双曲线-题型归纳-含答案
双曲线常见题型归纳

数学
HONG DIANJ IE XI
⊙ 湖 北大 学附 属中 学 章雄 钢 ⊙ 武 汉市 东湖 中学 卢 昕
题型一 运用双曲线的定义 例 1 某中心接到其 正东、正西、正北方向三个观 测点 的报告 :正 西、正北 两个观测 点同时 听到了 一声 巨 响,正 东观 测点 听到 的 时间 比其 它两 个观 测点 晚 4s. 已知 各观测点 到该中 心的距离 都是 1 02 0m. 试确 定 该巨 响发 生的位 置(. 假 定当 时声音 传播 的速 度为 34 0m/s,相关各点均在同一平面上.) 解析 如图,以接报中心为原点 O ,正东、正北方 向为 x 轴、y 轴 正向,建立 直角坐标 系.设 A , B, C 分 别是 西、东 、北观测 点,则 A ( - 1 02 0, 0 ) ,B(1 02 0, 0) , C(0 , 1 02 0).
线方程.
题型五 直线与双曲线的位置关系
例5
x2 (1)过点 P ( 7, 5 ) 与 双曲线 -
2
y =1有
7 25
且 只 有 一 个 公 共 点 的 直 线 有 几 条 ,求 出 它 们 的 方 程 ;
(2)直 线
y = kx + 1 与 双曲 线 3x 2 -
2
y
=
1
相交 于
A , B 两点,当 a 为 何值时 ,A, B 在 双曲 线的 同一 支
近 代 物 理 学 之 父 、近 代 科 学 之 父 、实 验 物 理 学 之 父 —— 伽 利 略·伽 利 雷
Z 数学
重点解析
HO NGDI ANJ I EXI
右焦 点 分 别为 F 1, F 2 ,点 P 在 双 曲线 的 右 支上 ,且
双曲线习题(含答案)

课后训练1.已知双曲线C :x 2-y 2=1,F 是其右焦点,过F 的直线l 只与双曲线的右支有惟一的交点,则直线l 的斜率等于( ).A .1B .-1C .±1D .±2 2.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( ).A .B .C 2D 23.双曲线22163xy-=的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( ).A .B .2C .3D .64.设F 1、F 2分别是双曲线2219yx -=的左、右焦点.若P 在双曲线上,且120PF PF ⋅=,则12PF PF +等于( ).A .B .C . D5.双曲线x 2-y 2=1左支上一点P(a ,b )到直线y =x a +b =________.6.过点A(6,1)作直线l 与双曲线221164xy-=相交于两点B 、C ,且A 为线段BC 的中点.则直线l 的方程为________.7.如图,已知F 1、F 2为双曲线22221x y ab-= (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P 且∠PF 1F 2=30°,求双曲线的渐近线方程.8.已知双曲线2213xymm-=的一个焦点为(2,0).(1)求双曲线的实轴长和虚轴长;(2)若已知M(4,0),点N(x ,y )是双曲线上的任意一点,求|MN|的最小值.设直线l :y =ax +1与双曲线C :3x 2-y 2=1相交于A ,B 两点,O 为坐标原点. (1)a 为何值时,以AB 为直径的圆过原点?(2)是否存在实数a ,使O A O B =且OA OB + =λ(2,1)?若存在,求a 的值,若不存在,说明理由.参考答案1. 答案:C解析:由题意知l 与渐近线平行,∴k l =b a±=±1.2. 答案:D解析:∵双曲线一条渐近线过点(4,-2),∴12b a =⇒2214b a=⇒22214c a a-=⇒2254c a=⇒2e =.3. 答案:A解析:双曲线的渐近线方程为2y x =±,圆心坐标为(3,0),由点到直线的距离公式和渐近线与圆相切可得,圆心到渐近线的距离等于r ,即r.4. 答案:C解析:由题意,可知双曲线两焦点的坐标分别为F 1(0)、F 20).设点P(x ,y ),则1P F =(x ,-y ),2PF =x ,-y ),∵120PF PF ⋅=,∴x 2+y 2-10=0,即x 2+y 2=10.∴||21PF PF +.5. 答案:12-解析:由题意知:双曲线的渐近线方程为y =±x ,又P(a ,b )在左支上,∴a <b .又P(a ,b )到直线y =x,=⇒|a -b |=2即a -b =-2.又P(a ,b )在双曲线上,∴a 2-b 2=1. ∴(a +b )(a -b )=1,∴a +b =12-.6. 答案:3x -2y -16=0解析:设B(x 1,y 1),C(x 2,y 2),则有2211222211641164x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩⇒12121212()()()()164x x x x y y y y +--+-=0又A 为BC 的中点,∴x 1+x 2=12,y 1+y 2=2 ∴123()4x x -=122y y -⇒k BC =121232y y x x -=-∴直线l 的方程为:y -1=32(x -6),即3x -2y -16=0.7. 