()222210,0x y a b a b -=>>的渐近线是令22220x y a b-=,即得两渐近线方程x a ±y b =0.(3)渐近线的斜率也是一个比值,可类比离心率的求法解答.注意应用c e a ==必考点5: 与双曲线有关的综合问题例题14:在平面直角坐标系xOy 中,以点()14,0F ,()28,9F 为焦点的动椭圆与双曲线221412x y -=的右支有公共点,则椭圆通径的最小值为______.【解析】依题意知,()14,0F 为双曲线的右焦点,设双曲线的左焦点为F ,则(4,0)F -, 设点P 为两曲线的交点,则由双曲线及椭圆的定义可知,1||||4PF PF -=,12||||2PF PF a +=,则2||||24PF PF a +=+222||(48)(09)15FF ≥=--+-=,所以有112a ≥. 所以椭圆的通径为222222222b a c c a a a a-==-,这里22122||(48)(09)97c F F ==-+-=, 所以由函数的单调性可知,当112a =时,椭圆的通径最小,最小值为9722441111112⨯-=.故答案为:2411 例题15:已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线于交M 、N 两点,若60MAN ∠=,则C 的离心率为__________. 【解析】如图所示,由题意可得360OA a AN AM b MAN AP ===∠=︒∴=,,,,,OP ∴=22223||||4OA PA a b -=-C 的一条渐近线y=b a x 的倾斜角为θ,则tan θ=223||2||34AP OP a b =-.又tan θ=b a ,223234b a a b =-,得a 2=3b 2,∴221231133b a +=+= 【小结】双曲线的综合问题常常涉及双曲线的离心率、渐近线、范围与性质,与圆、椭圆、抛物线、向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立联系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系求解.巩固提升1.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0)的离心率是5 则a =( )A .6B .4C .2D .12【解析】∵双曲线的离心率5c e a == ,21c a =+ ,∴215a a+= ,解得12a = ,故选D. 2.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的距离为3,则C的焦距等于( ). A.2B.22C.4D.42【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .3.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF =,则C 的离心率为( )A 5B 3C .2D 2【解析】由题可知22,PF b OF c ==,PO a ∴= 在2Rt PO F 中,222cos P O PF b F OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c +-∠==,)2222246322b c a bc a b cc+-∴=⇒=⋅ e 3∴= B.4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )AB.2C.D.【解析】由2,a b c====.,2PPO PF x=∴=,又P在C的一条渐近线上,不妨设为在2y x=上,11224PFO PS OF y∴=⋅==△,故选A.5.(2020·山东海南省高考真题)【多选题】已知曲线22:1C mx ny+=.()A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则CC.若mn<0,则C是双曲线,其渐近线方程为y=D.若m=0,n>0,则C是两条直线【解析】对于A,若0m n>>,则221mx ny+=可化为22111x ym n+=,因为0m n>>,所以11m n<,即曲线C表示焦点在y轴上的椭圆,故A正确;对于B,若0m n=>,则221mx ny+=可化为221x yn+=,此时曲线C B不正确;对于C,若0mn<,则221mx ny+=可化为22111x ym n+=,此时曲线C表示双曲线,由220mx ny+=可得y=,故C正确;对于D,若0,0m n=>,则221mx ny+=可化为21yn=,yn=±,此时曲线C表示平行于x轴的两条直线,故D正确;故选:ACD.6.(2020·江苏省高考真题)在平面直角坐标系xOy 中,若双曲线22x a﹣25y =1(a >0)的一条渐近线方程为,则该双曲线的离心率是____. 【解析】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为y x =,即2b a a =⇒=,所以3c =,所以双曲线的离心率为32c a =.故答案为:327.(2020·全国高考真题(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.【解析】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.8.(2017·上海高考真题)设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =________【解析】 由双曲线的方程2221(0)9x y b b-=>,可得3a =,根据双曲线的定义可知1226PF PF a -==,又因为15PF,所以2||11PF =.9.(2019·浙江高三月考)已知1F ,2F 是椭圆1C :2213x y +=与双曲线2C 的公共焦点,P 是1C ,2C 的公共点,若1OP OF =,则2C 的渐近线方程为______.【解析】因为1F ,2F 是椭圆1C :2213x y +=与双曲线2C 的公共焦点,所以1(2,0)F -,设点),sin P θθ,由2213cos sin 2cos OP OF c θθθ=⇒+==⇒=,不妨取正即P ⎝⎭, 代入双曲线方程得:2262144a b-=, 又224a b +=,即1a b ==;即2C 的渐近线方程为y x =±.10.(2020·全国高三课时练习(理))已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.【解析】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.11.