解:设F 2(c ,0)(c >0),P(c ,y 0),则220221y c ab-=,解得20by a=±.∴|PF 2|=2ba.在Rt △PF 2F 1中,∠PF 1F 2=30°,则|F 1F 2||PF 2|,即2c2ba,将c2=a 2+b 2代入,解得b 2=2a 2,故b a =∴双曲线的渐近线方程为y =. 8. 解:(1)由题意可知,m +3m =4,∴m =1. ∴双曲线方程为2213yx -=.∴双曲线实轴长为2,虚轴长为(2)由2213yx -=,得y 2=3x 2-3,∴|MN|=.又∵x ≤-1或x ≥1, ∴当x =1时,|MN|取得最小值3.解:(1)由22131y ax x y =+⎧⎨-=⎩, 消去y 整理得(3-a 2)x 2-2ax -2=0. 依题意得3-a 2≠0,Δ=4a 2+8(3-a 2)>0, ∴a 2<6且a 2≠3,设A(x 1,y 1),B(x 2,y 2),由根与系数的关系 得x 1+x 2=223a a-,x 1x 2=223a -,又以AB 为直径的圆过原点, 即x 1·x 2+y 1·y 2=0, (a 2+1)x 1·x 2+a (x 1+x 2)+1=0, ∴a =±1.(2)假设存在实数a 满足条件. ∵1212y y a x x -=-,OA OB +=λ(2,1),∴(x 1+x 2,y 1+y 2)=λ(2,1),121212y y x x +=+.又O A O B = ,故22221122x y x y +=+,即(x 1+x 2)(x 1-x 2)+(y 1+y 2)(y 1-y 2)=0, 所以12121212y y x x x x y y -+=--+,∴a =-2.故存在实数a =-2满足题意.。
秒杀题型 双曲线的渐近线(双曲线)(详细解析版)

秒杀题型一:由双曲线的方程求渐近线:
秒杀思路: 已知双曲线方程求渐近线方程: ;
若焦点在x轴上,渐近线为 ;
若焦点在y轴上,渐近线为 。
1.(高考题)双曲线 的渐近线方程是( )
A. B. C. D.
【解析】:选C。
2.(2013年新课标全国卷 4)已知双曲线 : ( )的离心率为 ,则 的渐近线方程为( )
12.(2018年新课标全国卷I11)已知双曲线 , 为坐标原点, 为 的右焦点,过 的直线
与 的两条渐近线的交点分别为 .若 为直角三角形,则 = ( )
A. B.3C. D.4
【解析】:渐近线方程为 ,∵ 为直角三角形,假设 , ,
∴ ,∴ ,选B。
13.(2018年新课标全国卷 11)设 是双曲线 的左,右焦点, 是坐标原
A. B. C. D.
【解析】:由上题,选C。
7.(2009年新课标全国卷4)双曲线 - =1的焦点到渐近线的距离为( )
A. B.2 C. D.1
【解析】:由秒杀公式得 ,选A。
8.(2014年新课标全国卷I4)已知 是双曲线 : 的一个焦点,则点 到 的一条渐近线的距离为( )
A. B.3 C. D.
【解析】:由秒杀公式得 ,选A。
9.(高考题)已知双曲线 的右焦点与抛物线 的焦点重合,则该双曲线的焦点到其渐近线
的距离等于( )
A. B. C.3 D.5
【解析】:抛物线与双曲线的焦点为 ,则b= ,所以双曲线的焦点到其渐近线的距离等于 ,选
A。
10.(2018年江苏卷)在平面直角坐标系 中,若双曲线 的右焦点 到一条渐近线的距离为 ,则其离心率的值是.
秒杀思路: 。
(完整)双曲线题型归纳,推荐文档

x2 y2 9 已知 F1、F2 分别为双曲线 C: - =1 的左、右焦点,点 A∈C,点 M 的坐标为(2,0),
9 27
AM 为∠F1AF2∠的平分线.则|AF2| = .
10 已知 F1 、 F2 为双曲线 C : x2 y2 2 的左、右焦点,点 P 在 C 上,| PF1 | 2 | PF2 | ,
A.3 B.2 C. 3 D. 2
6 设圆锥曲线 I’的两个焦点分别为 F1,F2,若曲线 I’上存在点 P 满足 PF1 :
F1F2 : PF2 = 4:3:2,则曲线 I’的离心率等于
建议A. 收12或 32藏下载本文,B. 23或以2 便随时学习!
C. 1 或2 2
D. 2 或 3 32
7. 设双曲线的一个焦点为 F,虚轴的一个端点为 B,如果直线 FB 与该双曲线的一条渐
y2 b2
1
(a>0,b>0)的两个焦点.若在 C 上存在一点 P.使
PF1⊥PF2,且∠PF1F2=30°,则 C 的离心率为___________. 5 如图,中心均为原点 O 的双曲线与椭圆有公共焦点,M,N 是双曲线的两顶点。若 M,O,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是
( )
4
过双曲线
C:x a
2 2
y2 a2
1(a) 0,b 0
的右焦点作一条与其渐近线平行的直线,交 C 于
点 P .若点 P 的横坐标为 2a ,则 C 的离心率为
.
66 已知双曲线
x2 a2
y2 b2
1(a
0,b
0) 的一条渐近线平行于直线 l :
y
2x 10, 双曲线的
打印双曲线基础训练题(含答案)

双曲线基础训练题(一)1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D )A .椭圆B .线段C .双曲线D .两条射线2.方程11122=-++k y k x 表示双曲线,则k 的取值范围是(D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-<k3. 双曲线14122222=--+m y m x 的焦距是( C ) A .4 B .22 C .8 D .与m 有关4.已知m,n 为两个不相等的非零实数,则方程m x -y+n=0与n x 2+my 2=mn 所表示的 曲线可能是 ( C )5.焦点为()6,0,且与双曲线1222=-y x 有相同的渐近线的双曲线方程是( B )A .1241222=-y xB .1241222=-x yC .1122422=-x yD .1122422=-y x6.若a k <<0,双曲线12222=+--k b y k a x 与双曲线12222=-by a x 有 ( D )A .相同的虚轴B .相同的实轴C .相同的渐近线D . 相同的焦点7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( A )A .28B .22C .14D .128.双曲线方程为152||22=-+-ky k x ,那么k 的取值范围是 ( D )A .k >5B .2<k <5C .-2<k <2D .-2<k <2或k >59.双曲线的渐近线方程是y=±2x ,那么双曲线方程是( D )A .x 2-4y 2=1 B .x 2-4y 2=1 C .4x 2-y 2=-1 D .4x 2-y 2=110.设P 是双曲线19222=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF(C )A .1或5B . 6C . 7D . 911.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B )A .43B .53C .2D .7312.设c 、e 分别是双曲线的半焦距和离心率,则双曲线12222=-by a x (a>0, b>0)的一个顶点到它的一条渐近线的距离是 ( D )A .caB .c bC .ea D .eb 13.双曲线)1(122>=-n y nx 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )A .21 B .1 C .2 D .414.二次曲线1422=+my x ,]1,2[--∈m 时,该曲线的离心率e 的取值范围是( C )A .]23,22[B .]25,23[C .]26,25[D .]26,23[15.直线1+=x y 与双曲线13222=-y x 相交于B A ,两点,则AB =_____6416.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F17.双曲线122=-by ax 的离心率为5,则a :b= 4或4118.求一条渐近线方程是043=+y x ,一个焦点是()0,4的双曲线标准方程,并求此双曲线的离心率.(12分)[解析]:设双曲线方程为:λ=-22169y x ,∵双曲线有一个焦点为(4,0),0>∴λ双曲线方程化为:2548161691169222=⇒=+⇒=-λλλλλy x ,∴双曲线方程为:1251442525622=-y x ∴455164==e .19.(本题12分)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; [解析]∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x双曲线基础练习题(二)一. 选择题1.已知双曲线的离心率为2,焦点是(4,0),(4,0)-,则双曲线的方程是A. 221412x y -=B. 221124x y -= C. 221106x y -= D. 221610x y -=2.设椭圆1C 的离心率为513,焦点在x 上,长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点距离差的绝对值等于8,则曲线2C 的标准方程是A. 2222143x y -=B. 22221135x y -=C. 2222134x y -= D. 222211312x y -=3. 已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率等于A .53B .43C .54D .324. 已知双曲线22112x y n n+=-n = A.2- B .4 C.6 D. 8-5.设1F 、2F 是双曲线22221x y a b-=的两个焦点,若1F 、2F 、(0,2)P b 是正三角形的三个顶点,那么其离心率是A.32 B. 52C. 2D. 3 6.已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线距离之比等于A C. 2 D.4 7.如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 的距离是C. 8.设12F F ,是双曲线22221x y a b-=的左、右焦点,若其右支上存在一点P 使得1290F PF ∠=,且12PF =,则e =1 D 1 9. 若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5C D 10. 设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为A .221+ B .231+C . 21+D .31+11. 双曲线22221x y a b-=的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为 ABC .D .312. 设1,a >则双曲线22221(1)x y a a -=+的离心率e 的取值范围是A .2)B .C .(25),D .(213.已知双曲线()222102x y b b-=>的左、右焦点分别为1F 、2F ,它的一条渐近线方程为y x =,点0)P y 在该双曲线上,则12PF PF =A .12-B .2-C .0D .414.双曲线22221x y a b-=的两个焦点为1F 、2F ,若P 为其上一点,且122PF PF =,则离心率e 的取值范围是A .(1),3B .(1,3]C .(3)∞,+D .)+[3,∞15.