(2019·陕西高三月考(理))已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点M 在C 的渐近线上,且12MF MF ⊥,122MF a MF =+,则22b a=______.【解析】不妨设点M 在第一象限,设1MF m =,2MFn =,则2m a n =+,而12MF MF ⊥,故2224m n c +=,联立两式可得,2222mn c b =-,联立222b y x a x y c⎧=⎪⎨⎪+=⎩,可得(),M a b ,由三角形的面积公式可得11222mn cb =⋅,即22c b cb -=,故a bc =2,即422a b c =,故()4222a b a b =+,故42240b a b a +-=,则4210b b a a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,解得22b a =12.(2019·湖南高三月考(理))已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,过1F 的直线l 与圆222x y a +=相切于点T ,且直线l 与双曲线C 的右支交于点P ,若114F P FT =,则双曲线C的离心率为______.【解析】如图,由题可知12OF OF c ==,OT a =,则1FT b =,又114F P FT =,3TP b ∴=,14F P b ∴=, 又122PF PF a -=,242PF b a ∴=-作2//F M OT ,可得22F M a =,TM b =,则2PM b = 在2MPF ∆,22222PM MF PF +=,即()222c b a =-,2b a c =+又222c a b =+,化简可得223250c ac a --=,同除以2a ,得23250e e --=,解得53e =13.(2018·全国高考真题(理))已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________. 【解析】设()()1122A ,,B ,x y x y ,则2112224{4y x y x ==,所以22121244y y x x -=-,所以1212124k y y x x y y -==-+取AB 中点()00M'x y ,,分别过点A,B 作准线x 1=-的垂线,垂足分别为A ,B'' 因为AMB 90∠︒=,()()'111MM '222AB AF BF AA BB ∴==+=+', 因为M’为AB 中点,所以MM’平行于x 轴,因为M(-1,1),所以01y =,则122y y +=即k 2=14.(2020·浙江吴兴 湖州中学高三其他)过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 向其一条渐近线作垂线l ,垂足为P ,l 与另一条渐近线交于Q 点.若223F Q F P =,则该双曲线的离心率为_______. 【解析】由题意可得该双曲线的渐近线方程为by x a=±,设右焦点()2,0F c , 不妨令直线l 垂直于直线b y x a =,则直线l 的方程为()ay x c b=--,由()b y x a a y x c b ⎧=⎪⎪⎨⎪=--⎪⎩可得点22222,a c abc P a b a b ⎛⎫ ⎪++⎝⎭,因为222+=a b c ,所以点2,a ab P c c ⎛⎫ ⎪⎝⎭, 由()b y x a a y x c b ⎧=-⎪⎪⎨⎪=--⎪⎩可得点22222,a c abc Q a b a b ⎛⎫- ⎪--⎝⎭, 又223F Q F P =,所以223abc ab a b c-=⋅-即()2222223333c a b a c a -=-=--,所以223c a =,所以该双曲线的离心率c e a ===15.(2020·湖北黄石港 黄石二中高二月考(理))已知椭圆22221x y a b Γ+=:与双曲线22221x y m nΩ-=:共焦点,F 1、F 2分别为左、右焦点,曲线Γ与Ω在第一象限交点为P ,且离心率之积为1.若1212sin 2sin F PF PF F ∠=∠,则该双曲线的离心率为____________.【解析】设焦距为2c ,在三角形PF 1F 2中,根据正弦定理可得2121212sin sin PF F F F PF PF F =∠∠因为1212sin 2sin F PF PF F ∠=∠,代入可得1222F F PF =,所以2PF c =在椭圆中,1212PF PF PF c a +=+= 在双曲线中,1212PF PF PF c m -=-= 所以112,2PF a c PF m c =-=+,即22a c m c -=+,所以a m c =+因为椭圆与双曲线的离心率乘积为1,即1c c a m ⨯= ,即2c a m=,所以2c m c m +=化简得220c m mc --=,等号两边同时除以2m得210c c m m⎛⎫--= ⎪⎝⎭,因为c m 即为双曲线离心率所以若双曲线离心率为e ,则上式可化为210e e --=由一元二次方程求根公式可求得e =因为双曲线中1e >所以e =16.(2020·湖北高三月考(理))已知双曲线2222:1(0)x y C a b a b-=>>的左顶点为A ,过A 作双曲线两条渐近线的垂线,垂足分别为M ,N ,且4||||5MN OA =(O 为坐标原点),则此双曲线的离心率是___. 【解析】由题意,(),0A a -,双曲线2222:1(0)x y C a b a b -=>>的渐近线方程为:b y x a =±,不妨令AM 与直线b y x a =垂直,AN 与直线b y x a =-垂直,则AM a k b =-,AN ak b=, 所以直线AM 的方程为:a yx a b ;直线AN 的方程为:()ay x a b=+; 由()a y x a b b y x a ⎧=-+⎪⎪⎨⎪=⎪⎩解得:3222a x c ba y c ⎧=-⎪⎪⎨⎪=-⎪⎩(其中222c a b =+),则3222,a ba M c c ⎛⎫-- ⎪⎝⎭; 由()a y x a b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩解得:3222a x c bay c ⎧=-⎪⎪⎨⎪=⎪⎩,即3222,a ba N c c ⎛⎫- ⎪⎝⎭,所以222ba MN c =, 又4||||5MN OA =,所以22245ba a c =,即225c ab =,即222520a ab b -+=,解得:2a b =或2ba =(不满足a b >),所以此双曲线的离心率是2c e a ====.。