设P 为双曲线22112y x -=上一点,1F 、2F 是双曲线的两个焦点,若1PF :2PF =3:2,则12PF F ∆的面积为A .B .12C .D .2416.设1F 、2F 是双曲线2219y x -=的左、右焦点,P 为该双曲线上一点,且120PF PF =,则12PF PF +=AB .CD .二.填空题17.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程是y x =,若顶点到渐近线的距离为1,则双曲线方程为18.以1(60)F -,,2(60)F ,为焦点,离心率2e =的双曲线的方程是19.中心在原点,一个焦点是1(30)F -,20y ±=的双曲线的方程为20.过点(20)N ,且与圆2240x y x ++=外切的动圆圆心的轨迹方程是21.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 22. 已知双曲线22291(0)ym x m -=>的一个顶点到它的一条渐近线的距离为15,则m =23.已知双曲线2221(2x y a a -=>的两条渐近的夹角为3π,则双曲线的离心率为24.已知双曲线22221x y a b -=的右焦点为F ,右准线与一条渐近线交于点A ,OAF ∆的面积为22a ,(O 为坐标原点),则该双曲线的两条渐近线的夹角为25.过双曲线22143x y -=左焦点1F 的直线交双曲线的左支于M N ,两点,2F 为其右焦点,则22MF NF MN+-=26. 若双曲线22221x y a b-=的右支上存在一点,它到右焦点及左准线的距离相等,则e 取值范围是27..P是曲线22221x y a b-=的右支上一点,F为其右焦点,M 是右准线:2x =与x 轴的交点,若60,PMF ∠=45PFM ∠=,则双曲线方程是28.过双曲线221916x y -=的右焦点F 且平行双曲线的一条渐近线的直线与双曲线交于点B, A 为右顶点,则FAB ∆的面积等于 三.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x=,离心率e =(2)中心在原点,离心率2e =30. 已知双曲线22221(00)x y C a b a b -=>>:,的两个焦点为1(20)F -,,2(20)F ,,点()P 在双曲线C 上.⑴求双曲线C 的方程; ⑵记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若O E F =△S l 方程.双曲线练习题答案(二)一.选择题1.A 2. A3.A4. B 5. C6. C7. A8D9. D10. B11. B12. B13.C14.B15.B16B 二.填空题17.223144x y-=18.221927x y-=19.22145x y-=20.()22113yx x-=≥21. 322.423.324.2π25. 826.(11⎤⎦27.2211260x y-=28.3215二.解答题29.分别求满足下列条件的双曲线方程(1)中心在原点,一条准线方程是5x=,离心率e=2214yx-=(2)中心在原点,离心率e=2214xy-=30. 已知双曲线22221(00)x yC a ba b-=>>:,的两个焦点为1(20)F-,,2(20)F,,点()P在双曲线C上.⑴求双曲线C的方程;⑵记O为坐标原点,过点(02)Q,的直线l与双曲线C相交于不同的两点E F,,若OEF=△S l方程.⑴解略:双曲线方程为22122x y-=.⑵解:直线:l2y kx=+,代入双曲线C的方程并整理,得22(1)460k x kx---=. ①直线l与双曲线C相交于不同的两点E F,,222110(4)46(1)0kkkk k≠±⎧⎧-≠⎪⎪∴⇔⎨⎨<<∆=-+⨯->⎪⎪⎩⎩,,,,(1)(11)(13)k∴∈--,,. ②设1122()()E x yF x y,,,,则由①式得12241kx xk+=-,12261x xk=--,EF ∴21k -而原点O 到直线l 的距离d =1122OEFS d EF ∴=⋅==△.若OEFS =△,即422201k k k=⇔--=-,解得k =此满足②故满足条件的直线l 有两条,其方程分别为2y =+和2y =+双曲线基础练习题(三)一、选择题(每题5分)1.已知a=3,c=5,并且焦点在x 轴上,则双曲线的标准程是( )A .116922=+y x B. 116922=-y x C. 116922=+-y x 1916.22=-y x D 2.已知,5,4==c b 并且焦点在y 轴上,则双曲线的标准方程是( )A .191622=-y x B. 191622=+-y x C.116922=+y x D.116922=-y x 3..双曲线191622=-y x 上P 点到左焦点的距离是6,则P 到右焦点的距离是( ) A. 12 B. 14 C. 16 D. 184..双曲线191622=-y x 的焦点坐标是 ( ) A. (5,0)、(-5,0)B. (0,5)、(0,-5) C. (0,5)、(5,0) D.(0,-5)、(-5,0) 5、方程6)5()5(2222=++-+-y x y x 化简得:A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 6.已知实轴长是6,焦距是10的双曲线的标准方程是( )A ..116922=-y x 和116922=+-y x B. 116922=-y x 和191622=+-y x C.191622=-y x 和191622=+-y x D. 1162522=-y x 和1251622=+-y x 7.过点A (1,0)和B ()1,2的双曲线标准方程( )A .1222=-y x B .122=+-y x C .122=-y x D. 1222=+-y x8.P 为双曲线191622=-y x 上一点,A 、B 为双曲线的左右焦点,且AP 垂直PB ,则三角形PAB 的面积为( ) A . 9 B . 18 C . 24 D . 369.双曲线191622=-y x 的顶点坐标是 ( ) A .(4,0)、(-4,0) B .(0,-4)、(0,4)C .(0,3)、(0,-3) D .(3,0)、(-3,0)10.已知双曲线21==e a ,且焦点在x 轴上,则双曲线的标准方程是( )A .1222=-y x B .122=-y x C .122=+-y x D. 1222=+-y x11.双曲线191622=-y x 的的渐近线方程是( ) A . 034=±y x B .043=±y x C .0169=±y x D .0916=±y x12.已知双曲线的渐近线为043=±y x ,且焦距为10,则双曲线标准方程是( )A .116922=-y x B. 191622=+-y x C.116922=+y x D. 191622=-y x 二、填空题(每题5分共20分)13.已知双曲线虚轴长10,焦距是16,则双曲线的标准方程是________________. 14.已知双曲线焦距是12,离心率等于2,则双曲线的标准方程是___________________.15.已知16522=++-t y t x 表示焦点在y 轴的双曲线的标准方程,t 的取值范围是___________.16.椭圆C 以双曲线122=-y x 焦点为顶点,且以双曲线的顶点作为焦点,则椭圆的标准方程是___________________三、解答题17.(本小题(10分)已知双曲线C :191622=+-y x ,写出双曲线的实轴顶点坐标,虚轴顶点坐标,焦点坐标,准线方程,渐近线方程。