双曲线知识点归纳总结例题分析

双曲线知识点归纳总结例题分析

双曲线知识点归纳总结例题分析双曲线基本知识点补充知识点:等轴双曲线的主要性质有:(1)半实轴长=半虚轴长(⼀般⽽⾔是a=b ,但有些地区教材版本不同,不⼀定⽤的是a,b 这两个字母);(2)其标准⽅程为x^2-y^2=C ,其中C≠0;(3)离⼼率e=√2;(4)渐近线:两条渐近线 y=±x 互相垂直;(5)等轴双曲线上任意⼀点到中⼼的距离是它到两个焦点的距离的⽐例中项;(6)等轴双曲线上任意⼀点P 处的切线夹在两条渐近线之间的线段,必被P 所平分;(7)等轴双曲线上任意⼀点处的切线与两条渐近线围成三⾓形的⾯积恒为常数a^2;(8)等轴双曲线x^2-y^2=C 绕其中⼼以逆时针⽅向旋转45°后,可以得到XY=a^2/2,其中C≠0。

所以反⽐例函数y=k/x 的图像⼀定是等轴双曲线。

例题分析:例1、动点P 与点1(05)F ,与点2(05)F -,满⾜126PF PF -=,则点P 的轨迹⽅程为()A.221916x y -= B.221169x y -+=C.221(3)169x y y -+=≥ D.221(3)169x y y -+=-≤同步练习⼀:如果双曲线的渐近线⽅程为34y x =±,则离⼼率为()A.53B.54C.53或54例2、已知双曲线2214x y k+=的离⼼率为2e <,则k 的范围为()A.121k -<< B.0k < C.50k -<<D.120k -<<同步练习⼆:双曲线22221x y a b -=的两条渐近线互相垂直,则双曲线的离⼼率为.例3、设P 是双曲线22219x y a -=上⼀点,双曲线的⼀条渐近线⽅程为320x y -=,12F F ,分别是双曲线的左、右焦点,若13PF =,则2PF 的值为.同步练习三:若双曲线的两个焦点分别为(02)(02)-,,,,且经过点(2,则双曲线的标准⽅程为。

双曲线知识点及例题

双曲线知识点及例题

双曲线知识点一:双曲线的定义: 在平面内,到两个定点、的距离之差的绝对值等于常数(大于0且)的动点的轨迹叫作双曲线的轨迹叫作双曲线..这两个定点、叫双曲线的焦点,两焦点的距离叫作双曲线的焦距两焦点的距离叫作双曲线的焦距. . 注意:注意:1. 1. 双曲线的定义中,常数双曲线的定义中,常数应当满足的约束条件:,这可以借助于三角形中边的相关性质“两边之差小于第三边”来理解; 2. 2. 若去掉定义中的“绝对值”,常数若去掉定义中的“绝对值”,常数满足约束条件:(),则动点轨迹仅表示双曲线中靠焦点的一支;若(),则动点轨迹仅表示双曲线中靠焦点的一支;的一支;3. 3. 若常数若常数满足约束条件:,则动点轨迹是以F 1、F 2为端点的两条射线(包括端点);端点的两条射线(包括端点); 4.若常数满足约束条件:,则动点轨迹不存在;,则动点轨迹不存在;5.若常数,则动点轨迹为线段F 1F 2的垂直平分线。

的垂直平分线。

知识点二:双曲线与的简单几何性质标准方程图形性质焦点, ,焦距范围,,对称性 关于x 轴、y 轴和原点对称顶点 轴长 实轴长=,虚轴长=离心率 渐近线方程1.通径:过焦点且垂直于实轴的弦,其长ab 222.2.等轴双曲线等轴双曲线等轴双曲线 : : :当双曲线的实轴长与虚轴长相等即当双曲线的实轴长与虚轴长相等即2a=2b 时,我们称这样的双曲线为等轴双曲线。

其离心率,两条渐近线互相垂直为,等轴双曲线可设为3.3.与双曲线与双曲线有公共渐近线的双曲线方程可设为(,焦点在轴上,,焦点在y 轴上)轴上)4.4.焦点三角形的面积焦点三角形的面积2cot221qb SF PF =D ,其中21PF F Ð=q 5.5.双曲线的焦点到渐近线的距离为双曲线的焦点到渐近线的距离为b.6.在不能确定焦点位置的情况下可设双曲线方程为:)0(122<=+mn ny mx 7.7.椭圆、双曲线的区别和联系:椭圆、双曲线的区别和联系:椭圆、双曲线的区别和联系:椭圆双曲线根据|MF 1|+|MF 2|=2a根据|MF 1|-|MF 2|=|=±±2aa >c >0, a 22-c 22=b 22(b >0)0<a <c , c 22-a 22=b 22(b >0), ,(a>b>0)(a>0,b>0,a不一定大于b)典型例题1、已知双曲线:()的离心率为,则的渐近线方程为()D.A.B.C.试题分析:由题意可知,因为渐近线方程为 所以渐近线的方程为 2、已知分别是双曲线的左右焦点,过做垂直于轴的直线交双曲线于两点,若为钝角三角形,则双曲线的离心率的范围是A.B.C.D.试题分析:由题意为钝角三角形,则,所以,又,,所以,所以,所以.考点:双曲线离心率.3、已知双曲线(a>0,b>0)的一条渐近线为,则它的离心率为()A.B.C.D.试题分析:由已知得,又在双曲线中有,所以得到;故选A.4、若双曲线的两准线间的距离是焦距的,则双曲线的离心率为_________. 试题分析:双曲线的两准线的距离为:,两焦点间的距离为:,根据题意可由:化简为:解得:,所以答案为:. 5、双曲线的离心率 .试题分析:双曲线即为,其中6、如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、.若为等边三角形,则双曲线的离心率为( )A.4B.C.D.试题分析:因为为等边三角形,不妨设,为双曲线上一点,,为双曲线上一点,则,,由,则,在中应用余弦定理得:,得,则7、设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为()A.B.C.D.试题分析:的一条渐近线方程与抛物线只有一个公共点,把代入中,得,由,,则8、过双曲线的右焦点F2的一条弦PQ,|PQ|=7,F1是左焦点,那么△F1PQ的周长为()A.18B.C.D.试题分析:可化为;由双曲线的定义,得的周长为.9、双曲线的顶点到其渐近线的距离等于_________.试题分析:双曲线的顶点为,渐近线方程为,即;则顶点到其渐近线的距离为. 10、双曲线的离心率,则的取值范围是()A.B.C.D.试题分析:由题意知,又,∴,∴. 11、双曲线的实轴长是()A.2B.2C.4D.4试题分析:双曲线方程可变形为,所以. 12、双曲线:的渐近线方程是()A.B.C.D.试题分析:由双曲线的渐近线方程的公式可知的渐近线方程是.13、斜率为的直线过双曲线的右焦点,且与双曲线的左右两支都相交,则双曲线的离心率的取值范围是()A.B.C.D.试题分析:如图,要使斜率为的直线过双曲线的右焦点,且与双曲线的左右两支都相交,必须且只需即可,从而有所以有离心率,故选D. 14、过原点的直线与双曲线有两个交点,则直线的斜率的取值范围为()A.B.C.D.试题分析:双曲线的焦点在y轴上,通过双曲线的图象与性质可知当直线与双曲线有两交点时直线的斜率k>1或k<-1,因此答案选B。

双曲线知识点及经典题型

双曲线知识点及经典题型

双曲线知识点及经典题型1. 双曲线的定义与基本性质1.1 定义双曲线是平面上一类特殊的曲线,它的定义可以通过焦点和准线来描述。

给定两个不重合的点F和F’,以及一个与两个焦点的连线垂直且交于O点的直线l,双曲线是满足离心率e大于1的所有点P,使得PF’ - PF = 2a(其中a为常数)。

1.2 基本性质•双曲线有两条渐近线,分别与x轴和y轴平行。

•双曲线有两个顶点V和V’,位于x轴上方和下方。

•双曲线关于x轴和y轴对称。

•双曲线在顶点处与x轴和y轴相切。

2. 双曲线的标准方程双曲线有两种标准方程形式:横轴双曲线和纵轴双曲线。

2.1 横轴双曲线横轴双曲线的标准方程为:x2 a2−y2b2=1其中,a为实数且大于0,b为实数且大于0。

2.2 纵轴双曲线纵轴双曲线的标准方程为:y2 a2−x2b2=1其中,a为实数且大于0,b为实数且大于0。

3. 双曲线的图像及性质3.1 横轴双曲线的图像及性质横轴双曲线的图像呈现出两个分离的弧段,并以原点O为对称中心。

离心率e越大,两个弧段越接近直线;离心率e越小,两个弧段越弯曲。

横轴双曲线的渐近线方程分别为y = ±(b/a)x。

3.2 纵轴双曲线的图像及性质纵轴双曲线的图像呈现出两个分离的弧段,并以原点O为对称中心。

离心率e越大,两个弧段越接近直线;离心率e越小,两个弧段越弯曲。

纵轴双曲线的渐近线方程分别为x = ±(b/a)y。

4. 双曲线的经典题型4.1 确定双曲线方程已知焦点F和F’,准线l以及顶点V的坐标,求双曲线的方程。

例题:已知焦点F(3, 0)和F’(-3, 0),准线l过原点O(0, 0),顶点V位于x轴上方。

求双曲线的方程。

解答:首先,我们可以确定横轴双曲线的方程形式为x 2a2−y2b2=1。

根据焦点和准线的定义,焦距为PF′−PF=2a,其中P为横轴双曲线上的任意一点。

由于焦点F和F’的横坐标相等,所以a = 3。

由于准线l过原点O(0, 0),所以准线l的方程为y = kx(k为常数)。

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析

双曲线知识点归纳与例题分析双曲线是解析几何中重要的曲线之一,它有着许多特殊的性质和应用。

本文将对双曲线的知识点进行归纳,并结合例题进行分析,帮助读者更好地理解和应用双曲线的相关概念。

一、基本概念双曲线是平面上满足特定几何性质的曲线,由平面上到两个给定的点的距离之差等于一个常数构成。

常见的双曲线方程有两种形式:椭圆型和双曲型。

椭圆型的方程形如:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$,而双曲型的方程形如:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$。

其中,a和b分别是椭圆的长轴和短轴的长度。

二、性质与特点1. 焦点和准线:双曲线的焦点是曲线上到两个定点的距离之和等于常数的点,而准线是指到两个定点的距离之差等于常数的直线。

在椭圆型的双曲线中,焦点和准线位于曲线的长轴上,而在双曲型双曲线中,焦点和准线位于曲线的短轴上。

2. 渐近线:双曲线的两条渐近线是曲线的一种特殊性质。

渐近线与曲线的距离趋于无穷远,但始终不与曲线相交。

在双曲型的双曲线中,渐近线的斜率等于正负短轴与长轴之比。

而在椭圆型的双曲线中,渐近线的斜率等于正负长轴与短轴之比。

3. 对称性:双曲线具有关于x轴、y轴和原点的对称性。

即在曲线上一点(x, y)处,如果(x, -y)也在曲线上,那么曲线关于x轴对称;如果(-x, y)也在曲线上,那么曲线关于y轴对称;如果(-x, -y)也在曲线上,那么曲线关于原点对称。