(完整版)双曲线练习题(含标准答案)

双曲线及其标准方程习题一、 单选题(每道小题 4分 共 56分 )1. 命题甲:动点P 到两定点A 、B 距离之差│|PA|-|PB|│=2a(a >0);命题乙; P 点轨迹是双曲线,则命题甲是命题乙的 [ ] A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件2.若双曲线的一个焦点是,,则等于 . . . .2kx ky =1(04)k [ ]A B C D 22---33258332583.点到点,与它关于原点的对称点的距离差的绝对值等于,则点的轨迹方程是 . .. .P (60)10P [ ]A y 11=1B y 25=1C y 6=1D y 25=12222-----x x x x 2222256125114.k 5+y 6k=1[ ]A B C D 2<是方程表示双曲线的 .既非充分又非必要条件 .充要条件.必要而非充分条件 .充分而非必要条件x k 25--5. 如果方程x 2sin α-y 2cos α=1表示焦点在y 轴上的双曲线,那么角α的终边在 [ ] A .第四象限 B .第三象限 C .第二象限 D .第一象限 6.下列曲线中的一个焦点在直线上的是 . .. .4x 5y +25=0[ ]A y 16=1B +y 16=1C x 16=1D +x 16=12222---x x y y 22229259257. 若a ·b <0,则ax 2-ay 2=b 所表示的曲线是 [ ] A .双曲线且焦点在x 轴上 B .双曲线且焦点在y 轴上 C .双曲线且焦点可能在x 轴上,也可能在y 轴上 D .椭圆 8.以椭圆的焦点为焦点,且过,点的双曲线方程为. .. .x x y y y 2222296109251150+y 25=1P(35)[ ]A y 10=1B x 6=1C x 3=1D x 2=122222----9.到椭圆的两焦点距离之差的绝对值等于椭圆短轴的点的轨迹方程是 . .. .x x x x x 2222225251697+y 9=1[ ]A y 9=1B y 9=1C y 7=1D y 9=122222----10.直线与坐标轴交两点,以坐标轴为对称轴,以其中一点为焦点且另一点为虚轴端点的双曲线的方程是 . .. .或2x 5y +20=0[ ]A y 16=1B y 84=1C y 84=1D y 84=1y 84=122222------x x x x x 2222284161001610011.以坐标轴为对称轴,过,点且与双曲线有相等焦距的双曲线方程是 .或 .或.或 .或A(34)y 20=1[ ]A y 20=1x 20=1B y 15=1x 15=1C y 20=1x 15=1D y 5=1x 10=1222222222x x y x y x y x y 22222222255510105102015---------12.与双曲线共焦点且过点,的双曲线方程是 . .. .x x x x x 2222215520916------y 10=1(34)[ ]A y 20=1B y 5=1C y 16=1D y 9=12222213. 已知ab <0,方程y=-2x +b 和bx 2+ay 2=ab 表示的曲线只可能是图中的 [ ]14.已知△一边的两个端点是、,另两边斜率的积是,那么顶点的轨迹方程是 . .. .ABC A(7,0)B(70)C [ ]A x +y =49B +x 49=1C =1D 5y 147=12222---,x 355147514749492222y y x二、 填空题(每道小题 4分 共 8分 )1.已知双曲线的焦距是,则的值等于 .x k 21+-y 5=18k 22.设双曲线,与恰是直线在轴与轴上的截距,那么双曲线的焦距等于 .x a 22--y b=1(a >0,b >0)a b 3x +5y 15=0x y 22双曲线的标准方程及其简单的几何性质1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( ) A .双曲线 B .一条直线 C .一条线段 D .两条射线 2.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-13.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( ) A .双曲线的一支 B .圆 C .抛物线 D .双曲线4.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是( )A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1D.y 23-x 24=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2, |PF 1|·|PF 2|=2,则该双曲线的方程是( ) A.x 22-y 23=1 B.x 23-y 22=1 C.x 24-y 2=1D .x 2-y 24=1 7.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( ) A.x 29-y 27=1 B.x 29-y 27=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27=1(x >0) 8.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2的周长是( )A .16B .18C .21D .269.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程是( )A.x 212-y 24=1B.x 24-y 212=1 C .-x 212+y 24=1 D .-x 24+y 212=1 10.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1 C.y 224-x 212=1 D.x 224-y 212=1 11.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线12.