三、例题分析下面通过几个例题来加深对双曲线的理解:例题1:已知双曲线的焦点为(2, 0),离心率为2,求该双曲线的方程。

解析:根据离心率的定义可知,双曲线的离心率e满足$$e=\frac{\sqrt{a^2+b^2}}{a}$$,其中a和b分别为双曲线椭圆型方程中长轴和短轴的长度。

因此,代入题目中的离心率2,可以得到2=\frac{\sqrt{a^2+b^2}}{a}。

解方程可得a=\sqrt{5},再根据焦点所在的位置可知,椭圆型方程的焦点是位于横轴上的。

双曲线知识点及例题

双曲线知识点及例题

双曲线知识点及例题一、双曲线的定义平面内到两个定点\(F_1\)、\(F_2\)的距离之差的绝对值等于常数\(2a\)(\(0 <2a <|F_1F_2|\))的点的轨迹叫做双曲线。

这两个定点\(F_1\)、\(F_2\)叫做双曲线的焦点,两焦点之间的距离\(|F_1F_2|\)叫做焦距,记为\(2c\)。

二、双曲线的标准方程焦点在\(x\)轴上的双曲线标准方程为:\(\frac{x^2}{a^2}\frac{y^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2 = a^2 + b^2\)。

焦点在\(y\)轴上的双曲线标准方程为:\(\frac{y^2}{a^2}\frac{x^2}{b^2} = 1\)(\(a > 0\),\(b > 0\)),其中\(c^2 = a^2 + b^2\)。

三、双曲线的几何性质1、范围焦点在\(x\)轴上的双曲线,\(x\)的取值范围是\(x \leq a\)或\(x \geq a\);\(y\)的取值范围是\(R\)。

焦点在\(y\)轴上的双曲线,\(y\)的取值范围是\(y \leq a\)或\(y \geq a\);\(x\)的取值范围是\(R\)。

2、对称性双曲线关于\(x\)轴、\(y\)轴和原点都对称。

3、顶点焦点在\(x\)轴上的双曲线的顶点坐标为\((\pm a, 0)\);焦点在\(y\)轴上的双曲线的顶点坐标为\((0, \pm a)\)。

4、渐近线焦点在\(x\)轴上的双曲线的渐近线方程为\(y =\pm \frac{b}{a}x\);焦点在\(y\)轴上的双曲线的渐近线方程为\(y =\pm \frac{a}{b}x\)。

5、离心率双曲线的离心率\(e =\frac{c}{a}\)(\(e > 1\)),它反映了双曲线的开口大小。

四、例题解析例 1:已知双曲线的方程为\(\frac{x^2}{9} \frac{y^2}{16} =1\),求其顶点坐标、焦点坐标、渐近线方程和离心率。

双曲线知识点总结及练习题

双曲线知识点总结及练习题

双曲线知识点总结及练习题Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】一、双曲线的定义1、第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))。

这两个定点叫双曲线的焦点。

要注意两点:(1)距离之差的绝对值。

(2)2a <|F 1F 2|。

当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;用第二定义证明比较简单 或两边之差小于第三边当2a >|F 1F 2|时,动点轨迹不存在。

2、第二定义:动点到一定点F 的距离与它到一条定直线l (准线2ca )的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线。

这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程(222a c b -=,其中|1F 2F |=2c )焦点在x 轴上:12222=-b y a x (a >0,b >0)焦点在y 轴上:12222=-bx a y (a >0,b >0)(1)如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上。