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54xB .y =±45xC .y =±43xD .y =±34x13.双曲线x 2b 2-y 2a 2=1的两条渐近线互相垂直,那么该双曲线的离心率为( )A .2B. 3C. 2D.3214.双曲线x 29-y 216=1的一个焦点到一条渐近线的距离等于( )A. 3 B .3 C .4 D .2二、填空题15.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________. 16.过双曲线x 23-y 24=1的焦点且与x 轴垂直的弦的长度为________.17.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1的焦点相同,那么a =________.18.双曲线x 24+y 2b =1的离心率e ∈(1,2),则b 的取值范围是________.19.椭圆x 24+y 2a 2=1与双曲线x 2a2-y 2=1焦点相同,则a =________.20.双曲线以椭圆x 29+y 225=1的焦点为焦点,它的离心率是椭圆离心率的2倍,求该双曲线的方程为________.双曲线及其标准方程习题答案一、单选题1. B2. C3. A4. D5. B6. C7. B8. B9. C 10. A 11. C 12. A 13. B 14. D 二、填空题1. 10 2.234双曲线的标准方程及其简单的几何性质(答案)1、[答案] D2、[答案] A [解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.3、[答案] A [解析] 设动圆半径为r ,圆心为O , x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.4、[答案] B [解析] 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2-x 23=1. 5、[答案] C [解析] ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0. 6、[答案] C [解析] ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, ∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,∴4a 2=4c 2-4=16,∴a 2=4,b 2=1. 7、[答案] D [解析] 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点, 实轴长为6的双曲线的右支,其方程为:x 29-y 27=1(x >0)8、[答案] D [解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,∴|AF 2|+|BF 2|=16+5=21, ∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.9、[答案] C [解析] ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45,∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1.10、[答案] B [解析] 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0),又因为双曲线的焦点在y 轴上, ∴方程可写为y 2-λ-x 2-2λ=1.又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12. ∴双曲线方程为y 212-x 224=1.11、[答案] C [解析] ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.12、[答案] D [解析] ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169,∴b a =43,∴a b =34.又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a b x ,∴所求双曲线的渐近线方程为y =±34x .13、[答案] C [解析] 双曲线的两条渐近线互相垂直,则渐近线方程为:y =±x ,∴b a =1,∴b 2a 2=c 2-a 2a 2=1,∴c 2=2a 2,e =ca= 2. 14、[答案] C[解析] ∵焦点坐标为(±5,0),渐近线方程为y =±43x ,∴一个焦点(5,0)到渐近线y =43x 的距离为4.15、[答案] x 273-y 275=1 [解析] 设双曲线方程为:x 2a 2-y 2b 2=1(a >0,b >0)又点M (3,2)、N (-2,-1)在双曲线上,∴⎩⎨⎧ 9a 2-4b 2=14a 2-1b 2=1,∴⎩⎨⎧a 2=73b 2=75.16、[答案]833[解析] ∵a 2=3,b 2=4,∴c 2=7,∴c =7, 该弦所在直线方程为x =7,由⎩⎪⎨⎪⎧x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833.17、[答案] 1 [解析] 由题意得a >0,且4-a 2=a +2,∴a =1.18、[答案] -12<b <0 [解析] ∵b <0,∴离心率e =4-b2∈(1,2),∴-12<b <0. 19、[答案]62 [解析] 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 焦点为(0,±4),离心率e =c a =45,∴双曲线的离心率e 1=2e =85,∴c 1a 1=4a 1=85,∴a 1=52,∴b 21=c 21-a 21=16-254=394,∴双曲线的方程为y 2254-x 2394=1.20、[答案]y2254-x2394=1 [解析]椭圆x29+y225=1中,a=5,b=3,c2=16,。
双曲线解答题练习(含答案).doc

双曲线解答题练习1.如图,在以点。