a 不一定大于b 。

判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上(2)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x (3)双曲线方程也可设为:221(0)x y mn m n-=> 三、双曲线的性质四、双曲线的参数方程:sec tan x a y b θθ=⋅⎛ =⋅⎝ 椭圆为cos sin x a y b θθ=⋅⎛=⋅⎝五、 弦长公式[提醒]解决直线与椭圆的位置关系问题时常利用数形结合法、根与系数的关系、整体代入、设而不求的思想方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线考点与题型归纳一、基础知识1.双曲线的定义平面内到两个定点F1,F2的距离的差的绝对值等于常数2a❶(2a<|F1F2|)的点P的轨迹叫做双曲线❷.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.❶当|PF1|-|PF2|=2a(2a<|F1F2|)时,点P的轨迹为靠近F2的双曲线的一支.当|PF1|-|PF2|=-2a(2a<|F1F2|)时,点P的轨迹为靠近F1的双曲线的一支.❷若2a=2c,则轨迹是以F1,F2为端点的两条射线;若2a>2c,则轨迹不存在;若2a =0,则轨迹是线段F1F2的垂直平分线.2.双曲线的标准方程(1)中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2a2-y2b2=1(a>0,b>0).(2)中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2a2-x2b2=1(a>0,b>0).3.双曲线的几何性质二、常用结论(1)过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.(2)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(3)双曲线的焦点到其渐近线的距离为b .(4)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .考点一 双曲线的标准方程[典例] (1)(2018·石家庄摸底)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( )A.7x 216-y 212=1 B.y 23-x 22=1 C .x 2-y 23=1 D.3y 223-x 223=1 (2)(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1 C.x 23-y 29=1 D.x 29-y 23=1 [解析] (1)法一:当双曲线的焦点在x 轴上时,设双曲线的标准方程是x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎨⎧4a 2-9b 2=1,ba =3,解得⎩⎪⎨⎪⎧a =1,b =3,所以该双曲线的标准方程为x 2-y 23=1;当双曲线的焦点在y 轴上时,设双曲线的标准方程是y 2a 2-x 2b2=1(a >0,b >0),由题意得⎩⎨⎧ 9a 2-4b 2=1,a b =3,无解.故该双曲线的标准方程为x 2-y 23=1,选C. 法二:当其中的一条渐近线方程y =3x 中的x =2时,y =23>3,又点(2,3)在第一象限,所以双曲线的焦点在x 轴上,设双曲线的标准方程是x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎨⎧4a 2-9b 2=1,b a =3,解得⎩⎪⎨⎪⎧a =1,b =3,所以该双曲线的标准方程为x 2-y 23=1,故选C.法三:因为双曲线的渐近线方程为y =±3x ,即y3=±x ,所以可设双曲线的方程是x 2-y 23=λ(λ≠0),将点(2,3)代入,得λ=1,所以该双曲线的标准方程为x 2-y 23=1,故选C. (2)法一:如图,不妨设A 在B 的上方,则A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b2a . 又双曲线的一条渐近线为bx -ay =0, 则d 1+d 2=bc -b 2+bc +b 2a 2+b 2=2bcc =2b=6,所以b =3.又由e =ca =2,知a 2+b 2=4a 2,所以a = 3.所以双曲线的方程为x 23-y 29=1.法二:由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线 x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,所以ca =2,所以a 2+b 2a 2=4,所以a 2+9a 2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1,故选C.[答案] (1)C (2)C [题组训练]1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=4b ,且双曲线的焦距为25,则该双曲线的标准方程为( )A.x 24-y 2=1 B.x 23-y 22=1 C .x 2-y 24=1D.x 22-y 23=1 解析:选A由题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a =4b ,c 2=a 2+b 2,2c =25,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,则该双曲线的标准方程为x 24-y 2=1.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为4,离心率为 5,则双曲线的标准方程为( )A.x 24-y 216=1 B .x 2-y 24=1 C.x 22-y 23=1 D .x 2-y 26=1 解析:选A 因为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的实轴长为4,所以a =2,由离心率为5,可得ca =5,c =25,所以b =c 2-a 2=20-4=4,则双曲线的标准方程为x 24-y 216=1.3.经过点P (3,27),Q (-62,7)的双曲线的标准方程为____________. 解析:设双曲线方程为mx 2+ny 2=1(mn <0), 因为所求双曲线经过点P (3,27),Q (-62,7),所以⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125.故所求双曲线方程为y 225-x 275=1.答案:y 225-x 275=1考点二 双曲线定义的应用考法(一) 利用双曲线的定义求双曲线方程[典例] 已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程为( )A.x 22-y 214=1(x ≥ 2) B.x 22-y 214=1(x ≤-2) C.x 22+y 214=1(x ≥ 2) D.x 22+y 214=1(x ≤-2) [解析] 设动圆的半径为r ,由题意可得|MC 1|=r +2,|MC 2|=r -2,所以|MC 1|-|MC 2|=22=2a ,故由双曲线的定义可知动点M 在以C 1(-4,0),C 2(4,0)为焦点,实轴长为2a =22的双曲线的右支上,即a =2,c =4⇒b 2=16-2=14,故动圆圆心M 的轨迹方程为x 22-y 214=1(x ≥ 2). [答案] A[解题技法]利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.考法(二) 焦点三角形问题[典例] 已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )A .2B .4C .6D .8[解析] 由双曲线的方程得a =1,c =2, 由双曲线的定义得||PF 1|-|PF 2||=2. 在△PF 1F 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 即(22)2=|PF 1|2+|PF 2|2-|PF 1|·|PF 2| =(|PF 1|-|PF 2|)2+|PF 1|·|PF 2| =22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. [答案] B [解题技法]在双曲线中,有关焦点三角形的问题常用双曲线定义和解三角形的知识来解决,尤其是涉及|PF 1|,|PF 2|的问题,一般会用到双曲线定义.涉及焦点三角形的面积问题,若顶角θ已知,则用S △PF 1F 2=12|PF 1||PF 2|sin θ,|||PF 1|-|PF 2|=2a 及余弦定理等知识;若顶角θ未知,则用S △PF 1F 2=12·2c ·|y 0|来解决.[题组训练]1.已知点F 1(-3,0)和F 2(3,0),动点P 到F 1,F 2的距离之差为4,则点P 的轨迹方程为( )A.x 24-y 25=1(y >0) B.x 24-y 25=1(x >0) C.y 24-x 25=1(y >0) D.y 24-x 25=1(x >0) 解析:选B 由题设知点P 的轨迹方程是焦点在x 轴上的双曲线的右支,设其方程为x 2a 2-y 2b 2=1(x >0,a >0,b >0),由题设知c =3,a =2,b 2=9-4=5,所以点P 的轨迹方程为x 24-y 25=1(x >0). 2.已知双曲线x 2-y 224=1的两个焦点为F 1,F 2,P 为双曲线右支上一点.若|PF 1|=43|PF 2|,则△F 1PF 2的面积为( )A .48B .24C .12D .6解析:选B 由双曲线的定义可得 |PF 1|-|PF 2|=13|PF 2|=2a =2,解得|PF 2|=6,故|PF 1|=8,又|F 1F 2|=10, 由勾股定理可知三角形PF 1F 2为直角三角形, 因此S △F 1PF 2=12|PF 1|·|PF 2|=24.考点三 双曲线的几何性质考法(一) 求双曲线的离心率(或范围)[典例] (2018·长春二测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则双曲线离心率的取值范围是( )A.⎝⎛⎦⎤53,2B.⎝⎛⎦⎤1,53 C .(1,2]D.⎣⎡⎭⎫53,+∞ [解析] 由双曲线的定义可知|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,所以|PF 2|=2a3,由双曲线上的点到焦点的最短距离为c -a ,可得2a 3≥c -a ,解得c a ≤53, 即e ≤53,又双曲线的离心率e >1,故该双曲线离心率的取值范围为⎝⎛⎦⎤1,53,故选B. [答案] B [解题技法]1.求双曲线的离心率或其范围的方法(1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.2.求离心率的口诀归纳离心率,不用愁,寻找等式消b 求; 几何图形寻迹踪,等式藏在图形中.考法(二) 求双曲线的渐近线方程[典例] (2019·武汉部分学校调研)已知双曲线C :x 2m 2-y 2n 2=1(m >0,n >0)的离心率与椭圆x 225+y 216=1的离心率互为倒数,则双曲线C 的渐近线方程为( ) A .4x ±3y =0 B .3x ±4y =0C .4x ±3y =0或3x ±4y =0D .4x ±5y =0或5x ±4y =0[解析] 由题意知,椭圆中a =5,b =4,∴椭圆的离心率e = 1-b 2a 2=35,∴双曲线的离心率为 1+n 2m 2=53,∴n m =43,∴双曲线的渐近线方程为y =±n m x =±43x ,即4x ±3y =0.故选A.[答案] A[解题技法] 求双曲线的渐近线方程的方法求双曲线x 2a 2-y 2b 2=1(a >0,b >0)或y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程的方法是令右边的常数等于0,即令x 2a 2-y 2b 2=0,得y =±b a x ;或令y 2a 2-x 2b 2=0,得y =±ab x .反之,已知渐近线方程为y =±b a x ,可设双曲线方程为x 2a 2-y 2b2=λ(a >0,b >0,λ≠0).[题组训练]1.(2019·潍坊统一考试)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到渐近线的距离为3,且离心率为2,则该双曲线的实轴的长为( )A .1 B.3 C .2D .23解析:选C 由题意知双曲线的焦点(c,0)到渐近线bx -ay =0的距离为bc a 2+b 2=b =3,即c 2-a 2=3,又e =ca=2,所以a =1,该双曲线的实轴的长为2a =2.2.已知直线l 是双曲线C :x 22-y 24=1的一条渐近线,P 是直线l 上一点,F 1,F 2是双曲线C 的左、右焦点,若PF 1―→·PF 2―→=0,则点P 到x 轴的距离为( )A.233B.2 C .2D.263解析:选C 由题意知,双曲线的左、右焦点分别为F 1(-6,0),F 2(6,0),不妨设直线l 的方程为y =2x ,设P (x 0,2x 0).由PF 1―→·PF 2―→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0,得x 0=±2,故点P 到x 轴的距离为|2x 0|=2,故选C.3.(2019·成都一诊)如图,已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0),长方形ABCD 的顶点A ,B 分别为双曲线E 的左、右焦点,且点C ,D 在双曲线E 上,若|AB |=6,|BC |=52,则双曲线E 的离心率为( )A. 2B.32C.52D.5解析:选B 根据|AB |=6可知c =3,又|BC |=52,所以b 2a =52,b 2=52a ,所以c 2=a 2+52a=9,解得a =2(舍负),所以e =c a =32.4.(2018·郴州二模)已知双曲线y 2m -x 29=1(m >0)的一个焦点在直线x +y =5上,则双曲线的渐近线方程为( )A .y =±34xB .y =±43xC .y =±223xD .y =±324x解析:选B 由双曲线y 2m -x 29=1(m >0)的焦点在y 轴上,且在直线x +y =5上,直线x+y =5与y 轴的交点为(0,5),有c =5,则m +9=25,得m =16, 所以双曲线的方程为y 216-x 29=1,故双曲线的渐近线方程为y =±43x .故选B.[课时跟踪检测]A 级1.(2019·襄阳联考)直线l :4x -5y =20经过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点和虚轴的一个端点,则双曲线C 的离心率为( )A.53 B.35 C.54D.45解析:选A 由题意知直线l 与两坐标轴分别交于点(5,0),(0,-4),从而c =5,b =4,∴a =3,双曲线C 的离心率e =c a =53.2.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且|PF 1|=6,则|PF 2|=( )A .6B .4C .8D .4或8解析:选D 由双曲线的标准方程可得a =1,则||PF 1|-|PF 2||=2a =2,即|6-|PF 2||=2,解得|PF 2|=4或8.3.(2018·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C的渐近线的距离为( )A. 2 B .2 C.322D .22解析:选D ∵e =ca=1+b 2a 2=2,∴ba=1. ∴双曲线的渐近线方程为x ±y =0. ∴点(4,0)到C 的渐近线的距离d =42=2 2. 4.