为圆心,|AB|二4为直径的半圆ADB中,0D丄AB , P是半圆弧上一点,ZPOB = 30° ,曲线C是满足\\MA\-\MB\\为定值的动点M的轨迹,且曲线C过点P.(I )建立适当的平面直角坐标系,求曲线C的方程;(II)设过点D的直线I与曲线C相交于不同的两点E、F・若AOEF的血积不小于,求直线/斜率的取值范围.• • •2.双曲线的中心为原点0,焦点在兀轴上,两条渐近线分别为/卩12,经过右焦点F垂直于£的直线分别交厶于人B两点.已知|网、阿网成等差数列,且丽与丽同向.(I )求双曲线的离心率;(II)设4B被双曲线所截得的线段的长为4,求双曲线的方程.3.已知双曲线x2-/=2的左、右焦点分别为片,",过点厲的动直线与双曲线相交于A, B两点.(I)若动点M满足丽二帀+丽+而(其中0为坐标原点),求点M的轨迹方程;(II)在x轴上是否存在定点C,使冯・质为常数?若存在,求111点C的坐标;若不存在,请说明理由.4已知双曲线c的方程为召嶋W>OQO),离心率“孕顶点到渐近线的距离为芈(1)求双曲线C的方程;(2)如图,P是双曲线C上一点,A, B两点在双曲线C的两条渐近线上,且分别位于第一、二象限,若—- —- 1AP=APB9A E[-,2],求AAOB面积的収值范围35.求一条渐近线方程是3x + 4v = 0, 一个焦点是(4,0)的双曲线标准方程,并求此双曲线的离心率.(12分)6.双曲线x2-y2=a2(a>0)的两个焦点分别为巧,的,P为双曲线上任意一点,求证:\PF^\PO\.\PF2\成等比数列(O为坐标原点).(22分)7.已知动点P与双曲线x2~y2=l的两个焦点Fi,F2的距离Z和为定值,且cosZF^的最1小值为一亍(1)求动点P的轨迹方程;(2)设M(0, —1),若斜率为k(30)的直线/与P点的轨迹交于不同的两点A、B,若要使\MA\ = \MB\,试求k的取值范围.(12分)8.已知不论b取何实数,直线y=kx+b与双曲线x2-2y2= 1总有公共点,试求实数k的取值范围.(12分)x2 y29.设双曲线Ci的方程为=一刍= l(d>0,b>0), A、B为其左、右两个顶点,P是双曲a~ h~线Ci上的任意一点,引QB丄PB, QA丄PA, AQ与BQ交于点Q.(1)求Q点的轨迹方程;(2)设(1)中所求轨迹为C2,Ci、C2的离心率分别为©、勺,当> V2时,幺2的取值范围(14分)10.某屮心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.已知各观测点到该中心的距离都是1020m.试确定该巨响发生的位置.(假定当吋声咅传播的速度为340m/ s湘关各点均在同一平面上).(14分)双曲线练习题答案1.如图,在以点0为圆心,\AB\=4为直径的半圆ADB中,0D丄AB, P是半圆弧上一点,ZPOB = 30° ,曲线C是满足\\MA\-\MB\\为定值的动点M的轨迹,且曲线C过点P.(I )建立适当的平血直角坐标系,求曲线C的方程;(II)设过点D的直线I与曲线C相交于不同的两点E、F. 若厶OEF的面积不小于2近,求直线/斜率的取值范围.• • •解:(I )以0为原点,AB. OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A (・2,0), B (2, 0), D(0,2),P ( V3,l ),依题意得I MA | ・ I MB \ = \ PA \・ I PB I =(2 +V3)2 +12 -V(2-V3)2+12=2A/2 < I AB I =4.・・・曲线C是以原点为中心,A、3为焦点的双曲线.设实半轴长为0,虚半轴长为b,半焦距为c, 则c=2, 20=2-72 , /.a2=2,b2=c2-a2=2.・・・曲欽的方程为于才1.解法2:同解法1建立平面直角坐标系,则依题意可得丨MA \ - \ MB \ = \ PA \ - \ PB \ < I AB I =4.・•・曲线C是以原点为中心,&、B为焦点的双曲线.X2 y2设双曲线的方程为一^一厶~ = 1(。
高中高考考点难点常见题型(带答案解析)双曲线(解析版)

(a+m)2 +(b+m)2 (a+m)2
所以,当a>b时,e1<e2;
当a<b时,e1>e2.
简单 已测:3518次 正确率:92.9%
22
6.
设双曲线 x2 a2
−
y2 b2
=
1(a>0, b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于
B, C两点,过B, C分别作AC, AB的垂线,两垂线交于点D.若D到直线BC的距离小于
=1
D. x2 4
−
y2 3
=1
考点:双曲线的标准方程的求解、双曲线的渐近线问题
知识点:双曲线的标准方程、双曲线的渐近线
答案:D
解析:由题意可得
b a
=
3 2
,
c
=
7,又c2
=
7 = a2+b2,解得a2
= 4, b2
=
3,故双曲线的方程为
x2 4
−
y2 3
=
1.
一般 已测:1871次 正确率:76.7%
,所以 ,则由题意知 ,即 ,所 (
b2 a
)2
=
(c
−
a)∣F D∣
∣F D∣
=
a2
b4 (c−a)
a2
b4 (c−a)
<a+
a2 + b2
a2
b4 (c−a)
<a
+
c
以b4<a2(c
−
a)(a
+
c),即b4
<a2
(c2 −a2
,即) b4<a2b2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、典型例题选讲 (一)考查双曲线的概念
例1 设P是双曲线19222yax上一点,双曲线的一条渐近线方程为023yx,1F、2F分别是双曲线的左、右焦点.若3||1PF,则||2PF
( ) A.1或5 B.6 C.7 D.9 分析:根据标准方程写出渐近线方程,两个方程对比求出a的值,利用双曲线的定义求出2||PF的值.
解:双曲线19222yax渐近线方程为xa3,由已知渐近线为023yx, 122,||||||4aPFPF,||4||12PFPF.
12||3,||0PFPFQ,7||2PF. 故选C. 归纳小结:本题考查双曲线的定义及双曲线的渐近线方程的表示法. (二)基本量求解
例2(2009山东理)设双曲线12222byax的一条渐近线与抛物线21yx
只有一个公共点,则双曲线的离心率为( )
A.45 B.5 C.25 D.5 解析:双曲线12222byax的一条渐近线为xaby,由方程组21byxayx
,消去y,得210bxxa有唯一解,所以△=2()40ba,
所以2ba,2221()5cabbeaaa,故选D. 归纳小结:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念、基本方法和基本技能.
例3(2009全国Ⅰ理)设双曲线22221xyab(a>0,b>0)的渐近线与抛物线2 +1相切,则该双曲线的离心率等于( ) A.3 B.2 C.5 D.6 解析:设切点00(,)Pxy,则切线的斜率为0'0|2xxyx.由题意有
00
0
2yxx.又有2001yx,联立两式解得:2201,2,1()5bbxeaa.
因此选C. 例4(2009江西)设1F和2F为双曲线22221xyab(0,0ab)的两个焦点,若12FF,,(0,2)Pb是正三角形的三个顶点,则双曲线的离心率为( ) A.32 B.2 C.52 D.3 解析:由3tan623cb有2222344()cbca,则2cea,故选B. 归纳小结:注意等边三角形及双曲线的几何特征,从而得出3tan623cb
,体现数形结合思想的应用.