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等解析:选D 由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等.5.(2018·陕西部分学校摸底)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1,过C 1的左顶点引C 1的一条渐近线的平行直线,则该直线与另一条渐近线及x 轴所围成的三角形的面积为( )A.24 B.22 C.28D.216解析:选C 设双曲线C 1的左顶点为A ,则A ⎝⎛⎭⎫-22,0,双曲线的渐近线方程为y =±2x ,不妨设题中过点A 的直线与渐近线y =2x 平行,则该直线的方程为y =2⎝⎛⎭⎫x +22,即y =2x +1.联立⎩⎪⎨⎪⎧y =-2x ,y =2x +1,解得⎩⎨⎧x =-24,y =12.所以该直线与另一条渐近线及x 轴所围成的三角形的面积S =12·|OA |·12=12×22×12=28,故选C.6.(2019·辽宁五校协作体模考)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b 2=1(a>0,b >0)的离心率为5,从双曲线C 的右焦点F 引渐近线的垂线,垂足为A ,若△AFO 的面积为1,则双曲线C 的方程为( )A.x 22-y 28=1 B.x 24-y 2=1 C.x 24-y 216=1 D .x 2-y 24=1 解析:选D 因为双曲线C 的右焦点F 到渐近线的距离|F A |=b ,|OA |=a ,所以ab =2,又双曲线C 的离心率为5,所以 1+b 2a2=5,即b 2=4a 2,解得a 2=1,b 2=4,所以双曲线C 的方程为x 2-y 24=1,故选D. 7.(2018·北京高考)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________.解析:由e =ca =a 2+b 2a 2,得a 2+4a 2=54, ∴a 2=16. ∵a >0,∴a =4. 答案:4 8.过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=________.解析:双曲线的右焦点为F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入x 2-y 23=0,得y 2=12,y =±23,故|AB |=4 3. 答案:439.(2018·海淀期末)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,由已知可得两条渐近线互相垂直,由双曲线的对称性可得ba =1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2.答案:210.(2018·南昌摸底调研)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过点F作圆(x -a )2+y 2=c 216的切线,若该切线恰好与C 的一条渐近线垂直,则双曲线C 的离心率为________.解析:不妨取与切线垂直的渐近线方程为y =b a x ,由题意可知该切线方程为y =-ab (x -c ),即ax +by -ac =0.圆(x -a )2+y 2=c 216的圆心为(a,0),半径为c4,则圆心到切线的距离d =|a 2-ac |a 2+b2=ac -a 2c =c 4,又e =ca ,则e 2-4e +4=0,解得e =2,所以双曲线C 的离心率e =2.答案:211.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4, -10),点M (3,m )在双曲线上.(1)求双曲线的方程; (2)求证:MF 1―→·MF 2―→=0; (3)求△F 1MF 2的面积. 解:(1)∵e =2,∴双曲线的实轴、虚轴相等. 则可设双曲线方程为x 2-y 2=λ. ∵双曲线过点(4,-10), ∴16-10=λ,即λ=6. ∴双曲线方程为x 26-y 26=1.(2)证明:不妨设F 1,F 2分别为双曲线的左、右焦点, 则MF 1―→=(-23-3,-m ),MF 2―→=(23-3,-m ). ∴MF 1―→·MF 2―→=(3+23)×(3-23)+m 2=-3+m 2, ∵M 点在双曲线上, ∴9-m 2=6,即m 2-3=0, ∴MF 1―→·MF 2―→=0.(3)△F 1MF 2的底边长|F 1F 2|=4 3.由(2)知m =± 3.∴△F 1MF 2的高h =|m |=3, ∴S △F 1MF 2=12×43×3=6.12.中心在原点,焦点在x 轴上的椭圆与双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求椭圆和双曲线的方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由题知c =13,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),双曲线方程为x 2m 2-y 2n 2=1(m >0,n >0),则⎩⎪⎨⎪⎧a -m =4,7·13a=3·13m ,解得a =7,m =3.则b =6,n =2.故椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为椭圆与双曲线的左、右焦点,P 是第一象限的交点, 则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6, 所以|PF 1|=10,|PF 2|=4. 又|F 1F 2|=213,所以cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-(213)22×10×4=45.B 级1.已知圆(x -1)2+y 2=34的一条切线y =kx 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)有两个交点,则双曲线C 的离心率的取值范围是( )A .(1,3)B .(1,2)C .(3,+∞)D .(2,+∞)解析:选D 由题意,知圆心(1,0)到直线kx -y =0的距离d =|k |k 2+1=32,∴k =±3,由题意知b a >3,∴1+b 2a 2>4,即a 2+b 2a 2=c 2a2>4,∴e >2.2.(2019·吉林百校联盟联考)如图,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l 过点F 1且与双曲线C 的一条渐近线垂直,与两条渐近线分别交于M ,N 两点,若|NF 1|=2|MF 1|,则双曲线C 的渐近线方程为( )A .y =±33xB .y =±3xC .y =±22x D .y =±2x解析:选B ∵|NF 1|=2|MF 1|,∴M 为NF 1的中点, 又OM ⊥F 1N ,∴∠F 1OM =∠NOM , 又∠F 1OM =∠F 2ON ,∴∠F 2ON =60°,∴双曲线C 的渐近线的斜率k =±tan 60°=±3, 即双曲线C 的渐近线方程为y =±3x .故选B.3.设A ,B 分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM ―→+ON ―→=t OD ―→,求t 的值及点D 的坐标.解:(1)由题意知a =23,∵一条渐近线为y =ba x ,∴bx -ay =0.由焦点到渐近线的距离为3,得|bc |b 2+a2= 3. 又∵c 2=a 2+b 2,∴b 2=3,∴双曲线的方程为x 212-y 23=1. (2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得x 2-163x +84=0, 则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12. ∴⎩⎨⎧x 0y 0=433,x 2012-y203=1.解得⎩⎪⎨⎪⎧x 0=43,y 0=3.∴t =4,点D 的坐标为(43,3).。

相关文档
最新文档