(三)求曲线的方程 例5(2009,北京)已知双曲线2222:1(0,0)xyCabab的离心率
为3,右准线方程为33x. (1)求双曲线C的方程; (2)已知直线0xym与双曲线C交于不同的两点A,B,且线段的中点在圆225xy上,求m的值. 分析:(1)由已知条件列出,,abc的关系,求出双曲线C的方程;(2)将直线与双曲线方程联立,再由中点坐标公式及点在圆上求出m的值.
解:(1)由题意,得2333acca,解得1,3ac.
∴2222bca,∴所求双曲线C的方程为2212yx. (2)设A、B两点的坐标分别为1122,,,xyxy,线段的中点为00,Mxy,
由22120yxxym得22220xmxm(判别式0), ∴12000,22xxxmyxmm, ∵点00,Mxy在圆225xy上, ∴2225mm,∴1m. 另解:设A、B两点的坐标分别为1122,,,xyxy,线段的中点为00,Mxy,
由221122221212yxyx,两式相减得121212121()()()()02xxxxyyyy. 由直线的斜率为1,121200,22xxyyxy代入上式,得002yx. 又00(,)Myx在圆上,得22005yx,又00(,)Myx在直线上,可求得m的值. 归纳小结:本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.
例6 过(1,1)M的直线交双曲线22142xy于,AB两点,若M为弦AB的中点,求直线AB的方程. 分析:求过定点M的直线方程,只需要求出它的斜率.为此可设其斜率是k,利用M为弦AB的中点,即可求得k的值,由此写出直线AB的方程.也可设出弦的两端点坐标用“点差法”求解. 解法一:显然直线AB不垂直于x轴,设其斜率是k,则方程为1(1)ykx.
由221421(1)xyykx消去y得222(12)4(1)2460①kxkkxkk 设),(),(221,1yxByxA,由于M为弦AB的中点, 所以1222(1)1212xxkkk,所以12k. 显然,当12k时方程①的判别式大于零. 所以直线AB的方程为11(1)2yx,即210xy. 解法二:设),(),(221,1yxByxA,则 2211
2222
1②421③42xyxy
①-②得12121212()()2()()0xxxxyyyy.
又因为12122,2xxyy,所以12122()xxyy. 若12,xx则12yy,由12122,2xxyy得121xx,121yy. 则点AB、都不在双曲线上,与题设矛盾,所以12xx. 所以121212yykxx. 所以直线AB的方程为11(1)2yx,即210xy. 经检验直线210xy符合题意,故所求直线为210xy. 解法三:设A(xy,),由于AB、关于点M(1,1)对称,所以B
的坐标为(22xy,),则2221,42(2)1.2xyy2(2-x)4消去平方项,得210xy. ④ 即点A的坐标满足方程④,同理点B的坐标也满足方程④. 故直线AB的方程为210xy. 归纳总结:由于双曲线(抛物线)不是“封闭”的曲线,以定点为中点的弦不一定存在,所以在求双曲线(抛物线)中点弦方程时,必须判断满足条件的直线是否存在. (四)轨迹问题
例7 已知点100(,)Pxy为双曲线222218xybb(b为正常数)上任一点,2F为双曲线的右焦点,过1P作右准线的垂线,垂足为A,连接2FA
并延长交y轴于2P.求线段1P2P的中点P的轨迹E的方程. 分析:求轨迹问题有多种方法,如相关点法等,本题注意到点P
是线段1P2P的中点,可利用相关点法. 解:由已知得208(3,0),(,)3FbAby,则直线2FA的方程为:03(3)yyxbb.
令0x得09yy,即20(0,9)Py.
设Pxy(,),则0000 2952xxyyyy, 即0025xxyy代入22002218xybb得:222241825xybb, 即P的轨迹E的方程为22221225xybb.()xR 归纳小结:将几何特征转化为代数关系是解析几何常用方法. (五)突出几何性质的考查
例8(2006江西)P是双曲线221916xy的右支上一点,M,N分别是圆22(5)4xy和22(5)1xy上的点,则||||PMPN的最大值为( ) A.6 B.7 C.8 D.9 解析:双曲线的两个焦点1(5,0)F与2(5,0)F恰好是两圆的圆心,欲使||||PMPN的值最大,当且仅当||PM最大且||PN最小,由平面几何性质知,点M在线段1PF的延长线上,点N是线段2PF与圆的交点时所求的值最大.
此时12||||(2)(1)PMPNPFPF9321PFPF.因此选D. 例9(2009重庆)已知以原点O为中心的双曲线的一条准线方程为55x,离心率5e. (1)求该双曲线的方程; (2)如图,点A的坐标为(5,0),B是圆22(5)1xy上的点,点M在双曲线右支上,求MAMB的最小值,并求此时M点的坐标.
分析:(1)比较基础,利用所给条件可求得双曲线的方程;(2)利用双曲线的定义将MAMB、转化为其它线段,再利用不等式的性质求解. 解:(1)由题意可知,双曲线的焦点在x轴上,故可设双曲线
的方程为22221(0,0)xyabab,设22cab,由准线方程为55x得255a
c,
由5e得5ca. 解得1,5ac.从而2b,该双曲线的方程为2214yx. (2)设点D的坐标为(5,0),则点A、D为双曲线的焦点,